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ATP hydrolysis and nucleotide exit 
enhance maltose translocation 
in the MalFGK2E importer
Bárbara Abreu1, Carlos Cruz1, A. Sofia F. Oliveira1,2 & Cláudio M. Soares1*

ATP binding cassette (ABC) transporters employ ATP hydrolysis to harness substrate translocation 
across membranes. The Escherichia coli MalFGK2E maltose importer is an example of a type I ABC 
importer and a model system for this class of ABC transporters. The MalFGK2E importer is responsible 
for the intake of malto-oligossacharides in E.coli. Despite being extensively studied, little is known 
about the effect of ATP hydrolysis and nucleotide exit on substrate transport. In this work, we studied 
this phenomenon using extensive molecular dynamics simulations (MD) along with potential of mean 
force calculations of maltose transport across the pore, in the pre-hydrolysis, post-hydrolysis and 
nucleotide-free states. We concluded that ATP hydrolysis and nucleotide exit trigger conformational 
changes that result in the decrease of energetic barriers to maltose translocation towards the 
cytoplasm, with a concomitant increase of the energy barrier in the periplasmic side of the pore, 
contributing for the irreversibility of the process. We also identified key residues that aid in positioning 
and orientation of maltose, as well as a novel binding pocket for maltose in MalG. Additionally, 
ATP hydrolysis leads to conformations similar to the nucleotide-free state. This study shows the 
contribution of ATP hydrolysis and nucleotide exit in the transport cycle, shedding light on ABC type I 
importer mechanisms.

ATP binding cassette (ABC) proteins are one of the largest protein superfamilies, being ubiquitous in all domains 
of life. In common they all share two domains—the nucleotide binding domains (NBDs), that possess charac-
teristic sequences that play a role in ATP binding and hydrolysis1, allowing ABC proteins to fulfil their function. 
ABC transporters are a subclass of ABC proteins responsible for the translocation of various substrates across 
membranes, making use of ATP hydrolysis to harness transport. In addition to the NBDs, ABC transporters also 
contain transmembrane domains (TMDs) that bind and translocate the substrates2,3. In this way, these proteins 
can either act as importers or exporters, depending on directionality of the transport. ABC transporters play key 
roles in various processes such as drug excretion in bacteria and cancer cells, lipid export for membrane building 
and assembling, nutrient intake and even maintenance of transmembrane gradients4.

ABC importers responsible for intake of molecules, such as nutrients and metals are exclusive of bacteria2. 
In addition to the NBDs and TMDs, they also have substrate binding proteins (SBPs) that scavenge the substrate 
from the extracellular medium and deliver it to the transmembrane complex. Most importers are associated with 
the intake of nutrients and some are even involved in pathogenicity, such as the zinc importer ZnuABC present 
in Brucella abortus5,6. They can be divided in three subclasses: the type I, type II and type III importers, which 
differ in their structural features3). The Escherichia coli MalFGK2E importer is a type I importer located in the 
inner membrane responsible for the transport of maltose and malto-oligossacharides from the periplasm. It is a 
heterodimer, constituted by five subunits: two copies of MalK, which constitute the NBD dimer, MalF and MalG 
are part of the TMDs and the substrate-binding protein – MalE7. Figure 1 shows the structure of MalFGK2E in the 
two distinct conformations used in this work. This importer is a model system for type I ABC importers, being 
extensively studied over the years. Substrate translocation in ABC transporters has been explained on basis on 
the alternating-access model, in which the transporter alternates between an outward-facing conformation and 
an inward-facing one8. Considering this model, in the outward-facing state, the TMDs are oriented in such a way 
that the transmembrane cavity is exposed towards the periplasm (Fig. 1a), while the inward-facing state contains 
the transmembrane cavity exposed to the cytoplasm (Fig. 1b). MalE delivers the substrate to the transmembrane 
complex in the outward-facing form.
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The transport cycle of maltose transport starts with the delivery of maltose to the complex, mediated by 
MalE (Fig. 1c–step 1). This first step is disputed because there are two different models to explain substrate 
delivery: the first one defends that there is binding of loaded MalE to the complex leading to the outward-facing 
conformation7. The second model proposes that unliganded MalE binds to the complex, and along with ATP 
binding, generates the outward-facing conformation9. Afterwards, maltose binds to the MalE-MalFGK2 complex, 
via MalE (Fig. 1c -steps 2 and 3)9. Following maltose loading to the complex, ATP hydrolysis triggers its open-
ing causing the conversion to the inward facing form and maltose release. In this paper we will study the events 
happening on this latter stage (Fig. 1c- step 4).

Numerous experimental studies, along with simulation studies, have managed to characterize many of the 
molecular details of transport process, but the sequence of events that result from ATP hydrolysis and their 
corresponding molecular details, remains somewhat elusive. Nonetheless, EPR and cryo-EM data show that 
ATP hydrolysis results in a structure with a semi-open NBD dimer10–12. Moreover, kinetic studies proposed that 
release of phosphate is the rate limiting step and that maltose accelerates release of phosphate and ATP turnover13. 
Previous MD studies on the maltose MalFGK2E have also versed several stages of the transporter function. For 
instance, it was discovered that MalE binding decreases the energetic barrier for MalFGK2E complex closure, 
promoting the movement of the MalF and MalG helices towards the center14. In this way, the presence of MalE 
stabilizes the pre-translocation state. On the other hand, in the absence of MalE, the transmembrane helices 
of MalF arrange in a way that blocks the translocation pathway. MalE binding also suppresses fluctuation of 
the P2-loop of MalF15. The effect of nucleotide binding to the NBDs was also simulated, as well as its energetic 
and mechanistic charcterization15–18. ATP binding in both pockets induces the closed form of the NBD dimer, 
while ATP hydrolysis triggers dimer opening16. Other simulation studies versed the communication between 
NBDs and TMDs19,20 and concluded that the coupling helices and the Q-loops are essential for transmitting 
the impact of ATP hydrolysis from the NBDs to the transmembrane domains. Additionally, the mechanism of 
ATP hydrolysis was also investigated21,22. The authors suggested that ATP hydrolysis proceeds via a dissociative 
mechanism with a trigonal bipyramidal transition state. The conformational changes triggered by ATP hydrolysis 

Figure 1.   Structures used in this work. (a) Initial structure for the simulating the ATP state. This structure 
contains an ATP analogue bound in the NBDs. The post-hydrolysis state was generated from this structure. 
PBD code: 3RLF. (b) Initial structure used to mimic the protein after nucleotide exit. This structure reflects the 
pre-translocation state and can be used to extrapolate about the state after nucleotide exit. PBD code: 3PV0. 
The MalE is represented in bright pink, MalF in cyan, MalG in green and MalK in yellow and salmon. ATP is 
represented in teal spheres and maltose in purple spheres. (c) Transport cycle in the maltose importer. MalE is 
represented in purple, the TMDs in orange, the NBDs in cyan, ATP in red spheres, maltose as a blue sphere and 
ADP and Pi as purple and green semi-circles. 1- ATP binding and MalE loading with maltose. 2- MalE binding 
to the complex. 3- Maltose diffusion in the complex. 4- ATP hydrolysis, release of the substrate and hydrolysis 
products and transporter reset.
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in the complex were also studied, confirming the role of the coupling helices in transmitting the energy created 
by ATP hydrolysis23. So far, these studies characterized events that happen until ATP hydrolysis (included) and 
focused on the transformations suffered by the protein.

The present study aims to shed light on the process of substrate translocation. We investigate the consequences 
of ATP hydrolysis and nucleotide exit on the substrate transport, and on the molecular interactions between 
maltose and the protein complex, from the structural and energetic viewpoints. Regarding the full transport 
cycle, as portrayed in Fig. 1c, our study verses events on the last step of the process, when ATP is hydrolysed, 
and the substrate is released. To this end, we will use extensive molecular dynamics simulations of the maltose 
importer with maltose bound in the transmembrane domains with ATP, ADP.Pi and in the absence of nucleo-
tides, henceforth designated as the Apo state, this latter one intended to mimic the state after hydrolysis and after 
nucleotide exit. The ATP and ADP.Pi states will be generated from the structure with an ATP analogue bound 
(Fig. 1a), while the Apo state will be created from the pre-translocation structure without nucleotides (Fig. 1b).

