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The environment has a strong influence on a population’s evolu-
tionary dynamics. Driven by both intrinsic and external factors,
the environment is subject to continual change in nature. To
capture an ever-changing environment, we consider a model of
evolutionary dynamics with game transitions, where individuals’
behaviors together with the games that they play in one time step
influence the games to be played in the next time step. Within
this model, we study the evolution of cooperation in structured
populations and find a simple rule: Weak selection favors coop-
eration over defection if the ratio of the benefit provided by an
altruistic behavior, b, to the corresponding cost, c, exceeds k − k′,
where k is the average number of neighbors of an individual and
k′ captures the effects of the game transitions. Even if cooper-
ation cannot be favored in each individual game, allowing for
a transition to a relatively valuable game after mutual cooper-
ation and to a less valuable game after defection can result in
a favorable outcome for cooperation. In particular, small varia-
tions in different games being played can promote cooperation
markedly. Our results suggest that simple game transitions can
serve as a mechanism for supporting prosocial behaviors in highly
connected populations.
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The prosocial act of bearing a cost to provide another individ-
ual with a benefit, which is often referred to as “cooperation”

(1), reduces the survival advantage of the donor and fosters
that of the recipient. Understanding how such a trait can be
maintained in a competitive world has long been a focal issue
in evolutionary biology and ecology (2). The spatial distribu-
tion of a population makes an individual more likely to interact
with neighbors than with those who are more distant. Popula-
tion structures can affect the evolution of cooperation (3–9). In
“viscous” populations, one’s offspring often stay close to their
places of birth. Relatives thus interact more often than 2 random
individuals. Compared with the well-mixed setting, population
“viscosity” is known to promote cooperation (10) [although
when the population density is fixed, local competition can can-
cel the cooperation-promoting effect of viscosity (11, 12)]. Past
decades have seen an intensive investigation of the evolution of
cooperation in graph-structured populations (6–9). One of the
best-known findings is that weak selection favors cooperation if
the ratio of the benefit provided by an altruistic act, b, to the
cost of expressing such an altruistic trait, c, exceeds the aver-
age number of neighbors, k (i.e., b/c> k) (6, 13). This simple
rule strongly supports the proposition that population structure
is one of the major mechanisms responsible for the evolution
of cooperation (2).

However, many realistic systems are highly connected, with
each individual having many neighbors on average. For exam-
ple, in a contact network consisting of students from a French
high school, each student has 36 neighbors on average, meaning
k = 36 (14). In such cases, the threshold for establishing coop-
eration, based on the rule “b/c> k ,” is quite high: the benefit
from an altruistic act must be at least 36 times greater than its
cost. Somewhat large mean degrees have also been observed in
collegiate Facebook networks, with well-known examples rang-

ing from 39 neighbors to well over 100 (15–17). Such networks
can (and do) involve the expression of social behaviors much
more complex than those captured by the simple model of
cooperation described previously. However, even for such a sim-
ple model, it is not understood if and when the threshold for
the evolution of cooperation can be reduced to something less
than the mean number of neighbors. Here, we consider a nat-
ural way in which this threshold can be relaxed using “game
transitions.”

In evolutionary game theory, an individual’s reproductive suc-
cess is determined by games played within the population. Many
prior studies have relied on an assumption that the environment
in which individuals evolve is time invariant, meaning that the
individuals play a single fixed game. However, this assumption
is not always realistic and can represent an oversimplification of
reality (18), as many experimental studies have shown that the
environment that individuals face changes over time (and often)
(19–22). As a simple example, overgrazing typically leads to the
degradation of the common pasture land, leaving herders with
fewer resources to utilize in subsequent seasons. By constrain-
ing the number of livestock within a reasonable range, herders
can achieve a more sustainable use of pasture land (23). In
this kind of population, individuals’ actions influence the state
of environment, which in turn, impacts the actions taken by
its members. Apart from endogenous factors, like individuals’
actions, exogenous factors, like seasonal climate fluctuations and
soil conditions, can also modify the environment experienced
by the individuals. Examples are not limited to human-related
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activities but also appear in various microbial systems, including
bacteria and viruses (21, 22).

