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  Because the average human life span has recently increased, the number of patients who are 
diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have 
given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs 
for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen 
effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) 
or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurode-
generative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug 
screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently 
identified to affect the stem cell fate to generate neurons or glia.
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  Stem cells have been considered as a good source for po-
tential treatment of neurodegenerative diseases (reviewed 
in [1-7]). Stem cells have the ability to proliferate and dif-
ferentiate into various cell types (reviewed in [8-21]). 
Human embryonic stem cells (ESCs) can be derived from 
the inner cell mass of blastocysts and be differentiated into 
all types of cells composing the human body [22-26]. 
However, using ESCs create ethical problems of destroying 
embryos and problems after transplantation such that cells 
derived from ESCs may be rejected from the recipient pa-
tients and immunosuppressants are required to be ad-
ministered after transplantation [27-30]. Stem cells derived 
from further-developed embryos have relatively limited 
ability to differentiate and proliferate [31-38]. For example, 
neural stem cells (NSCs) can only be differentiated into 
cells comprising the nervous system such as neurons and 
glia [38-44]. Recent breakthroughs in the generation of in-
duced pluripotent stem cells (iPSCs) showed that cells from 
patients can be converted into ESCs like pluripotent cells 
and if used in patients in the future, immunosuppressants 
may not be needed after transplantation [45-49]. Another 
advantage of iPSCs is that they can be induced to form dif-
ferentiated types of cells including neurons and glia and 
the mechanisms involved in neurodegeneration of humans 
can be explored [50-53]. In addition, drug screening can be 
performed in the disease bearing cells that are differenti-

ated from human iPSCs [53-57]. Therefore human stem 
cells including ESCs, adult stem cells and iPSCs provide 
a strategy in which these cells can be used for new drug 
screening or evaluating drug efficacies. In addition, poten-
tial toxicity can be predicted using human stem cells [58]. 
In this review, we focus on recent advances that deal with 
the concept that stem cells provide a good platform for drug 
screening in neurodegenerative diseases and evaluation of 
drug toxicities. 
  Degeneration of the nervous system results in diseases 
including Parkinson’s disease, Alzheimer’s disease, multi-
ple sclerosis, Huntington’s disease and so on. Since drugs 
or therapies that cure neurodegenerative diseases have not 
been developed yet, there is an enormous need for new 
drugs and better therapies. Until recently, emphasis has 
been on the potential use of stem cells in cell replace-
ment/transplantation [59-62]. However, using stem cells as 
a model system to develop new drugs and evaluate toxicity 
has begun to receive increased attention [63,64]. This re-
view first introduces recent findings identifying chemicals 
and natural products that induce differentiation of stem 
cells into neurons or glia. We also discuss advances in drug 
screening and in evaluating toxicities using human stem 
cells.

NSCs for Screening of Chemicals or Natural 
Products that Induce Neuronal or Glial 

Differentiation

  An essential characteristic of NSCs is that, although 
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Fig. 1. High-throughput screening 
for the development of new drugs 
that are effective for the treatment 
of neurodegenerative diseases. NSC 
can be derived from adult cells, fetus 
cells, ESCs or iPSCs. After NSC 
plating, chemical or natural product 
libraries are treated. The effect of 
each drugs are detected by immuno-
cytochemistry using cell type specific 
antibodies. If fluorescence conjugated
secondary antibodies are used, cells 
can be visualized by fluorescence 
microscopy and the numbers of detec-
ted/differentiated cells are counted. 
If HRP conjugated secondary anti-
bodies are used, cells can be treated 
with substrates and lysed to be mea-
sured by microplate reader. Once the
chemicals or natural products that 
are effective are found, and struc-
tural activity relationship studies, 
animal studies and toxicity evalua-
tions are done, promising agents can 
go on to clinical trials and may fur-
ther be developed as new drugs. 