Even though X-ray structures containing the bound maltose (Fig. 1a,b) and even longer malto-oligassacha-
rides24 provide details about substrate binding, MD simulations allow a dynamic characterization of the binding 
and transport processes, along with the study of impact of ATP hydrolysis on the latter.

The main findings of our study are that ATP hydrolysis significantly lowers the energetic barriers for substrate 
translocation, and that nucleotide departure has a very similar effect as hydrolysis. Additionally, we have identi-
fied the protein conformational changes that are responsible for this effect. The most relevant conformational 
changes happen on key transmembrane helices, that result in increased substrate diffusion towards the intracel-
lular medium. Potential of mean force (PMF) calculations confirmed that hydrolysis decreases the energetic 
barriers for the transport process and enhances its irreversibility.

Results and discussion
Structural stability of MalFGK2E.  In this work we simulated the E. coli MalFGK2E importer in different 
states of the transport cycle: the pre-hydrolysis state with ATP bound to the NBDs, the post-hydrolysis state with 
ADP and phosphate bound and an Apo (nucleotide-free) state.

In order to evaluate the structural stability of these simulations, the temporal evolution of the C-α RMSD and 
the percentage of retained secondary structure were monitored, along with a visual inspection of the trajectories. 
Regarding the ATP state, the C-α RMSD of the full complex reached a value of 0.35 nm at 40 ns, and a small drift 
was observed that increased the RMSD values up to 0.4 nm (Fig. S1). When observing the behaviour for each 
subunit it is possible to observe that the C-α RMSD of MalE and MalG stabilized around 0.2 nm (Figs. S3 and S4). 
The two MalK chains show higher values, around 0.25 nm and a stable evolution (Figs. S5 and S6). In contrast, 
the C-α RMSD of MalF shows a similar behaviour to the C-α of the full complex, reaching values around 0.3 nm 
and a similar drift behaviour. After a visual inspection of the trajectories, we observed that the P2 loop of MalF 
displays rigid-body motions, varying its position around MalE (Fig. S7). Another evidence that the complex has 
retained its structure throughout the simulations, is the evolution the percentage of retained native secondary 
structure, in comparison with the initial structure (Fig. S2), that remained stable around 95% from 40 ns onwards. 
Therefore, we have considered the first 40 ns of simulation as an equilibration period and were discarded. When 
looking at the post-hydrolysis state, a similar behaviour is observed, with the whole complex reaching C-α RMSD 
values around 0.35 nm, but without any significant drift (Fig. S1). MalE and MalG show again the lowest values, 
around 0.2 nm (Figs. S3 and S4), with a stable evolution. However, in this state, both MalK chains show higher 
C-α RMSD values (around 0.3 nm) than the MalF subunit (around 0.28 nm), and closer to the whole complex 
(Figs. S5 to S7). A visualization of the trajectories showed that significant conformational changes happen to 
MalK, such as the active site (AS) opening, rigid body motions back and forth of regulatory domains in the xy 
plane and increased flexibility of the C-terminal segments. This resulted in a significantly higher RMSD in com-
parison with its ATP counterpart. During the production MD, the transmembrane domains have adopted a more 
relaxed conformation, that led to a pore radius decrease in the periplasmic side and increase at the cytoplasmic 
side (Fig. S8), allowing the study of maltose translocation. In a similar way to the pre-hydrolysis state, the first 
100 ns of simulation were discarded. This state also retained approximately 95% of its secondary structure (Fig. 
S2). The nucleotide-free Apo state started from an inward-facing structure. Nonetheless, within the first 20 ns 
of simulation, a spontaneous approximation of the TMDs was observed leading to a structure more similar to 
the outward-facing state. A similar behaviour was reported by Weng et al.14. This resulted in an increased time 
of equilibration, in which the first 150 ns were discarded. This closure was also reflected in pore radius, in which 
there was a radius increase of the periplasmic side, with a concomitant decrease on the cytoplasmic side (Fig. 
S8). The full complex C-α RMSD oscillates around 0.48 nm, stabilizing from 150 ns onwards (Fig. S1). On the 
other hand, MalE shows the lowest C-α RMSD, around 0.19 nm, while the remaining subunits show values cen-
tred in 0.3 nm, with some oscillations. The percentage of retained secondary structure is at least 96% (Fig. S2).

Structural effects of hydrolysis and nucleotide exit.  On nucleotide binding domains.  The nucleo-
tide binding domains of every ABC transporter play a key role in controlling the protein function, being re-
sponsible for ATP binding and hydrolysis. The NBD dimer behaviour changes upon the presence or absence of 
nucleotide. Previous experimental data show that ATP binding to the NBD dimer induces the closed form7,9,13,25. 
Our simulations confirm these findings because the pre-hydrolysis state has always shown a closed NBD dimer. 
On the other hand, the presence of ADP increases the NBDs separation, and the complete absence of nucleotide 
leads to a further increase7,12,25. These motions on the NBDs are reflected throughout the entire complex and 
drive conformational changes that lead to substrate movement. Therefore, by studying the degree of separation 
between the NBD monomers, it is possible to assess the evolution of the conformational behaviour of the com-
plex. We defined the active site 1 (AS1) as the catalytic pocket that contains the MalK chain B Walker A motif 
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and the chain A ABC motif. The chain B is coupled to MalF, while chain A is coupled to MalG (Fig. 1a). The 
active site 2 (AS2) is composed by the chain A Walker A motif and by the chain B ABC motif (Fig. 1b).

Figure 2 shows the distance distributions between the Walker A and the ABC motifs (using C-α atoms only) 
in each pocket, in all states. This measure reflects the opening degree of the ATP binding pocket, allowing to 
assess the evolution of the conformational changes. Is possible to observe that both pockets show distinct behav-
iours, regardless of the state. For the active site 1 (AS1), the distributions of ATP and ADP states overlap, while 
the Apo state shows a much more disperse distribution ranging from 0.8 to 2.6 nm. Regarding the active site 2 
(AS2) pocket, an opening increase was observed after hydrolysis as seen by the ATP and ADP distributions. In 
the Apo state the total distribution is clustered in two peaks, one of them overlapping with the ATP state in the 
region of 0.8 to 1.2 nm, while the other spans the distances between 1.2 and 1.8 nm. Despite the Apo distribution 
showing wider distributions, it is important to recall that this state started in a wide open pocket conformation 
and its time evolution showed that it has tendency to close.

The asymmetry in pocket behaviour can be explained by the different nature of the transmembrane domains 
MalF and MalG, which interact with the NBDs via the coupling helices. This behaviour is enhanced in our 
simulations upon hydrolysis. Asymmetry in the behaviour of the nucleotide binding pockets, was also observed 
in cryo-EM experiments, in the presence of ADP-phosphate10.

Experimental studies have used EPR to evaluate the opening degree of the NBD dimer according to the 
nucleotide state11,12,25. In most cases, the measurements were done using pairs of residues in the helical domains, 
in contrast with our measurements using the C-α atoms of the ATP binding motifs. Additionally, these studies 
use ADP in the post-hydrolysis state rather than ADP.Pi, as we did. Therefore, the results on Fig. 2 are not directly 
comparable with the experimental results.

On the transmembrane domains and MalE.  In all ABC transporters, ATP hydrolysis is known to cause con-
formational changes, which result is different outcomes, namely for substrate release or to reset the transporter 
to the starting point after a transport cycle26,27. In the case of the maltose transporter, ATP hydrolysis triggers 
conformational changes that result in the reorientation of the transmembrane domains, creating an inward-
facing state allowing the release of the substrate and MalE disengagement9,25. It is hypothesized that the closed, 
outward-facing form of the maltose importer is a short-lived high-energy catalytic intermediate5. In fact, upon 
MalE binding and NBD closing, ATP hydrolysis is highly stimulated9,11,13.