In this study, we use graphs to model a population’s spatial
structure, where nodes represent individuals and edges describe
their interactions. We propose a model of evolutionary dynamics
with game transitions: individuals sharing an edge interact (“play
a game”) in each time step, and their strategic actions together
with the game played determine the game to be played in the next
time step. We find that game transitions can lower the threshold
for establishing cooperation by k ′, which means that the condi-
tion for cooperation to evolve is b/c> k − k ′, where k ′ captures
the effects of the game transitions. Even if cooperation is dis-
favored in each individual game, transitions between the games
can be favorable for the evolution of cooperation. In fact, just
slight differences between games can dramatically lower the bar-
rier for the success of cooperators. Our results suggest that game
transitions can play a critical role in the evolution of prosocial
behaviors.

Model
We study a population of N players consisting of cooperators,
C , and defectors, D . The population structure is described by a
graph. Each player occupies a node on the graph. Edges between
nodes describe the events related to interactions and biolog-
ical reproduction (or behavior imitation). In each time step,
each player interacts separately with every neighbor, and the
games played in different interactions can be distinct (Fig. 1A).
When playing game i , mutual cooperation brings each player
a “reward,” Ri , whereas mutual defection leads to an outcome
of “punishment,” Pi ; unilateral cooperation leads to a “sucker’s
payoff,” Si , for the cooperator and a “temptation,” Ti , for the
defector. We assume that each game is a prisoner’s dilemma,
which is defined by the payoff ranking Ti >Ri >Pi >Si . Each
player derives an accumulated payoff, π, from all interactions,
and this payoff is translated into reproductive fitness, f = 1− δ+
δπ, where δ> 0 represents the intensity of selection (24). We are
particularly concerned with the effects of weak selection (25, 26),
meaning that 0<δ� 1.

At the end of each time step, one player is selected for
death uniformly at random from the population. The neigh-
bors of this player then compete for the empty site, with each
neighbor sending an offspring to this location with probabil-
ity proportional to fitness. Following this “death–birth” update
step, the games played in the population also update based
on the previous games played and the actions taken in those
games (Fig. 1B). For the player occupying the empty site, the
games that it will play are determined by the interactions of the
prior occupant.

The game transition can be deterministic or stochastic (proba-
bilistic). If the game to be played is independent of the previous
game, the game transition is “state independent” (18). When the
game that will be played depends entirely on the previous game,

the game transition is “behavior independent.” The simplest case
is when the games in all interactions are identical initially and
remain constant throughout the evolutionary process, which is
the setup of most prior studies (6).

Results
In the absence of mutation, a finite population will eventually
reach a monomorphic state in which all players have the same
strategy, either all cooperation or all defection. We study the
competition between cooperation and defection by comparing
the fixation probability of a single cooperator, ρC , with that of
a single defector, ρD . Concretely, ρC is the probability that a
cooperator starting in a random location generates a lineage that
takes over the entire population. Analogously, ρD is the proba-
bility that a defector in a random position turns a population of
cooperators into defectors. Selection favors cooperators relative
to defectors if ρC >ρD (24).

Game Transitions between 2 States. We begin with the case of
deterministic game transitions between 2 states. Each state cor-
responds to a donation game (SI Appendix, sections 3 and 4 has
a comprehensive investigation of 2-state games). In game 1, a
cooperator bears a cost of c to bring its opponent a benefit of b1,
and a defector does nothing. Analogously, in game 2, a cooper-
ator pays a cost of c to bring its opponent a benefit of b2. That
is, Ri = bi − c, Si =−c, Ti = bi , and Pi = 0 in game i . Both b1
and b2 are larger than c. The preferred choice for each player is
defection, but Ri >Pi in each game, resulting in the dilemma of
cooperation. We say that game i is “more valuable” than game
j if bi > bj . We take b1> b2 and explore a natural transition
structure in which only mutual cooperation leads to the most
valuable game.