somewhat restricted, they respond to environmental cues. 
For example, NSC differentiation into neurons can be in-
duced by treatment of retinoic acid [65,66]. Similarly, his-
tone deacetylase (HDAC) inhibitors can also cause NSCs 
to differentiate into astrocytes [67-69]. Retinoic acid treat-
ment of NSC induced immediate up-regulation of a proneu-
ral gene, NeuroD, and increased p21 expression. Retinoic 
acid also affected the expression of trkA, trkB, trkC and 
p75NGFR, causing better responses to neurotrophic factors 
and neuron maturation [65]. Modulation of ES cell differ-
entiation was influenced by retinoic acid [66]. However, it 
was dependent on the concentration of retinoic acid and the 
developmental stage of the cells. An HDAC inhibitor, so-
dium butyrate, is reported to increase proliferation of NSCs 
and levels of brain derived neurotrophic factor (BDNF) in 
the ischemic brain of adult rodents [67]. Increases in new 
born neurons in ischemic regions of the brain by sodium 
butyrate appear to be mediated by BDNF, because BDNF 
receptor antagonists markedly reduced NSCs proliferation 
and attenuated behavioural benefits. Identification of new 
cell-fate modulators in NSCs provides several advantages. 
First, the chemicals or natural products that induce neuro-
genesis have the potential to be used in neurodegenerative 
diseases. In the adult human brain, it is known that NSCs 

exist in certain areas such as the subventricular zone (SVZ) 
and the hippocampus (HC) [38,70-73]. It would be beneficial 
for patients who suffer from neurodegeneration to take 
drugs or natural products that increase neurogenesis from 
endogenous NSCs (Fig. 1). In addition to potential use in 
the clinic, identification of new cell fate regulators may in-
duce a homogeneous population, and provide a good model 
for drug screening. The underlying mechanisms of differ-
entiation would also be useful to help understand stem cell 
biology and facilitate new drug development. A homoge-
neous population produced using chemicals that induce a 
certain type of cell may also be useful for transplantation 
in future potential cell replacement therapy.
  As illustrated in Fig. 1, NSCs can be generated from either 
the fetus, the adult, ESCs or iPSCs. After treatment of 
chemical or natural product libraries, the levels of differ-
entiation of NSC can be determined by image-based im-
munocytochemistry or immunostaining-based microplate 
reading quantitation methods. The chemicals or natural 
products that induce high levels of neurogenesis can further 
be used for studying structure-activity relationships (SAR) 
to generate more efficient but less toxic molecules as new 
drug candidates. Several laboratories have recognized the 
importance of identifying small molecules for controlling 
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NSCs fate [74,75]. Some widely used drugs such as anti-
depressants and anticonvulsants have been shown to regu-
late stem cell proliferation and differentiation [69,76-81]. 
Interesting clinical effects of selective serotonin reuptake 
inhibitors (SSRIs) in ameliorating cognition in Alzheimer’s 
disease have been demonstrated [82]. Alzheimer’s disease 
patients with depression have been treated with SSRIs in 
combination with cholinesterase inhibitors (donepezil, rav-
astigmine and galantamine) and showed better cognitive 
function than patients who were treated only with chol-
inesterase inhibitors [82]. Fluoxetine also increased neuro-
genesis by increasing NSCs proliferation and cell survival 
[79,80,83]. Administration of fluoxetine for 28 days sig-
nificantly improved depression when measured in animals 
by a novelty-suppressed feeding test and an increase in 
neurogenesis in the HC was observed [81]. However, the 
use of fluoxetine to induce neurogenesis was challenged by 
recent data that chronic exposure to fluoxetine actually de-
creased neurogenesis in the adult SVZ [84]. The anti-
depressant sertraline increased neuronal differentiation 
through glucocorticoid receptors and increased both im-
mature neuroblasts (double-cortin positive), and mature 
neurons (Map2 positive) [85]. Administration of tricyclic an-
tidepressants such as amitriptyline caused cognitive bene-
fits in patients suffering from Alzheimer’s disease [86]. 
Amitriptyline increased neurotrophic factor levels in pa-
tients’ serum. In cognitively impaired, aged, transgenic 
mice, amitriptyline treatment improved both short and long 
term memory retention and increased neurogenesis in the 
dentate gyrus (DG) [77]. It is also reported that a mood 
stabilizer, lithium, and carbamazepine increased neuro-
genesis but decreased astrocytogenesis [87]. Lithium and 
carbamazepine increased proliferation and decreased apop-
tosis of NSCs that are derived from HC [87,88]. When 3 
month old double transgenic CRND8 mice (overexpressing 
the Swedish and Indiana mutations in the human amyloid 
precursor protein) were treated with lithium for 5 weeks, 
lithium induced proliferation of cells in the HC and induced 
neuronal fate specification [89]. However, when lithium 
was used to treat 7 month old transgenic CRND8 mice, the 
proliferative effects on NSCs and neurogenic effects of lith-
ium were abolished, suggesting that lithium-induced facili-
tation of neurogenesis declines with Alzheimer disease 
progression.
  The anticonvulsant valproate has effects on NSCs. Intere-
stingly, the effects of valproate on neuronal differentiation 
appear to depend on the origin of the NSCs. Valproate en-
hanced neurogenesis in NSCs derived from either entire 
adult HC or forebrain [90-92]. However, in NSCs from DG 
of the HC, valproate induces astrocytogenesis while redu-
cing neuronal differentiation [87]. A recent article sugges-
ted that valproate protected NSCs by reducing NSCs death 
by upregulating the antiapototic gene Bcl-XL and activat-
ing NF-kB signalling pathways [93]. In the early 2000s, VPA 
was known to function as a HDAC inhibitor [69]. As mentio-
ned above, HDAC activity has an important role in enhanc-
ing neurogenesis by upregulation of the proneural gene Ne-
uroD while inhibiting astrocytogenesis. Activation of ERK 
signalling has been implicated in VPA-induced neurogene-
sis [90,92]. Through the beta-catenin-Ras-ERK-p21Cip/WAF1 
pathway, NSC proliferation was inhibited while differentia-
tion into neurons was increased [92].
  Schultz and colleagues described several synthetic mole-
cules (for example KHS101) that induce neuronal differen-
tiation of adult hippocampal NSCs by image-based screen-