In order to assess the structural impact of hydrolysis in the full-length complex, the harmonic ensemble 
similarity (DHES) between ATP and ADP states was calculated for each residue, using the C-α atoms. Figure 3 
shows DHES calculated using the last 50 ns of the ATP and ADP simulations. ADP hydrolysis has led to significant 
differences in the distributions sampled by most residues throughout the complex. In the NBD dimer, there are 
key regions affected by hydrolysis, such as the D-loops, the Walker B motifs as well as the catalytic motifs, the 
Walker A and ABC sequences (Fig. 3). The α-helical domains also display significant changes, that are transmitted 
to regions of the regulatory domains nearby (Fig. 3a, marked with the number 2). Nonetheless, the MalK chain 
B is clearly more affected by ATP hydrolysis, showing higher DHES values. Interestingly, this NBD contacts with 
the MalF coupling helix that displays significant conformational changes that are transmitted to the neighbour-
ing helices 4, 5, 6 and 7 from MalF (TM4F, TM5F, TM6F and TM7F) (Fig. 3b, numbers 3 to 6 in the Fig. 3a). 
The P2 loop does not show significant changes. The conformational changes are transmitted to MalG through 

Figure 2.   Distance of active site opening in both ATP binding pockets. AS1- Active site 1, AS2-Active site 2. 
This distance is measured between the C-α atoms of Walker A and the ABC motifs of the active site. The ATP 
state is represented in red, the ADP in blue and the Apo state without nucleotide in green. The last 260 ns of 
each trajectory were used for analysis. The error bars correspond to the 95% confidence interval obtained by 
bootstrapping. The AS1 is formed by the MalK chain (b) Walker (a) motif and the chain (a) ABC motif, while 
the AS2 is formed by the chain (a) Walker (a) motif and by the chain (b) ABC motif.
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TM7F reaching transmembrane helix 3 in MalG (TM3G) (Fig. 3b, number 2 in Fig. 3a). This is remarkable since 
MalG transmembrane helices are fairly rigid in comparison with MalF. Nonetheless, the residues at the end of 
transmembrane helix 5 of MalG show high DHES values. Furthermore, the MalG scoop loop that plays a role in 
maltose transfer from MalE to the transmembrane domains also shows high DHES values (Fig. 3b). Other external 
loops from MalG and MalF that contact with MalE externally also show large variation (Fig. 3a). Regarding MalE, 
significant differences are observed, not only in the regions in direct contact with the transmembrane domains, 
but also in the C-lobe (residues 163–187 and 326 to 374 in Fig. 3b).

Two dimensional PCA analysis of the all the simulated states allowed us to obtain two main clusters of basins: 
one containing only Apo conformations and other with mixed ATP/ADP content (Fig. S9 and S10). Therefore, the 
Apo state can be fully separated from the ATP and ADP states (Fig. S10). Regarding the cluster of basins belong-
ing to the ATP and ADP states, these two states cannot be distinguished so easily, since they show overlap in some 
of the basins (Fig. S10), but in different degrees (Table S3). Nevertheless, it is possible to identify characteristic 
basins of each state, which show a markedly ATP or ADP character, containing a larger proportion of conforma-
tions within that basin (Table S3). By analysing the structures corresponding to the maximum probability on 
each of the most characteristic basins, it is possible to get a more detailed view on the conformational changes 
suffered by the most relevant regions above mentioned. Even though this analysis focuses on limited zones of 
the whole conformational space, the comparison between the characteristic structures of these two basins allows 
us to identify what is markedly different between the ATP and ADP states, and their difference from the Apo 
state. This is what is shown in figure S11. The Apo state shows a unique conformation that is clearly distinguish-
able from the ATP and ADP ones, in which the periplasmic portion of TM7F, moves to the center of the pore 

Figure 3.   Mapping of the harmonic ensemble similarity (DHES) between the ATP and ADP states. DHES was 
calculated for each residue, using the C-α atoms. The last 50 ns of each trajectory were used for this analysis, 
and the values presented result from the average of cross-replicate comparisons. The scale below indicates 
the magnitude of the changes in DHES observed, in which the dark blue corresponds to the minimum values 
observed, indicating increased similarity while the red corresponds to the maximum values observed, indicating 
increased dissimilarity. (a) DHES values mapped on the protein structure. The structure in the left represents the 
“front view” of the transporter, while the one on the right represents the “rear view”, accomplished by a 180° 
rotation. Relevant regions are marked with numbers: 1-Transmembrane helix 3 MalG (TM3G), 2-MalF coupling 
helix, 3-Transmembrane helix 7 MalF (TM7F), 4- Transmembrane helix 4 MalF (TM4F), 5-Transmembrane 
helix 6 MalF (TM6F), 6-Transmembrane helix 5 (TM5F). (b) Mapping of DHES between the ATP and ADP 
states, on the sequence of each chain. The 3D structure map was obtained with PDBsum68.
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causing constriction in the region containing the periplasmic gate (Figs. S11B and S11F). On the other hand, 
TM6F moves away from the pore center (Fig. S11C), while the MalF coupling helix (Fig. S11A) and TM4F adopt 
a unique position different from the other states (Fig. S11D). Focusing now on the ATP and ADP states, we can 
see that ATP hydrolysis results on a shift of the MalF coupling helix (Fig. S11A) and TM6F moves towards the 
NBD direction (Fig. S11C), while TM7F is shifted in the opposite direction and it moves slightly to the exterior 
of the pore (Fig. S11B). On the other hand, TM4F shifts towards the MalE direction (Fig. S11D). ATP hydrolysis 
also prompts a displacement of the transmembrane helix 5F (TM5F) towards the periplasmic direction (Fig. 
S11E). Nonetheless, the most remarkable alterations happen in the bottom of the pore, where there is a major 
lateral displacement of TM3G (Fig. S11F). The TM5F and TM7F helices also suffer lateral displacements in this 
region (Fig. S11F), also causing pore constriction, similarly to the Apo state.

Wen et al. suggested that the NBD-TMD coupling is done by a network of contacts that arises from the ABC 
motif, goes to the helical domains, followed by the Q-loop, ending on the coupling helices28. In fact, our results 
confirm these observations, by showing considerable differences in the ensembles sampled by the residues in 
this region.

The active site 2, that shows a larger degree of opening (see Fig. 2), is composed by the chain A Walker A motif 
and by the chain B ABC motif. Upon hydrolysis, the residues of the ABC motif show higher dissimilarities on 
the sampled ensembles, than the Walker A residues. Considering that the MalK chain B is connected with MalF 
and that MalF shows larger DHES on key regions throughout the complex, it is possible to hypothesize a mecha-
nism for signal transmission, from the NBDs to the remaining protein, in which the higher motion of the ABC 
motif contributes for spreading the signal across MalF and the remaining complex. This stronger coupling with 
MalF is also corroborated by cryo-EM structures in which an asymmetric NBD dimer was observed, with MalF 
shifted from the center of the complex10. We have also observed novel conformational changes upon hydrolysis 
in the MalG subunit, such as the displacement of the transmembrane helix 3 (TM3G) at the periplasmic end of 
the pore, contributing for pore narrowing in that region.

In this way, ATP hydrolysis in the NBDs impacts the entire protein complex. Conformational changes 
in the transmembrane helices lead to variations in the pore properties, such as the pore radius and residue 
conformation.

Figure 4a shows the pore radius profile on the last 20 ns of simulation in all the simulated states. Overall, 
the transmembrane pore is constituted by a pear-shaped cavity, wider at the bottom (near the periplasmic gate) 
becoming increasingly narrowed as it progresses towards the cytoplasm (Fig. 4b).