If every player has k neighbors (i.e., the graph is “k regular”),
we find that

ρC >ρD⇐⇒
b1
c
> k − ξ∆b

c
, [1]

where ∆b = b1− b2 and ξ= (k − 1)/2. Note that ξ is positive and
independent of payoff values, such as b1, b2, and c. We obtain
this condition under weak selection based on the assumption that
the population size N is much larger than k . When b1 = b2, the
2 games are the same, which leads to the well-known rule of
b1/c> k for cooperation to evolve on regular graphs (6). The
existence of the term ξ∆b/c indicates that transitions between
different games can reduce the barrier for the success of coop-
eration. Even when both games oppose cooperation individually
(i.e., b1/c< k and b2/c< k), transitions between them can pro-
mote cooperation (Fig. 2A). Our analytical results agree well
with numerical simulations.

The beneficial effects of game transitions on cooperation
become more prominent on graphs of large degree, k . We
find that a slight difference between games 1 and 2, ∆b, can

Fig. 1. Game transitions on graphs. Each player occupies a node on the graph and has a strategic behavior, blue (“cooperate”) or red (“defect”), used in
interactions with neighbors (A). In every time step, each player plays a game with every neighbor and accumulates its payoffs from all interactions. Games
in different interactions can be different, highlighted by the color of edges and relevant payoff matrices. At the end of each time step, a random player is
selected to be replaced, and all games update. Players’ behaviors and the game that they played in one time step determine the game to be played in the
next time step (B). For example, if both players choose to take “red” behaviors in game 1 (i.e., mutual defection), they will play game 2 in the subsequent
time step.

Su et al. PNAS | December 17, 2019 | vol. 116 | no. 51 | 25399

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908936116/-/DCSupplemental


1 2 3 4 5 6
-0.010

-0.005

0

0.005

0.010 Games with transitions
Only game 1

0 0.4 0.8 1.2 1.6 2
1

20

40

60

80

100
Only game 1

Games with transitions

A B

Fig. 2. Game transitions can promote cooperation under death–birth
updating. We study a transition structure between 2 donation games. A
cooperator pays a cost c to bring its opponent a benefit b1 in game 1
or b2 in game 2; defectors pay nothing and provide no benefits. b1 is
larger than b2. Mutual cooperation leads to game 1, and all other action
profiles lead to game 2. Compared with only playing game 1, game tran-
sitions reduce the critical benefit-to-cost ratio, (b1/c)*, for the evolution
of cooperation (cross-points of dots and the horizontal line in A). Dots
show simulation data, and vertical lines represent analytical results. Param-
eter values are N = 500, k = 4, δ= 0.01, c = 1, and b2 = b1− 0.9. In each
simulation, all players play game 1 initially. Each simulation runs until the
population reaches fixation (all C or all D), and each point is averaged over
106 independent runs. A small difference between b1 and b2 (∆b = b1− b2)
remarkably reduces the critical benefit-to-cost ratio (b1/c)* (B). We take
k = 100 in B.

remarkably lower the barrier for cooperation to evolve. For
example, when k = 100 and c = 1, the critical benefit-to-cost
ratio, (b1/c)∗, decreases from 100 to 50.5 for ∆b = 1.0 (Fig. 2B).
Therefore, game transitions can significantly promote cooper-
ation in realistic and highly connected societies (27). We find
that similar results hold under the closely related “imitation”
updating (SI Appendix, Fig. S1 and section 3).

Next, we consider “birth–death” (28) and “pairwise-com-
parison” (29, 30) updating. Under birth–death updating, in
each time step, a random player is selected for reproduction
with probability proportional to fitness. The offspring replaces
a random neighbor. Under pairwise-comparison updating, a
player is first selected uniformly at random to update his or
her strategy. When player i is chosen for a strategy updat-
ing, it randomly chooses a neighbor j and compares payoffs.
If πi and πj are the payoffs to i and j , respectively, player
i adopts j ’s strategy with probability 1/ [1 + exp (−δ (πj −πi))]
and retains its old strategy otherwise. When mutual coopera-
tion leads to game 1 and other action profiles lead to game 2,
under both birth–death and pairwise-comparison updating, we
have the rule