ing [94]. KHS101 increased neurogenesis while reducing 
astrocytogenesis. In a search for its target, the authors 
found that KHS101 specifically interacts with the TACC3 
protein and knockdown of TACC3 increased neuronal 
differentiation. TACC3 regulates progenitor cell expansion 
and terminal cell differentiation in hematopoietic and neu-
ral stem cells and appears to mediate the functioning of 
KHS101. We also identified oxadiazol compounds as in-
ducers of astrocytogenesis by image based screening [95]. 
In a study of NSCs derived from developing rat (embryonic 
day 14), we found that oxadiazol derivatives specifically in-
creased numbers of astrocytes while not affecting those of 
neurons.
  For high throughput screening, Saxe and his colleagues 
used a chemiluminescence-based method on primary neuro-
spheres and identified phosphoserine as an enhancer of 
neurogenesis [96]. Since cell counting after immunostaining 
requires skills and time, the authors used horse radish per-
oxidise (HRP)-conjugated secondary antibody and chem-
iluminescence detection was performed by microplate read-
er after HRP substrate treatment. Phosphoserine inhibited 
NSC proliferation, enhanced neurogenesis, and increased 
cell survival. It was suggested that the metabotropic gluta-
mate receptor 4 mediated such effects. In addition to in vi-
tro assays, in vivo screening was done in search of chem-
icals that enhance neurogenesis in the HC of adult mice 
[97]. The authors identified 8 chemicals out of 1000 tested 
that induce neurogenesis. An aminopropyl carbazole named 
P7C3 showed proneurogenic activity by protecting newborn 
neurons from apoptosis and by enhancing neurogenesis in 
the DG.
  Considering that research has not been done for very long 
to develop drugs that modulate NSC fate or stem cell fate, 
it is amazing to find quite a lot of synthetic chemicals that 
have effects on neurogenesis (Table 1). This may be due 
to the ability of NSCs to respond to the environment and 
to differentiate into multiple cell types. Besides the chem-
icals mentioned above, recent patent applications report 
drugs that modulate melanocortin receptors, PPAR-γ, an-
giotensin, and 5-HT, and HMG coenzyme A reductase in-
hibitors were also neurogenic {reviewed in [74] and patents 
and references therein}. For example, in rats with trau-
matic brain injury, when atorvastatin and simvastatin 
were given for 14 days, these statins improved spatial 
learning measured by Morris water maze tests [98,99]. 
Interestingly, newly generated neurons and vessels were 
detected in statin-treated brain-injured rats [99]. With fur-
ther screening, we should find efficient chemicals that en-
hance neuronal differentiation from NSCs. It will be benefi-
cial to develop chemicals that have both neurogenic activity 
and neuron protecting effects for treatment of neuro-
degenerative diseases. 
  In addition to synthetic chemicals, recent results show 
that some natural products also affect cell fate determi-
nation of NSCs (Table 2). Until recently, neuroprotective 
effects of natural products have been intensely studied 
[100-102]. Methanol extracts of Jeju Native plants pro-
tected apoptosis induced by hydrogen peroxides [100]. 
Visnagin, an active component extracted from the fruits of 
Ammi visnaga, which has been used as a treatment for low 
blood-pressure, showed protective effects on kainic acid in-
duced mouse hippocampal cell death by reducing in-
flammation [101]. BF-7 extracted from a sericultural prod-
uct has significant protective effects on amyloid β peptide 
induced apoptosis through reduction of ROS generation and 
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Table 1. Synthetic compounds that are known to regulate stem cell fate