The region around −11.5 nm corresponds to the constriction point caused by the periplasmic gate residues 
(V442 and V232) and it is a local minimum in the ATP and ADP states and a global minimum in the Apo state. 
Downstream from this region, there is the MalE binding site. The Apo state is rather distinct of the other two 
states, mostly the part towards the periplasmic gate. These differences reflect the initial conformation of the 
protein in the Apo state, which has the transmembrane helices much more packed, leading to smaller radius. 
Despite the great similarity of the ATP and ADP profiles, hydrolysis causes a global change on the radius profile, 
leading to a further decrease of the radius in the MalE binding site (below −11.5 nm) and in its vicinity up until 
−11.0 nm. On the other hand, there is a concomitant increase of the radius above this region (Fig. 4). Nonethe-
less, the most striking difference upon ATP hydrolysis is the increase of the pore radius that occurs in the −10.8 
to −10.2 nm range, but there are still differences up until −9.5 nm, in which the error shading of the ADP state 
surpasses the ATP state in the upper limit. This region comprises the maltose binding site and it enclosed by E229 
in its periplasmic end, and by Y383 and H137 in the cytoplasmic gate region. The aromatic residues Y325 and 
F436 are contained in this region. The minimum observed at −9.2 corresponds to the cytoplasmic gate residues 
(L429 and L221) and it is a main constriction point of the pore. The values upstream this cytoplasmic gate reflect 
the path until reaching the coupling helices. Overall, ATP hydrolysis leads to the compression of the pore near 
the periplasmic end, confirming the observations of the PCA analysis, in which TM3G, TM7F and TM5F move 
towards the pore center (Fig. S11F). A concomitant increase of the region containing the binding site (from 
−10.8 to −10.2 nm region) along with a marked increase of the region spanning the range from −10.2 nm to 
−9.5 nm, reflects the motions of the MalF coupling helix, TM7F, TM6F and TM5F on this portion of the pore 
(Fig. S11A, S11B, S11C and S11D).

The last 20 ns of simulation were chosen to represent this property, because it is the timeframe that allows 
to observe the maximum differences. The similarity of the Apo radius profile with the ATP and ADP profiles 
in the region towards the NBDs (mainly from −10.5 nm onwards) is due to the sudden closure observed in the 
beginning of the simulations (Fig. S8). This same behaviour was previously described by Weng et al.14, who 
performed metadynamics simulations on the Apo structure. Nevertheless, it should be noted that the displayed 
profiles are averages of multiple conformations and may not reflect the conformational diversity of each state.

Despite the several models for MalE action throughout the transport cycle9,11,12,29,30, it can be speculated that 
the effect of ATP hydrolysis, along with the progressive conformational changes in MalE, results in an increas-
ingly inward-facing state. This leads to an increase of the pore radius, facilitating substrate diffusion upwards 
and eventual exchange with the nucleotides. In fact, EPR data confirm that the nucleotide state in MalK deeply 
influences the coupling of P2-loop, with MalE eventually altering its conformation30, and that in the presence 
of ADP, the MalE N-lobe adopts an unique conformation12, while the MalE C-lobe is more disordered. This can 
potentially shape the TM helices into the inward-facing state in a concerted action with the NBDs. In addition, 
there are contradictory experimental data concerning the affinity of the open and closed MalE to the transmem-
brane complex9,12.

Nonetheless, with MalE always bound, the unidirectionality of the transport is safeguarded. It may also be 
possible that ADP or phosphate exit are required to further enhance these transformations.

Regarding the behaviour of the pore residues, the most noteworthy residue is Y383, not only because of its 
position, located below the cytoplasmic gate, but also because its conformation changes drastically upon the 
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nucleotide state of the protein, as shown in Fig. 5. When measuring the χ1 tyrosine dihedral, it is possible to dif-
ferentiate four populations (Fig. 5a): a first population with χ1 values between −180° and −150°. This population 
is most abundant before hydrolysis and corresponds to conformation in which the hydroxyphenyl ring is adopts 
an orientation perpendicular to the pore axis, preventing maltose diffusion from this point upwards as seen in 
Fig. 5b. Additionally, the last population with χ1 values between 150° and 180° also displays a similar behaviour 
and it is also most abundant on the ATP state. Upon ATP hydrolysis two other populations arise: one with χ1 
values between −100° and −50°, most abundant in the ADP state and other with χ1 values between 50° and 100°, 
most abundant in the Apo, followed by the ADP state. This last population is more energetically accessible than 
the previous one, as seen by the higher percentage of conformations that occupies the same space, being even 
accessible by the ATP state. In these two populations Y383 adopts a conformation parallel to the pore axis, with 
the sidechain being away from the pore centre. This behaviour may be a consequence of the conformational 
changes described above, since Y383 is located in TM6F of MalF, which is one of the most affected helices, as seen 
before. Mutation of Y383 to a serine residue led to lower growth rates using maltose, but not maltoheptatose, lead-
ing to a possible change of the substrate specificity31. Therefore, Y383 is a key residue that controls substrate efflux 
and involved substrate specificity. In this way, it can be considered a first gatekeeper before the periplasmic gate.

Effect of hydrolysis and nucleotide exit on maltose diffusion and binding.  As a consequence 
of the helical displacement upon hydrolysis and nucleotide exit, the pore volume is increased in some regions, 
which culminates in increased maltose vertical diffusion. Figure  6 shows the diffusion maps of the maltose 
center-of-mass for the three states. It is possible to observe two main binding sites. Prior to hydrolysis it is pos-
sible to observe that a large portion of the density is in the vicinity of MalG (at the left side of the picture). This 
binding spot is constituted by hydrophilic residues, such as the E229, Y166, S135, H173 and N129, along with 
hydrophilic mainchain groups. In addition to this spot, a significant amount of density is observed in the vicinity 
of MalF. In this spot, maltose is surrounded by a cluster of aromatic residues, formed by F436, Y325, Y383, along 
with sidechains from polar residues, mainly asparagine and serine residues. These interactions are constant 
in all the simulated states (Figs. S12 and S13) and are also present in crystal structures that were the starting 

Figure 4.   Pore radius across the channel. (a) Pore radius across the channel in the last 20 ns of simulation. The 
ATP state is represented in red, while the ADP one in blue. The observed values are the average for each state 
and the error bars represent the 95% confidence interval obtained by bootstrapping. Larger values of the zz’ 
reaction coordinate indicate a path towards the intracellular medium, while lower values indicate the direction 
towards MalE and the periplasmic medium. (b) Pore representation with relevant residues. The pore surface 
was generated using HOLE65. The residues are displayed in sticks, the pore volume as surface and the protein 
backbone as ribbon. The bottom of the pore heads towards the periplasmic direction.
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points of this work. The importance of these hydrophobic interactions is assessed by the fact that mutations in 
F436 and Y383 reduce transport activity by over 90% in comparison to the wild-type, and the mutation Y325S 
retains only 52% of the transport activity31,32. Figure 6 shows that this pocket in MalF becomes increasingly 
populated and expands upwards after hydrolysis and nucleotide exit. The pre-hydrolysis and pre-translocation 
X-ray structures show maltose bound to this pocket in MalF. However, our simulations revealed the existence of 
an additional pocket in MalG in the pre-hydrolysis state, with a more reduced occupancy in the post-hydrolysis 
and nucleotide-free states.

The existence of this additional pocket is corroborated by the crystal structure of MalFGK2E with maltohep-
tatose bound in which at least one of the glucosyl units is pending towards MalG (in this structure, the other 
unit lacks electron density)24.

Maltose seems to make a similar number of hydrogen bonds with MalF and MalG in either of the ATP and 
ADP states, displaying a slight preference for MalF in the Apo state (Fig. S14). The residues which make the most 
hydrogen bonds belong to MalF and are located within and nearby the cluster of aromatic residues previously 
mentioned—Y383, Y325, N376 and S433, along with H173 that belongs to MalG and is located upstream to this 
spot (Fig. 6 and Fig. S12). Maltose also interacts with E229 (Fig.S14), which is part of MalG and is located in 

Figure 5.   Behaviour of χ1 dihedral values for Y383 for all states. (a) Average χ1 dihedral values for Y383 in each 
state. The χ1 reflects the rotation of the first bond between the C-α atom and the aryl ring. ATP is represented 
in red, ADP in blue and the Apo state in green. The main populations observed are indicated with numbers 
from 1 to 4. The error bars represent the 95% confidence interval obtained by bootstrapping. (b) Examples of 
representative conformations for each main population observed. The protein is coloured in green, and Y383 is 
represented in purple sticks and according to the atom type, while maltose as a density surface in yellow.