ρC >ρD⇐⇒ ξ
∆b

c
> 1, [2]

where ξ= 1/2 (SI Appendix, sections 3 and 4). When the 2 games
are the same, ∆b = 0, and cooperators are never favored over
defectors (Fig. 3 A and C). Game transitions provide an oppor-
tunity for cooperation to thrive as long as b1− b2> c/ξ, which
opens an avenue for the evolution of cooperation under birth–
death and pairwise-comparison updating. One can attribute this
result to the fact that, under this transition structure, mutual
cooperation results in b1− c, but when 2 players use different
actions, the cooperator gets −c and the defector gets b2. If
b1− b2> c/ξ, then it must be true that b1− c> b2, which means
that the players are effectively in a coordination game with a
preferred outcome of mutual cooperation.

More intriguingly, Eq. 2 shows that the success of coopera-
tors depends on the difference between benefits provided by an
altruistic behavior in game 1 and game 2, and it is independent of
the exact value in each game (Fig. 3 B and D). Thus, in a dense

population where individuals have many neighbors, even if the
benefits provided by an altruistic behavior are low in both game
1 and game 2, transitions between them can still support the evo-
lution of cooperation. We stress that the difference between the
2 games required to favor cooperation is surprisingly small. For
example, b1− b2> 2c warrants the success of cooperation over
defection on graphs of any degree.

We further examine random graphs (31) and scale-free net-
works (32), where players differ in the number of their neighbors
(SI Appendix, Fig. S2). We find that game transitions can pro-
vide more advantages for the evolution of cooperation than
their static counterparts under death–birth and imitation updat-
ing, and they also give a way for cooperation to evolve under
birth–death and pairwise-comparison updating. In addition, we
study evolutionary processes with mutation and/or behavior
exploration (SI Appendix, Fig. S3). The results demonstrate the
robustness of the effects of game transitions on the evolution of
cooperation.

Stochastic, State-Independent Transitions. For more general state-
independent transitions between 2 games, let p and q represent
the probabilities of transitioning to game 2 (the less-valuable
game) after mutual cooperation and after unilateral cooper-
ation/defection, respectively. Under death–birth updating, the
condition for cooperation to be favored over defection follows
the format of Eq. 1 with

ξ=
k − 1

2
q − k + 1

2
p. [3]

The example in Fig. 2 corresponds to p = 0 and q = 1. We explore
all 8 deterministic game transitions in Fig. 4. We see that game
transitions promote cooperation only when mutual cooperation

Fig. 3. Game transitions can favor cooperation under birth–death (A and
B) and pairwise-comparison updating (C and D). When individuals play only
game 1, cooperation is disfavored over defection for any benefit-to-cost
ratio, b1/c (A and C). When mutual cooperation leads to game 1 and other
action profiles lead to game 2, cooperation can evolve. With game transi-
tions, the difference between the 2 games, ∆b = b1− b2, rather than the
individual values of b1 and b2 determines the success of cooperation (B and
D). Parameter values are N = 500, k = 4, δ= 0.01, c = 1, and b2 = 4 (A and
C). In each simulation, all players play game 1 initially. Each simulation runs
until the population reaches fixation, and each point is averaged over 106

independent runs.
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Fig. 4. Critical ratio for the evolution of cooperation as a function of the game transition pattern. Game transitions are state independent, which means
that the game to be played in the next time step depends on only the number of cooperators. For ∆b12 = 1 and k = 100, we calculate the threshold (b1/c)*
(I) for all 8 deterministic transitions between 2 states (A–H). Game transitions promote cooperation only when mutual cooperation always allows for a more
valuable game 1 and unilateral defection leads to a less valuable game 2 (C and D). The transition after mutual cooperation or unilateral defection is critical
to the evolutionary outcome. For example, modifying the transition responding to mutual cooperation (B and F) or unilateral defection (B and D) changes
(b1/c)* significantly. However, the transitions responding to mutual defection have negligible effects. Critical ratios, (b1/c)*: 100 (A and B), 50.5 (C and D),
150.5 (E and F), and 101 (G and H).

leads to a more profitable game 1 and unilateral defection leads
to a less profitable game 2 (Fig. 4 C and D). However, when
mutual cooperation leads to a detrimental state 1 and unilat-
eral defection leads to a beneficial state 2, it is more difficult for
cooperation to evolve (Fig. 4 E and F). In particular, whether
or not the game transitions affect the evolution of coopera-
tion depends strongly on the transition after mutual cooperation
and the transition after unilateral cooperation/defection. For
example, in Fig. 4 B and F, changing the transition follow-
ing mutual cooperation influences (b1/c)∗ considerably. Tran-
sitions following mutual defection play a less prominent role
(Fig. 4 C and D).