Name Structural formula Effects Cells/system Refs

  Retinoic acid  -Increase neurogenesis    NSCs 65, 66

  Sodium butyrate  -Increase neurogenesis 
 -Increase neural proliferation

   In vivo 67, 68

  Amitriptyline  -Increase neurotrophic factor levels in DG    NSCs 77

  Fluoxetine  -Increase neurogenesis    In vivo
   NSCs

79-81, 83

  Sertraline  -Increase neurogenesis
 -Attenuate cellular damage

   NSCs 85

  Carbamazepine  -Increase neurogenesis
 -Decrease astrocytogenesis

   NSCs 87

  Valproate  -Increase neurogenesis
 -Reduce NSCs death
 -Neuroprotection

   NSCs 90-93

  KHS101  -Increase neurogenesis    NSCs 94

  Oxadiazol compounds  -Enhance astrocyte differentiation    NSCs 95

  Phosphoserine  -Inhibit NSCs proliferation
 -Enhance neurogenesis
 -Increase cell survival

   hESCs 
   NSCs

96

  P7C3  -Protect newborn neurons from apoptosis  
 -Enhance neurogenesis

   NSCs 97

  Atorvastatin  -Increase neurogenesis
 -Reduce neuronal death

   In vivo 98, 99

diminished caspase activity [102]. Glycyrrhizae radix is re-
ported to cause improvements in spatial learning, memory 
and stress-induced anxiety [103]. Garcinol, a polyisopreny-
lated benzophenone derivative in Garcinia indica fruit rind, 
is known to increase the numbers of neurons in EGF re-
sponsive neurospheres by increasing survival [104]. The 

survival enhancing effects of Garcinol were mediated by 
ERK activation and ERK activation modulated neurite 
outgrowth. Ginsenosides that are derived from Panax noto-
ginseng were also identified as enhancers of neurogenesis 
in EGF-responsive NSCs [105]. Interestingly, ginsenosides 
induced neurogenesis at the expense of astrogliogenesis. 
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Table 2. Natural products that are known to affect stem cell survival, proliferation and differentiation

Name     Plant origin Effects      Cells Refs

Saururus chinesis extract Saururus chinesis  -Protective effect on apoptotic cell death SH-SY5Y cells 100
Smilax china extract Smilax china  -Protective effect on apoptotic cell death SH-SY5Y cells 100
Visnagin Ammi visnaga  -Protect neuronal cell In vivo 101
BF-7 Silkworm  -Neuroprotection

 -Enhance cognitive function
SKN-SH cells 102

Glycyrrhizae radix Glycyrrhiza Uralensis  -Anti-stress effects In vivo 103
Garcinol Garcinia indica  -Promote proliferation

 -Increase neurogenesis
NSCs 104

Ginsenoside Rg5 Panax notoginseng  -Increase neurogenesis
 -Decrease astrocytogenesis

NSCs 105

Casticin Croton betulaster  -Increase neurogenesis
 -Decrease neuronal cell death

NSCs 106

Curcumin Indian spice turmeric  -Increase neurogenesis
 -Decrease neuronal cell death and glial
   cell activation