Figure 6.   Maltose binding in the transmembrane domains. The isosurface was build using the center-of-mass 
positions of maltose. MalG is represented in beige, while MalF in light blue. Key residues that interact with 
maltose are represented in sticks. The red mesh represents the distribution of the maltose center-of-mass.
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the vicinity of the scoop loop towards the periplasmic side. Interestingly, this interaction is highly dependent of 
the nucleotide state, being most frequent in the ATP state, followed by the ADP and even lower in the absence 
of nucleotide. The movement of the transmembrane helices, which increases the pore volume and vertical dif-
fusion, can explain these differences, namely changes in helices TM4F, TM5F, TM6F, TM3G and TM5G, which 
contain key residues that influence substrate transport such as the periplasmic gate residues V442 and V232, 
the cytoplasmic gate residues L429 and L221, and Y383. Mutagenesis studies show that deletion of E229 leads 
to the failure in complex assembly and maltose transport33. It is possible to hypothesize that it may facilitate 
maltose diffusion from MalE to the transmembrane domains, or even prevent maltose diffusion in the opposite 
direction towards MalE.

Nonetheless, the most frequent interactions performed by maltose are with water molecules, consequence of 
the high solvation of the pore (Fig. S15).

Effect of hydrolysis and nucleotide exit on maltose translocation.  The effect of ATP hydrolysis 
and nucleotide absence on maltose translocation was studied using both pulling and umbrella sampling MD 
simulations. Conformations were extracted from the equilibrium MD simulations at different times and pulling 
was performed in order to generate multiple maltose conformations across the channel. The initial positions of 
maltose used in each window are described in tables S4 to S6. Maltose was in various initial positions across the 
channel in the different frames extracted. Figure 7 shows the potential of mean force (PMF) profiles obtained for 
the several states. The lower reaction coordinate values point towards the periplasmic side of the protein, where 
MalE is bound, while the higher values point towards the cytoplasmic side, where the NBDs are located. The 
histograms used to make the PMF profiles, along with the convergence tests can be found in Figs. S16 to S24. 
The maltose conformations sampled spanned the lowest point possible towards the periplasmic side, up until 
reaching the vicinity of the NBDs. The high free-energy values, from 20 to 80 kJ/mol, possibly result not only 
from structural constraints, but also from instabilities generated by the pulling process, resulting in an artificial 
biasing of the energy values. We also recognize that our sampling is not perfect leading to an additional rough-
ness of the profiles. Therefore, all the conclusions deducted henceforth will be of a strictly qualitative nature.

Overall, the profiles span around 3 nm, from −12 nm to ≈8.3 nm. The profiles show a local maximum around 
−12 nm to −11.5 nm, followed a global minimum in the region of −11 nm to −10 nm. This is followed by an 
increase of the free-energy towards the cytoplasmic side, until reaching the NBD level. The behaviour of these 
PMF profiles is inversely correlated with the pore radius behaviour, across states. Nonetheless, they are not tightly 
correlated, because the pore radius represented in Fig. 4a, is averaged over the simulation time, while the PMF 
profiles were obtained by extracting individual conformations from the MD simulations, upon which pulling, and 
umbrella sampling simulations were performed. Figure S25 shows the average pore radius obtained in umbrella 
sampling simulations and it is more correlated with the PMF profiles.

The ATP PMF profile shows a local maximum at around −11.5 nm, corresponding narrowing of the pore 
in between the periplasmic gate valine residues: V442 and V232. At this point, maltose is in a predominantly 
vertical conformation, as calculated by the angle between the z-axis and the vector that links the most distant 
carbon atoms in the maltose rings (Fig.S26). The maltose conformation contributes to account for the high free-
energy values near the periplasmic gate region. This region of the pore is considerably tighter as seen by the low 
pore radius shown in Fig. 4. Therefore, when maltose is in a horizontal conformation, its presence will not be 

Figure 7.   Potential of mean force (PMF) profiles for the ATP, ADP and Apo states. The ATP profile is 
represented in red, the ADP profile in dark blue and the Apo profile in green. The error bars correspond to a 
95% confidence interval at each point, assuming that the energy values in each bin follow a normal distribution.
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energetically favourable in that portion of the channel. The vertical conformation will decrease the steric clashes 
with the protein residues. From −11.5 nm and under, maltose is below the periplasmic gate, interacting with 
the scoop loop from MalG, as well as some MalE residues, such as K46. The fact that maltose is able to adopt a 
horizontal conformation, as seen by the highly populated bins between 80° and 120° in Fig. S27 (ATP state) is a 
consequence of the larger pore radius observed in this region. This leads to lower free-energy values prior to the 
local maximum. This local maximum is located downstream at −11.5 nm in the ADP and Apo profiles. This is a 
consequence of the different conformations assumed by the protein in the different states.

In fact, in all the simulated states, maltose tends to adopt a horizontal conformation near the periplasmic gate, 
being later reoriented to cross the periplasmic gate (Fig. S23). This location corresponds to a local maximum in 
all PMF profiles. Interestingly, this energy barrier is lower prior to ATP hydrolysis, suggesting increased diffu-
sion probability towards MalE. Therefore, ATP hydrolysis enhances the irreversibility of the transport process, 
being a consequence of the motion of the transmembrane helices. When maltose is between the periplasmic 
gate residues, it starts to interact with the E229 as well as other MalF residues, such as S329 and N440. Nonethe-
less, the visualization of the trajectories shows that E229 plays a key role in redirecting and reorienting maltose 
towards the maltose binding site on MalF, which constitutes the energy minimum observed in all the profiles. 
This binding site is the same described above, and the one observed experimentally in the X-ray structures.

The global minimum observed in the PMF profiles, around −10.5 nm corresponds to the maltose binding 
site. The maltose binding site in MalF is delimited by three aromatic residues: Y383, Y325 and F436 as seen in 
Fig. 8. Maltose establishes hydrophobic interactions with these residues as well as hydrogen bonds with the 
tyrosine hydroxyl groups. The residues in the pocket change conformation upon ATP hydrolysis and nucleotide 
exit (Fig. 8).

The PMF profiles confirm the importance of Y383 as a gatekeeper. By changing its conformation upon 
hydrolysis, allows maltose to adopt a vertical conformation and removes any vertical constraints to diffusion, 
while the remaining interactions become weaker, such as the case of F436 and Y325 (Fig. 8b,c). This vertical 
conformation seems to be associated with lower energies, as a result of lower steric strains (Fig. S27), being able 
to cross the pore more easily. The predominant conformation of maltose in the Apo and ADP profiles is in a 
vertical orientation (aligned with the pore axis) (Fig. S26 and S27).

E229 not only guides maltose towards the hydrophobic pocket, but it also guides maltose out of this pocket, 
as maltose leaves it by making hydrogen bonds with this acidic group. In the region of −9.5 nm to −9 nm, it is 
possible to find an energy maximum which corresponds to the cytoplasmic gate, and this maximum results not 
only from the presence of the bulky leucine residues, but also because it is the point of maximum constriction 
in the pore, i.e., minimal radius (Fig. S26). Closer to the cytoplasmic gate, H173 is also key for ensuring a proper 
vertical orientation, from the pore center up to the vicinity of the cytoplasmic gate. There are also additional 
interactions with T176. The vertical conformation of maltose allows it to cross the cytoplasmic gate and diffuse 
in a rectilinear way towards the NBD vicinity.

In contrast, in the ATP state, maltose reaches the cytoplasmic gate in a horizontal conformation. Due to 
the low radius in this region and above, maltose has the tendency to diffuse laterally towards the direction of 
TM5F and TM6F, reaching the MalF coupling helix. Interestingly, there is a cluster of hydrophobic residues in 
this region, mainly valine and leucine residues, creating a highly unfavourable environment for the residence of 
maltose in this place, resulting in a peak of free-energy from −9.2 nm to −9 nm, approximately. The subsequent 
decrease corresponds to the maltose diffusion towards the NBDs and to the middle of the pore.