Game Transitions among n States. We turn now to the general
setup of game transitions among n states (i.e., games 1 through
n). If 2 players play game i in the current time step and among
them there are s ∈{0, 1, 2} cooperators, they will play game j

in the next time step with probability p
(s)
ij . s is 2 for mutual

cooperation, 1 for unilateral cooperation/defection, and 0 for
mutual defection. In the prior example of the state transitioning
to game 1 after mutual cooperation and to game 2 otherwise,
we have n = 2 and p

(2)
21 = 1. This setup can recover determin-

istic or probabilistic transitions, state dependent or indepen-
dent, behavior dependent or independent, and the traditional
models involving only a single game (6, 13) as specific cases.
We assume that all games are donation games (SI Appendix,
section 3 discusses any 2-player, 2-strategy game). In game i ,
a cooperator pays a cost of c to bring its opponent a benefit
of bi . Game 1 is the most valuable, meaning that b1 > bi for
every i .

Under death–birth updating, we find that

ρC >ρD⇐⇒
b1
c
> k −

n∑
i=2

ξi
∆b1i
c

, [4]

where for every i , ∆b1i = b1− bi , and ξi depends on the game
transition pattern [i.e., p

(s)
ij ] but is independent of the bene-

fit in each game, bi , and cost, c (Calculation of ξi discusses
the calculation of ξi). The term

∑n
i=2 ξi∆b1i/c captures how

game transitions influence this threshold. The effects of game
transitions on cooperation actually arise from 2 sources: the
game transition pattern and the variation in different games. ξi
captures the former, and ∆b1i/c captures the latter.

Importantly, these 2 components are independent, which
makes it easier to understand the role of each. Let k ′ denote∑n

i=2 ξi∆b1i/c, and let b denote b1. We can interpret Eq. 4

intuitively: weak selection favors cooperation if the ratio of the
benefit from an altruistic behavior, b, to its cost, c, exceeds
the average effective number of neighbors, k − k ′. Analo-
gously, under birth–death or pairwise-comparison updating,
we find that

ρC >ρD⇐⇒
n∑

i=2

ξi
∆b1i
c

> 1. [5]

We refer the reader to Calculation of ξi for the calculation of ξi .
Our study above assumes that, in each time step, games played

by any 2 players are likely to update (“global” transitions). We
also consider the case that games in only a fraction of interactions
have chance to update. When games to be updated are randomly
selected from the whole population, such a game transition can
be transformed to the global transition with a modified transi-
tion matrix (SI Appendix, section 3). Therefore, Eqs. 4 and 5 still
predict the evolutionary outcome.

We also study the case in which the games to be updated
are spatially correlated, with only those nearby an individ-
ual who competes to reproduce being affected (“local” tran-
sitions). Under death–birth and pairwise-comparison updating,
global and local transitions lead to decidedly different models.
We show that, however, the simple rules for cooperation to
evolve (Eqs. 4 and 5) still hold provided that ξi is modi-
fied (SI Appendix, Figs. S4 and S5, and section 1). We give
a brief overview of local game transitions in Global vs. Local
Game Transitions.

Pure vs. Stochastic Strategies
So far, in every time step, each player is either a cooperator or a
defector. However, the model that we propose here has a much
broader scope than just 2 pure strategies. For example, we also
investigate the competition between stochastic strategies under
game transitions. Let sp denote a stochastic strategy with which,
in each time step, a player chooses cooperation with probability p
and defects otherwise. s1 thus corresponds to a pure cooperator,
and s0 corresponds to a pure defector.