NSCs 107, 108

Nelumbo nucifera
 rhizome extract

Nelumbo nucifera  -Increase neurogenesis In vivo 109, 110

The neurogenic effect of the ginsenosides was abolished 
completely by treatment with the Ca2＋ channel antagonist 
nifedipine. A flavonoid, casticin, extracted from Croton be-
tulaster also increased neuronal differentiation and decrea-
sed neuronal cell death [106]. Casticin increased neuronal 
transcription factor Tbr2 and did not affect gliogenesis when 
detected by immunocytochemistry with GFAP, S100β, 
Olig2 and NG2. NSCs cultured on top of astrocytes that 
were treated with casticin induced neurogenesis and con-
ditioned media from casticin-treated astrocytes reproduced 
such effects. Curcumin, a natural phenolic component of 
yellow curry spice attenuates astroglial and microglial acti-
vation in kainic acid induced seizure [107]. In NSCs, curcu-
min has proliferation-promoting effects [108]. It was re-
ported that administration of curcumin to adult mice in-
creased HC neurogenesis. Methanol extracts of Nelumbo 
nucifera, a rhizome, increased NSC proliferation and in-
creased neurogenesis in vivo [109,110].

Human Stem Cells for Drug Screening

  Recent advances in screening technologies have enabled 
scientists to identify effective small molecules that induce 
neurogenesis. However, many studies were done using ro-
dent NSCs as mentioned above or with highly proliferative 
immortalized or cancerous cell lines that do not accurately 
reflect the human pathophysiological condition. It is thus 
desirable to test or screen drugs with human cells to ob-
serve the effects and mechanisms of drugs. However, until 
very recently, it was almost impossible to obtain enough 
human tissues or cells that represent human neurodegene-
rative conditions. A recent breakthrough made in the stem 
cell research field is the generation of iPSCs from human 
fibroblasts or other somatic cells [45-48]. Using numerous 
combinations of stemness genes, Takahashi and his col-
leagues found that Oct4, Sox2, Klf4 and c-myc could repro-
gram mice fibroblasts into ES like cells [45]. Human so-
matic cells could also be converted into ES like cells by in-
troduction of a few stemness genes [46,111,112]. Further-
more iPSCs were generated from fibroblasts taken from pa-
tients suffering from neurodegenerative diseases [52,53,113]. 

Thus the disease mechanism can be studied in these cells 
and drug screening for specific diseases can be done. Recent 
advances in gene editing such as zinc finger nuclease medi-
ated and helper-dependent adenoviral vector approaches 
were able to cause insertion or deletion of specific target 
genes and cause iPSCs to produce isogenic lines [114,115]. 
Thus disease bearing iPSCs and appropriate control cells 
could be used for the study of pathological mechanisms of 
diseases and drug effects can also be more accurately tested 
in these cells. 
  Since neurodegeneration occurs late in adulthood, it is 
likely that iPSCs generated from patients would not repre-
sent true pathological conditions. Svendsen and his col-
leagues reported that iPSCs can be generated from spinal 
muscular atrophy (SMA) patients [53]. Although early pro-
duced motor neuron numbers were not affected, long term 
culture showed degeneration of motor neurons that had dif-
ferentiated from iPSCs generated from an SMA patient. 
Interestingly, when iPSCs were generated from a patient 
with Parkinson’s disease, there was not much loss of dop-
amine neurons [50]. The cells probably needed more time 
to develop Parkinson’s disease that they are harbouring. 
Although much more research is needed to develop a sys-
tem for drug screening, human iPSCs that are generated 
from patients with specific disease are a good model with 
which to test and screen drugs. 
  In addition to screening drugs that are effective in treat-
ment, it seems apparent that human stem cells are an ex-
cellent model to evaluate drug toxicity. Before moving on 
to phase I clinical trials, it would be safer to test toxicity 
on human ESCs derived cardiomyocytes or other sources 
to predict adverse effects (Maybe this step could be called 
clinical trial phase 0.5). Since cellular contents of human 
cells are different from those of rodent or other animal cells, 
toxicities that are not identified in animal models could be 
detected in human stem cell derived differentiated cells.

CONCLUSION

  Screening for drugs that modulate stem cell self-renewal 
and differentiation, or protect cell death, can be performed 
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to develop new drugs to treat human neurodegenerative 
disease. Stem cells provide a good platform with which to 
perform drug screening and evaluation of toxicity. In this 
review, we have introduced drugs and natural products 
that modulate stem cell fate to neurons or glia. With the 
ability of stem cells to respond to the environment, we ex-
pect to see, in the near future, more progress in identifying 
new drugs that regulate stem cell proliferation and differ-
entiation and are used in neurodegenerative diseases.
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