After the cytoplasmic gate, the region between −9 and −8.5 nm is lined by hydrophobic residues, namely 
isoleucine, leucine, valine and tyrosine residues. Maltose is still able to perform a few hydrogen bonds with 
backbone atoms and a few polar residues (Y180, T176, T290), but the hydrophobic character of this region may 
well contribute to accelerate maltose exit towards the cytoplasm. The ADP profile also shows a local maximum 
at −8.5 nm that corresponds to an horizonal conformation of maltose, at the end of the TMDs and beneath the 
NBD dimer. All the PMF profiles end in the terminus of the TMDs, beneath the NBDs.

The ADP and Apo PMF profiles show substantially lower energies from the maltose binding pocket onwards, 
reflecting all conformational changes on the membrane helices and key residues, such as Y383, which facilitate 
translocation from that point onwards.

Figure 8.   Maltose binding pocket with maltose bound, surrounded by key residues. (a) Maltose binding pocket 
in the ATP state, maltose is represented in sticks and spheres, while the residues are portrayed in sticks only. (b) 
Maltose binding pocket in the ADP state, maltose is represented in sticks and spheres, while the residues are 
portrayed in sticks only. (c) Maltose binding pocket in the Apo state, represented in blue and green, respectively. 
The relevant aminoacids are represented in sticks, while maltose is represented in spheres and sticks.
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Interestingly, despite the pore constriction in the direction towards the NBDs, maltose is highly solvated, but 
the solvation degree slightly decreases upon hydrolysis and nucleotide exit (Fig. S27). Most hydrogen bonds at 
the bottom of the protein pore are performed with MalF, and as maltose diffuses upwards, the number of these 
interactions with MalF decreases. In the ATP state, this is accompanied by a decrease in the interactions with 
MalG, but this is compensated by a higher amount of hydrogen bonds with water molecules. On the other hand, 
in the ADP and Apo states there is an increase of the hydrogen bonds with MalG, while the solvation sphere of 
maltose is smaller. As expected, all interactions decrease when reaching the cytoplasmic gate, due to the constric-
tion in this region. In fact, the rise of the free-energy along the reaction coordinate is highly correlated with the 
progressive decrease of the pore radius (Fig. 4 and S25).

The free-energy differences observed in the PMF profiles are correlated with the pore radius (Fig. 7 and 
Fig.S25). In the periplasmic side of the profile (between −12.0 and −11.0 nm), the pore radius decreases upon 
hydrolysis and further decreases upon nucleotide exit, which coincides with an increase on free-energy observed 
in PMF profiles, meaning that the maltose has little tendency to remain in this portion of the pore. This is a 
consequence of the conformational changes observed in the transmembrane helices TM7F, TM5F, TM6F and 
TM3G that lead to the constriction of this region (Figs. 3 and S11). Nonetheless, in the binding site region the 
free-energy of translocation is similar in both ADP and Apo states, despite the ADP pore radius being similar to 
the ATP. We attribute this difference to the change in maltose orientation to the vertical orientation (Fig.S27). 
From the maltose binding site towards the NBDs, the free-energy of translocation becomes similar in both ADP 
and Apo states, reflecting the similarity in the pore radii of both states (Fig.S25). These alterations cause the 
constriction of the pore towards MalE while enlarging the pore in the opposite direction. The importance of the 
conformational changes in the transmembrane helices becomes evident since these key residues are located in 
the above referred helices. Y383 is located in TM7F, while F436 and L429 (cytoplasmic gate) and V442 (peri-
plasmic gate) are located in TM6F. The residue V232 from the periplasmic gate belongs to TM5G, which was 
also affected by hydrolysis.

The PMF profiles, along with the structural information obtained in the umbrella sampling simulations, 
provide important clues on the transport mechanism. It is possible to observe that upon ATP hydrolysis and 
posterior nucleotide exit, the transport process becomes increasingly favourable from the energetic viewpoint. 
Nonetheless, the Apo PMF profile is quite similar to the ADP one, suggesting that hydrolysis is the main drive 
to lower the translocation energy, rather than nucleotide release, as seen by the similarity of PMFs along the 
reaction coordinate, but mainly at the top near the NBDs. In fact, this goes in agreement with the Cryo-EM data 
that shows that NBDs, in the absence of nucleotide, are mainly in a semi-closed state, while maltose and MalE 
are still present in the complex, suggesting that maltose exit is one of the last steps before transporter reset11. 
Further kinetic data12 shows that phosphate release is the limiting step of the transport cycle and ADP exit can 
enhance NBD opening. The authors also suggest that the release of Pi is accelerated by the presence of maltose. 
Therefore, it is possible to assume that phosphate is released prior to maltose.

This decrease in free-energy upon hydrolysis and nucleotide release happens due to conformational changes 
triggered by both processes in the transmembrane helices. The closure of transmembrane cavity starting from 
the periplasmic side, with the concomitant opening of the pore on the cytoplasmic side, happens as a result of the 
motions in transmembrane helices TM7F, TM5F, TM6F and TM3G (Fig. 3). These concerted motions lead to an 
increase of the free-energy values in the periplasmic region (−12 to −10.5 nm) with the simultaneous decrease 
on the cytoplasmic side (from −10.5 nm onwards). This process somewhat resembles the peristaltic transport 
mechanism suggested for the type II importer BtuCD, in which the sequential closing of the periplasmic gate, fol-
lowed by the opening of the cytoplasmic gate, creates a peristaltic movement, allowing substrate translocation34. 
However, the structures of type II importers are substantially more rigid, and the existing mechanisms reject 
allosteric coupling between the NBDs and SBP, which has already been proven to happen in the maltose importer 
by a plethora of experimental data9,11–13,30.

Considering that our results show similar energetic behaviours for substrate translocation with ADP and in 
the absence of nucleotide, it is possible to question whether MalE has any influence on the transport process. 
Data from X-ray structures7,24, EPR11,12 and cryo-EM10 experiments support the hypothesis that MalE remains 
bound throughout the entire conformational cycle. Furthermore, it is also hypothesized that MalE may have a 
role in the irreversibility of the transport. Our simulations did not show any significant conformational changes 
that could indicate MalE unbinding. Additionally, different transport models9 defend that MalE is bound in 
different binding states – open or closed throughout the cycle. Previous reports using cryo-EM structures of 
MalFGK2E10, obtained with maltose and MalE bound, showed that in 32% of the particles, MalE detached, rais-
ing the possibility that MalE unbinding precedes maltose release. Therefore, it is possible that the weakening of 
interactions of MalE with the membrane complex results in the increase of NBD opening, further decreasing 
the free-energy barrier, facilitating maltose exit.

Based in this information above presented, we suggest a possible model for MalFGK2E function, in which 
ATP hydrolysis leads to NBD opening causing rearrangements of the transmembrane helices stimulating vertical 
diffusion. Yet, further diffusion towards the cytoplasm and eventual substrate release might require the rearrange-
ment of MalE, resulting in the weakening of MalE interactions with the transmembrane complex and increasing 
the probability of diffusion outside the complex.

The mechanisms unveiled for the MalFGK2E importer slightly resemble other sugar transporters, such as the 
ones that belong to the major facilitator superfamily (MFS). In a similar way to ABC transporters, MFS proteins 
alternate between the inward and outward facing conformations, but not powered by ATP hydrolysis35. In the 
GLUT1 transporter, the conversion from the outward to the inward-facing state leads to rearrangements of the 
transmembrane helices and other loops. The pore closes from the extracellular side, leading to the diffusion of 
glucose from the sugar binding site to an intracellular gate. The resulting PMF of translocation shows an uphill 
behaviour towards the exit with a local minimum corresponding to a transient sugar binding site constituted by 
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hydrophobic residues36. The GLUT4 transporter also possesses aromatic residues and a glucose binding site that 
aid in the reorientation and positioning of glucose in the pore, in order to interact with the appropriate polar 
groups. The main energetic barriers were related with hydrogen bond breaking/formation upon entry and exit, 
with small oscillations along the channel, mainly related with reorientation37.