We find that the condition for sp being favored by selec-
tion over sq still follows the format of Eq. 4 under death–birth
updating and Eq. 5 under birth–death or pairwise-comparison
updating, provided that ξi is modified (SI Appendix, section 3).
When mutual cooperation leads to a more valuable game and
other action profiles lead to a less valuable game, under death–
birth updating, game transitions lower the threshold for a coop-
erative strategy (i.e., sp with a large p) being favored relative to
a less cooperative strategy. We also find that game transitions
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can favor the evolution of a cooperative stochastic strategy under
birth–death and pairwise-comparison updating.

Discussion
We consider evolutionary dynamics with game transitions, cou-
pling individuals’ actions with the environment. Individuals’
behaviors modify the environment, which in turn, affects the via-
bility of future actions in that environment. We find a simple rule
for the success of cooperators in an environment that can switch
between an arbitrary number of states, namely b/c> k − k ′,
where k ′ exactly captures how game transitions affect the evolu-
tion of cooperation. When all environmental states are identical,
we recover the rule b/c> k (6).

In a 2-action game governed by a single payoff matrix with
entries R, S , T , and P , the so-called “sigma rule” of Tarnita
et al. (33) says that there exists σ for which cooperators are
favored over defectors if and only if σR +S >T +σP . The coef-
ficient σ, which is independent of the payoffs, captures how the
spatial model and its associated update rule affect evolutionary
dynamics. For an infinite random regular graph under death–
birth updating, σ= (k + 1)/ (k − 1). When all interactions are
governed by a donation game with a donation cost c and ben-
efit b1, substituting R = b1− c, S =−c, T = b1, and P = 0 into
the sigma rule gives the condition of cooperation being favored
over defection. Intriguingly, Eq. 1 can be phrased in the form of a
sigma rule, with R = b1− c + (b1− b2)(k − 1)/(k + 1), S =−c,
T = b1, and P = 0. With game transitions, evolution proceeds
“as if” all interactions are governed by an effective game
with R = b1− c + (b1− b2)(k − 1)/(k + 1), S =−c, T = b1, and
P = 0. Compared with the donation game, mutual cooperation
brings each player an extra benefit of (b1− b2)(k − 1)/ (k + 1)
in this effective game. That is, the game transitions create a
situation in which 2 cooperators play a synergistic game and
obtain synergistic benefits (more discussions are in SI Appendix,
section 3E).

This intuition also holds for birth–death and pairwise-
comparison updating. For a prisoner’s dilemma in a con-
stant environment, weak selection disfavors cooperation in any
homogeneous structured population (6, 34). With game tran-
sitions, the synergistic benefit to each cooperator on their
mutual cooperation induces a transformation of the payoff
structure. In particular, the synergistic benefit can transform
the nature of the interaction from a prisoner’s dilemma to
a coordination game with a preferred outcome of mutual
cooperation.

The fact that game transitions allow cooperation to evolve
is related to the idea of partner-fidelity feedback in evolution-
ary biology (35, 36). Partner-fidelity feedback describes that
one’s cooperation increases its partner’s fitness, which ultimately,
feeds back as a fitness increase to the cooperator. Unlike reactive
strategies like Tit-for-Tat, this feedback is an automatic pro-
cess and does not require the partner’s conditional response. In
the classic example of grass-endophyte mutualism (37, 38), by
producing secondary compounds to protect the grass host, endo-
phytes obtain more nutritional provisioning from the host. By
providing nutrients to the endophytes, the grass host is more
resistant to herbivores due to the increased delivery of sec-
ondary compounds. Similarly, in our study, mutual cooperation
could generate a synergistic benefit, which in turn, promotes the
evolution of cooperation.