When comparing the MalFGK2E importer mechanism with the sugar channel LamB located in the E.coli 
outer membrane, responsible for maltose intake to the periplasmic space, significant functional differences arise. 
In LamB, translocation is driven, not only by molecular interactions with hydrophobic residues (the so-called 
“greasy slide”), but also by hydrogen bonds with polar residues. The asymmetric distribution of residues in the 
pore also contributes to enhance substrate entry from the extracellular side38, which allows substrate diffusion 
in a screw-like manner, interacting with the hydrophobic residues and polar residues, in which the latter com-
pensate for the dehydration process39. In this way, it is possible to have a passive translocation process with little 
conformational changes in the protein. Translocation studies show a PMF profile with the main barriers located 
at the entry and exit of the channel that correspond to forming and breaking hydrogen bonds with the protein 
and the solvent40. In contrast, our simulations show that in the MalFGK2E maltose importer, ATP hydrolysis 
triggers motion of the helices in order to stimulate upwards diffusion, but maltose is still reasonably solvated 
and seldom interacts with the hydrophobic residues along the pore.

Conclusions
In this work, we have performed molecular dynamics simulations of the E.coli MalFGK2E importer in the pre 
and post hydrolysis state, as well as in the absence of nucleotide, with the goal of assessing the effects of ATP 
hydrolysis and nucleotide exit on the translocation of maltose.

We concluded that ATP hydrolysis triggers a series of conformational changes in the protein complex, starting 
by pocket opening of the active site, and spreading these conformational changes through the transmembrane 
domains reaching MalE. Hydrolysis affects critical transmembrane helices that conduct to pore constriction 
at the periplasmic side, while enlarging the regions towards the cytoplasmic side, leading to increased maltose 
diffusion towards the NBDs. Y383 was identified as a novel gatekeeper prior to the periplasmic gate, and key to 
allow substrate diffusion. Additionally, a novel binding spot in MalG was found, with maximum occupation in 
the ATP state. The post-hydrolysis state showed similar properties to the state without nucleotides.

The PMF profiles of maltose translocation show that hydrolysis significantly lowers the energetic barriers of 
substrate diffusion towards the intracellular medium, with a concomitant increase of the energy in the opposite 
direction. Therefore, ATP hydrolysis considerably contributes for the irreversibility of the transport process.

Our data suggest that the maltose binding pocket may play a role in substrate reorientation from the periplas-
mic side onto the cytoplasmic side. Other key residues, such as E229, Y383 and H173 assist this task.

Interestingly, nucleotide exit does not lead to significant differences in maltose permeation free-energy profile, 
when comparing with the ADP state. In this way, it might be necessary a weakening in the MalE interaction with 
the rest of the complex in order to increase NBD separation and further TMDs transformations, leading to a fur-
ther decrease of the energetic barriers. Further investigations are required to fully understand this phenomenon.

Methods
System setup.  In order to achieve the goals previously stated in the introduction, we simulated three rel-
evant states; (i) the pre-hydrolysis state with ATP bound in the NBDs, to which the starting point was the pre-
hydrolysis structure crystallized with ANP-PNP (PDB code: 3RLF)41; (ii) The post-hydrolysis state was gener-
ated from this state as explained on Sect. 2.3; (iii) The Apo state, mimicking the nucleotide exit was simulated 
using the pre-translocation state (PDB code: 3PV0)7. We did this because there is no available X-ray structure 
explicitly reflecting the nucleotide exit state, but experimental EPR data shows that the post-hydrolysis state 
is highly similar to the pre-translocation structure 11,12,25. The main similarities comprise the semi-open NBD 
dimer11,12,25 and MalE binding to the complex9,12. In fact, experimental EPR and Cryo-EM show that MalE 
induces closure of the NBD dimer and stabilizes a semi-open NBD conformation in the absence of nucleotide, 
such as the one observed in this structure10–12.

The missing segments were rebuilt using MODELLER version 9.642. All structures were rebuilt in order to 
have the same number of residues, with the goal of increasing the structural similarity. In the pre-translocation 
structure (PDB code: 3PV0), the reconstructed segments were: residues 371 to 374 in MalE, residues 10 to 28, 
242 to 248, 504 to 505 in MalF, and the segment 280 to 296 in MalG. Additionally, the dissulfide bridge between 
residues 69 and 337 in MalE, which was engineered for crystallisation, was reverted to the original serine residues 
in those positions. Additionally, the maltose bound to MalE was removed. In the pre-hydrolysis structure (PDB 
code: 3RLF), the reconstructed segments were the residues 371 to 374 in MalE, and residues 10 to 28, 242 to 248, 
504 to 505 and 280 to 296 in MalF. The ANP-PNP molecule was replaced by ATP. Afterwards, each protein was 
embedded in a pre-equilibrated 480 POPC membrane. The optimal protein orientation was determined using 
LAMBADA43 and the oriented protein was inserted in the membrane manually, removing lipid molecules that 
were within a 1.2 Å distance cut-off.

In order to obtain the protonation states taking into account the effect of membrane environment, first we 
build a temporary version of the system. The protein was inserted in the membrane as described in the above 
paragraph. The system was further solvated and neutralized. This system was minimized in two stages, using a 
maximum of 50,000 steps each: the first, using position restraints of 1000 kJ/mol in all the heavy atoms, and the 
second stage with position restraints of the same magnitude in the protein–ligand complex heavy atoms only. 
An equilibration step was necessary to allow optimal membrane fitting to the protein. The equilibration phase 
was also performed in two stages: the first contemplated the usage of position restraints of 1000 kJ/mol in the 
protein–ligand complex heavy atoms, at constant temperature and pressure during 500 ps. The Berendsen baths 
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were used for controlling temperature and pressure, with coupling constants of 0.1 and 1 ps respectively. The 
second stage equilibration was done using position restraints of 10,000 kJ/mol in the complex heavy atoms for 
20 ns in the same conditions.

Finally, the protonation states of the protein were determined at pH 7.0 using the PETIT and MEAD 
packages44,45 and a final system was built using this information and the above described protocol for membrane 
insertion. The final equilibration protocol is described in Sect. 2.2. The detailed protonation states of the groups 
are described in tables S1 and S2.

Simulation setup.  The equilibrium MD simulations were performed using GROMACS 5.0.746, along with 
the GROMOS 54A7 force field. The POPC parameters used were the ones derived by Poger at al47 and the GRO-
MOS53A6 CARBO parameters were used to model maltose48. The final protonation states of ATP and ADP 
were the same used in Oliveira et al.23,49,50 and Damas et al.51 corresponding to a charge of − 4, − 3, respectively. 
A charge of −1 was assigned to the phosphate ion. The integration time step used was 2 fs. The systems were 
simulated using periodic boundary conditions and at constant temperature and pressure. Ions were added in 
order to neutralize the system. The temperature was set to 303 K using a velocity-rescale heat bath52, with a 
coupling constant of 0.1 ps with two coupling groups: one for the protein-nucleotides complex and another for 
the solvent and ions. The pressure was kept around 1 atm by semi-isotropic coupling with a Parrinello-Rahman 
bath with a coupling constant of 2.0 ps and a compressibility of 4.6 × 10−5 bar−153. A cut-off of 1.0 nm was used 
in the calculation of van der Waals interactions. Long range electrostatic interactions were treated using the 
particle mesh Ewald (PME)54,55 method using a real-space cut-off of 1.0 nm. All neighbour lists were updated 
every 10 steps. All bonds were constrained to their equilibrium lengths using the LINCS56 algorithm, except for 
the water molecules in which the SETTLE algorithm was used to constrain its bonds57. The SPC model for water 
was used58. After system building, its potential energy was minimized in three stages with a maximum of 50,000 
steps each: the first using position restraints of 1000 kJ/mol/nm on all the heavy atoms of the system, the second 
with position restraints of the same magnitude, but on the complex heavy atoms only, and the third with posi-
tion restraints on the C-α atoms only. The equilibration stage was also done in three steps: the first one for 1 ns 
with position restraints of 1000 kJ/mol/nm on all the heavy atoms of the system, the second one for 1 ns with 
position restraints on the heavy atoms of the protein and the last one with position restraints on the C-α atoms.