When mutual cooperation allows for a more profitable game
and other actions profiles lead to a less profitable game, a slight
difference between games considerably reduces the threshold for
the evolution of cooperation. The reason is that, although the
variation in games might be orders of magnitude smaller than the
threshold for establishing cooperation, transitions among such
games generate a synergistic benefit on mutual cooperation that
is of the same order of magnitude as the cost of a coopera-

tive act. Since the synergistic benefit partly makes up for the
loss from a cooperative act, a slight difference between games
makes cooperation less costly. This finding is of significance to
understanding large-scale cooperation in many highly connected
social networks. In these networks, an individual can have hun-
dreds of neighbors (27, 39), and cooperators thus face the risk of
being exploited by many neighboring defectors. If the environ-
ment remains constant, cooperation must be profitable enough
to make up for exploitation by defection (6). Game transitions
can act to reduce the threshold for maintaining cooperation
considerably.

We also find that game transitions can stabilize cooperation
even when mutation or random strategy exploration is allowed.
In a constant environment, when a mutant defector arises within
a cluster of cooperators, it dilutes the spatial assortment of
cooperators and thus, hinders the evolution of cooperation
(40). When the environment changes as a result of individu-
als’ behaviors, although the defecting mutant indeed exploits its
neighboring cooperators temporarily, the environment in which
this happens deteriorates rapidly. As a result, the temptation
to defect is weakened. In a constant environment, selection
also favors the establishment of spatial assortment, whereas
mutation destroys it continuously. The population state finally
reaches a “mutation-selection” stationary distribution. However,
when the environment is subject to transitions, the interaction
environment would also be a part of this distribution. In this
case, the joint distribution over individuals’ states and games
could be described as a “game-mutation-selection” stationary
distribution.

Recent years have seen a growing interest in exploring evo-
lutionary dynamics in a changing and/or heterogeneous envi-
ronments (41–50). Our model is somewhat different. Our study
accounts for both exogenous factors and individuals’ behaviors
in the change of the environment, modeling general environ-
mental feedback. In addition, the environment that 2 players
face is independent of that of another pair of players. Individ-
uals’ strategic behaviors directly influence the environment in
which they evolve, which enables an individual to reciprocate
with the opponent in a single interaction through environmen-
tal feedback. Therefore, even if cooperators are disfavored in
each individual environment, cooperators can still be favored
over defectors through environmental reciprocity. Such an effect
has never been observed in prior studies where all individuals
interact in a homogeneous environment (41, 44). In those stud-
ies, although the environments that individuals face are different,
at any specific stage the environment is identical for all individ-
uals. When defection is a dominant strategy in each individual
environment, defection also dominates cooperation in the con-
text of an ever-changing environment (41, 42, 44). In a recent
work, Hilbe et al. (18) found that individuals can rely on repeated
interactions and continuous strategies to achieve environmental
reciprocity. Compared with their model, in our setup, individ-
uals play a one-shot game with a pure, unconditional strategy.
Our model shows that, without relying on direct reciprocity and
any strategic complexity, game transitions can still promote the
evolution of cooperation.

Data Availability Statement. There are no associated data.

Calculation of ξi

Let p(s)
ij (i , j ∈{1, 2, . . . ,n} and s ∈{0, 1, 2}) be the probability

that the state transitions from game i to game j after s players
cooperate. Let P(s) denote a game transition matrix, where p

(s)
ij

is the element in the i th row and j th column. We present the
formula of ξi for a class of game transition patterns here and
show the calculation of ξ for general transitions in SI Appendix,
section 3.

25402 | www.pnas.org/cgi/doi/10.1073/pnas.1908936116 Su et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908936116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908936116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908936116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1908936116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1908936116


A
PP

LI
ED

M
A

TH
EM

A
TI

CS
EV

O
LU

TI
O

N

For every s ∈{0, 1, 2}, suppose that the Markov chain with
state space {1, 2, . . . ,n} and transition matrix P(s) has only one
recurrence class (and that the states therein are aperiodic). Let
u(s)=

(
u
(s)
1 , . . . , u

(s)
n

)
denote the stationary distribution of this

chain: that is, the solution to u(s)= u(s)P(s) with
∑n

j=1 u
(s)
i = 1.