Nine replicates of the pre hydrolysis states were simulated for 300 ns, while the post hydrolysis state was 
simulated for 360 ns and the apo state for 410 ns. The first 40 ns of the pre hydrolysis state were discarded as 
equilibration time, as well as the first 100 ns for the post hydrolysis state and the first 150 ns of the apo state. The 
effective simulation time analysed was 260 ns.

Generation of the post‑hydrolysis state.  The post-hydrolysis state was generated extracting conforma-
tions from the ATP state at 20 ns. This timeframe was chosen to maximize the probability of collecting catalyti-
cally competent conformations, prior to the generation of the post-hydrolysis state. We have defined the fol-
lowing criteria to assess if a conformation is catalytically competent: the catalytic residues H192 and E159 must 
be oriented towards ATP, with a water molecule coordinated by both residues. Additionally, in order to ensure 
contact between ATP and the active site motifs, only conformation with an intermotif (ABC-Walker A) distance 
lower than 1.2 nm were considered.

Similarly to previous works23,49,59,60, the post hydrolysis state was generated using the slow-growth method, 
making the transformation from ATP to ADP and phosphate coupled to a lambda parameter that varies from 0 to 
1, allowing a smooth conversion of the molecules. In this case we are not interested in calculating the free energy 
associated with this transformation. Nonetheless, in the present case, the entire hydrolysis process was divided in 
two stages. The first step mimics the hydrolysis process, while the second mimics the catalytic residue regenera-
tion. In the first step the conversion of ATP to ADP and phosphate is simulated, along with the annihilation of 
a proton in H192 and the creation of a proton in E159. In this way, the final state agrees with recently proposed 
catalytic mechanisms for ATP hydrolysis in the maltose importer21. In the second stage of hydrolysis there is the 
regeneration of the proton states of residues H192 and E159. The first step, that simulated the hydrolysis process 
was performed for 5 ps using a timestep of 0.0005 ps, while the regeneration step was done for 2 ps, using the 
same timestep. After both slow-growth procedures, an extra positive charge is added to neutralize the system, in 
the form of a sodium ion replacing a water molecule far away from the protein. This allows to avoid inconsisten-
cies due to the PME algorithm. These simulations were performed using the same conditions as described above.

Analysis of equilibrium MD simulations.  Analyses were done using the tools included in the GROMACS 
5.0.7 package.

The harmonic ensemble similarity (DHES) is a measure of the similarity between ensembles and was derived 
by Lindorff-Larsen et al.61. We have used the implementation available in the ENCORE toolkit62 included in 
the MDAnalysis package63,64. DHES was calculated between the ADP and ATP states using the C-α positions of 
each individual residue. The trajectories were previously fitted to a common structure and the comparisons 
were made in a cross-replicate way, i.e., each replicate was compared to all other replicates, apart from itself. The 
displayed values correspond to the average for all comparisons for each residue. The pore radius was measured 
using HOLE, assigning the GROMOS atomic radii65. The secondary structure was determined using the DSSP 
program. The elements of secondary structure considered were α-helix, β-sheet, β-bridge, turn, and 310 helix, 
according to the DSSP classification66.

Principal components analysis (PCA) was performed using the atomic coordinates of the C-α atoms, obtained 
during the equilibrium MD simulations. We followed the protocol defined in Campos et al.67. First, a central 
structure of the trajectory set is determined, being this structure the one that minimizes the total dispersion of 
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the average of the squared rmsd. This central structure is then used for fitting the whole trajectory used for the 
PCA calculation, and as reference structure for the calculation of the covariance matrix. Afterwards, PCA of the 
covariance matrix is performed. The density maps were obtained using a two-dimensional grid with a spacing 
of 0.2 Å and a gaussian kernel estimator67.

The diffusion maps of maltose were obtained by first extracting the center-of-mass coordinates using 
MDAnalysis63,64 and the probability densities were estimated via a three-dimensional grid with a spacing of 
0.05 nm3 using a gaussian kernel estimator67.

The 3D structure maps were obtained using PDBsum server68 and the DHES were mapped with the aid of 
PyMOL 2.0.

All the error bars presented in the histograms correspond to the 95% confidence interval obtained by 
bootstrapping69.

PyMOL 2.0 was used to visualize trajectories and produce the pictures presented70. The plots were produced 
using the Matplotlib71 package in Python and Gnuplot72.

Potential of mean force (PMF) calculations.  The PMF profiles were calculated using the umbrella 
sampling method. Pulling simulations were performed with the goal of generating initial conformations for 
umbrella sampling windows. GROMACS 2018.473 was used for pulling and umbrella sampling simulations, 
in the same conditions as the equilibrium MD, but this time setting an isotropic pressure coupling, to avoid 
fluctuations of the box in the zz’ dimension that affect the reaction coordinate, which is also in the zz’ direction. 
Pulling simulations were started from frames extracted from equilibrium MD simulations at several times. In 
these frames, the maltose molecules were at random positions along the pore as a result of their diffusion. In 
order to span the entire pore length, bidirectional pulling was made. In the direction towards the NBDs, the 
reaction coordinate used was the z-component of the distance between the center of mass of maltose and V442. 
The simulations were stopped as maltose reached the level of the coupling helices. An harmonic potential was 
applied to this reaction coordinate, with a force constant of 1000 kJ/mol/nm2 and a constant velocity of 3.5 Å/ns 
was used in the pre and post hydrolysis states, while 2.5 Å/ns was used in the nucleotide-free state. The systems 
were simulated for a maximum of 50 ns. In the direction towards MalE, the reaction coordinate used was the 
z-component of the distance between the center of mass of maltose and MalE. In a similar way to the previous 
simulations, a harmonic potential was applied to this reaction coordinate, with a force constant of 1000 kJ/mol/
nm2. The conformations extracted from equilibrium MD simulations were simulated for a maximum of 20 ns. 
In the ATP simulation, the pulling velocity used was of 2.5 Å/ns. In the ADP simulation, 20 ns were simulated at 
the pulling velocity of 1.5 Å/ns, along with more 13 ns at the pulling velocity of 3.5 Å/ns. In the Apo state, 20 ns 
were simulated at the pulling velocity of 2.5 Å/ns, along with an extra 16 ns at the pulling velocity of 3.5 Å/ns. 
The extra step with increased velocity was necessary to overcome the steric hindrance caused by the different 
conformation of the transmembrane domains and reaching the periplasmic gate level.

For the umbrella sampling simulations, the PLUMED 2.5.1 plugin was used. The windows were initially 
spaced by 0.06 nm, but depending on the window behaviour, further windows were necessary in certain regions, 
while in other regions, windows were removed to avoid excessive overlap. The final list of windows used for 
each PMF can be found in supplementary information in tables S3 to S6. Harmonic restraints were used with 
a force constant of 500 kJ/mol/nm2 or 800 kJ/mol/nm2, depending on the difficulty of sampling the region. The 
restraint potential was applied to the z-component of the center of mass of maltose. The umbrella windows were 
simulated for 50 ns, in which the first 20 ns were discarded as the equilibration period. The PMF profiles were 
obtained using the Umbrella Integration method by Kästner et al.74,75. We used the code created by Stroët et al.76. 
The orientation angle of maltose was calculated using MDAnalysis63. This angle is defined as the angle between 
the z-axis and the vector that links the most distant carbon atoms in maltose rings.

The probability densities maps for the analysing umbrella sampling simulations were obtained by estimating 
densities in a two-dimensional grid with a spacing of 0.1 hydrogen bonds/nm, 0.1 deg/nm and 0.1 Å/nm using 
a Gaussian Kernel estimator67.
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