We have (SI Appendix, section 3)

ξi =
(k − 1)

2
u
(1)
i −

(k + 1)

2
u
(2)
i

for death–birth updating and

ξi =
u
(1)
i

2
− u

(2)
i

2

for birth–death or pairwise-comparison updating. In particular,
for game transitions between 2 states, we have

ξ2 =
(k − 1)p

(1)
12

2
(
p
(1)
12 + p

(1)
21

)− (k + 1)p
(2)
12

2
(
p
(2)
12 + p

(2)
21

)
for death–birth updating and

ξ2 =
p
(1)
12

2
(
p
(1)
12 + p

(1)
21

)− p
(2)
12

2
(
p
(2)
12 + p

(2)
21

)
for birth–death or pairwise-comparison updating. For other
game transitions, the evolutionary dynamics (and thus, ξi) may
be sensitive to the initial condition (i.e., the initial fractions of
various games). We illustrate an example calculation of ξi in SI
Appendix, section 4.

Global vs. Local Game Transitions
Our study above assumes that game transitions are an auto-
matic (and exogenous) responses to interactions. Thus, in each
time step, the games played by any 2 players are likely to
update (global transitions). However, when the game transitions
are subject to individuals’ willingness to play a game, players
could present different tendencies to modify the environments
in which they evolve. For example, under death–birth updating,
if player i is selected for death, then only i ’s nearest neigh-
bors compete to reproduce and replace i with an offspring.
Compared with those not involved in competition around the
vacant site, individuals close to the individual to be replaced
have stronger incentives to change the environment that they
face, since this environment affects their success in filling the
vacancy. In other words, games induced by the nearest neighbors
of the deceased drive the evolution of a system. Therefore, one
could impose transitions only on these games, leading to local
transitions (Fig. 5A).

Birth–death updating requires competition at the population
level, and therefore, global and local transitions are identical
in this case. For death–birth and pairwise-comparison updating,
however, global and local transitions lead to different models.
We show that the simple rules for cooperation to evolve (Eqs.
4 and 5) still hold provided that ξi is modified (SI Appendix,
sections 1 and 4). Specifically, we consider the following tran-
sition pattern: when a game has an opportunity to update, it
transitions to a more valuable game 1 after mutual cooperation
and to a less valuable game 2 after defection. Under death–
birth updating, we have ρC >ρD if and only if b1/c> k − ξ∆b/c,
where ξ=

(
6k4− 10k3 + 3k2 + 6k + 2

)
/
(
12k3

)
(compared with

ξ= (k − 1)/2 for global transitions). For pairwise-comparison

Death-birth Pairwise-comparisonB C

A

Fig. 5. Global and local game transitions. Depicted in A is an example of
game transitions in one time step under death–birth updating. A random
player (dashed circle) is chosen for death; subsequently, this individual’s
neighbors (solid circles) compete to reproduce and send an offspring into
the vacancy with a probability proportional to fitness. With global game
transitions, games in all interactions update in each time step. With local
game transitions, only the games involved with players that compete to
reproduce update (depicted by bold edges). We examine both global and
local transitions under death–birth (B) and pairwise-comparison updating
(C). When a game has an opportunity to update, it transitions to a more
valuable game 1 after mutual cooperation and to a less valuable game 2
after defection. Game transitions, regardless of whether they are global or
local, can promote cooperation markedly, although in this case, global tran-
sitions result in a more relaxed condition for the evolution of cooperation
than do local transitions.

updating, ρC >ρD if and only if ξ∆b/c> 1, where ξ=(
10k2− 4k + 1

)
/
(
24k2− 12k

)
(compared with ξ= 1/2 for

global transitions).
According to the nature of the critical threshold (b1/c> k −

ξ∆b/c for death–birth updating and ξ∆b/c> 1 for pairwise-
comparison updating), global transitions act as a more effective
promoter of cooperation than local transitions do (Fig. 5 B and
C). However, for both kinds of game transitions, many mes-
sages are qualitatively the same: game transitions can promote
cooperation (Figs. 2 and 3 and SI Appendix, Fig. S4), game tran-
sitions can amplify the beneficial effects of game variations on
cooperation (Figs. 2 and 3 and SI Appendix, Fig. S5), and game
transitions responding to mutual cooperation or unilateral coop-
eration/defection strongly affect cooperation. We include a more
detailed discussion of global vs. local game transitions in SI
Appendix, section 4.
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