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The human oral microbiome correlates with numerous diseases, including lung cancer. Identifying the functional changes by
metaproteomics helps understand the disease-related dysbiosis, yet characterizing low-abundant bacteria is challenging. Here,
we developed a free-flow isoelectric focusing electrophoresis-mass spectrometry- (FFIEF-MS-) based metaproteomics strategy
to reduce host interferences and enrich low-abundant bacteria for in-depth interpretation of the oral microbiome. With our
method, the number of interfering peptides decreased by 52.87%, whereas the bacterial peptides and species increased by
94.97% and 44.90%, respectively, compared to the conventional metaproteomics approach. We identified 3647 bacterial
proteins, which is the most comprehensive oral metaproteomics study to date. Lung cancer-associated bacteria were validated
among an independent cohort. The imbalanced Fusobacterium nucleatum and Prevotella histicola and their dysregulated
functions in inhibiting immune response and maintaining cell redox homeostasis were revealed. The FFIEF-MS may serve as a
valuable strategy to study the mechanisms between human diseases and microbiomes with broader applications.

1. Introduction

The human microbiome plays an important role in main-
taining our body homeostasis [1–3]. In particular, the oral
microbiome contains nearly 800 species with 20 million
nonredundant genes, which is the second most diverse
microbiota in the human body and is crucial for connecting
the outside environment through the digestive and respira-
tory tracts [4–6]. Oral microbiome dysbiosis can cause sys-
tematic diseases, including lung cancer [7–12], which is the
major cause of all cancer deaths worldwide [13]. Majority
of these microbiome studies have been conducted through
sequencing methods, which provided valuable information

on the taxonomic composition and the functional potential
of the microbiome [14, 15]. However, changes in functional
traits of the microbiome in response to stimuli from the host
are the key factor to understand the role of the microbiome
in our health and diseases [16–19], which might not be reli-
ably revealed by these methods [20]. The functional analysis
relies on the detection of proteins, which is the strength of
mass spectrometry-based (meta)proteomics [21, 22]. There-
fore, it is of great importance to systematically explore not
only the taxonomic composition but also the actual func-
tions of the microbiome that have been expressed under
various conditions with metaproteomics. The study of the
oral microbiome and lung cancer by metaproteomics may
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provide more insightful information to characterize the
functional role of microbiota than sequencing methods
[20], which to our knowledge has yet to be explored.

As a rapidly developing field, metaproteomics has been
increasingly applied in studying the gut microbiome [20,
23–26]. However, due to the lack of a comprehensive and
standardized metaproteomics workflow, only a few studies
have been conducted on the oral microbiome [27–29], even
though human saliva is an ideal source for sampling the oral
microbiome and showed excellent potential as a noninvasive
diagnostic fluid [30–33]. The major challenge is that, due to
the relatively high abundance of host interference and low
abundance of bacteria within the oral microbiome com-
pared to the gut microbiome, a more dedicated sample pre-
treatment method is required to improve the efficiency of
bacteria identification [34, 35], which was ignored by most
of the previous studies [28, 29]. Moreover, current meta-
proteomics methods may not allow an adequate measure-
ment of low-abundant bacteria in complex microbiomes
[36]. The low-abundant bacteria have unneglectable roles
in the microbiome community. Based on the “keystone-
pathogen hypothesis,,” some low-abundant bacteria could
remodel the symbiont microbiome into a dysbiosis commu-
nity and cause host diseases, while these bacteria remain a
minor constituent in the microbiome [37]. In cancer devel-
opment, certain low-abundant bacteria in our oral and gut
microbiome often promote carcinogenesis [38, 39]. Many
studies have found the presence of important but low-
biomass microbes living in the tumor microenvironment,
most of which can promote tumor growth and facilitate
tumor cell translocation [40–42]. Besides, there are impor-
tant functional interactions among the low-abundant bacte-
ria in the microbiome [43]. Losing some of them might
lead to a low-diversity microbial community, which is often
associated with dysbiosis and diseases, or may even serve as
a marker for cancer diagnosis and their prognosis [44, 45].
These features of low-abundant bacteria make them an
important and tempting research object in cancer develop-
ment and warrant further studies. Some studies have
introduced peptide-level fractionation prior to mass spec-
trometry (MS) analysis to increase the number of identified
proteins [28, 46]. However, an expanded proteome cover-
age may not necessarily solve the problem of identifying
low-abundant bacteria, since the MS could be saturated
by high-abundant proteins’ peptides from the host and
predominant bacteria [47].

Currently, most method development studies on meta-
proteomics focus on computational analysis [48–51]. To
the best of our knowledge, only a few studies have appreci-
ated the value of sample pretreatment and fractionation that
could reduce the complexity of microbiome samples for a
comprehensive analysis [52–54]. In our previous work, we
used a free-flow isoelectric focusing (FFIEF) electrophoresis
method to separate complex microbiome samples and
enrich low-abundant bacteria for 16S rRNA sequencing
analysis [53]. FFIEF is a liquid-phase preparative separation
technique that separates and concentrates biological samples
into different fractions based on their isoelectric points (pI),
while maintaining their biological activities during the sepa-

ration [55–58]. However, the host interference remains an
impediment for metaproteomics analysis, which calls for a
new strategy that integrates optimized sample pretreatment,
highly efficient FFIEF separation, and improved data bioin-
formatics for a comprehensive and in-depth analysis of the
human oral microbiome.

In this study, we aimed to develop an FFIEF-MS-based
metaproteomics methodology to achieve an in-depth analy-
sis of the human oral microbiome at both the taxonomy
composition and the functional level and to provide new
insights into the relationship between the oral microbiome
and lung cancer. The new strategy consists of three modules:
(1) a sample pretreatment module that reduces the host
interferences, (2) an FFIEF separation module that fraction-
ates human oral microbiome to enrich the low-abundant
bacteria for sensitive identification, and (3) a metaproteo-
mics analysis module that integrates different data analysis
methods for integrated functional interpretation [23, 48,
59]. The established strategy greatly increased the numbers
of identified bacterial peptides and species, enriched the
low-abundant bacteria, and provided a more in-depth func-
tional characterization of human oral microbiome. We
further applied this strategy to studying lung cancer-
associated dysbiosis at both taxonomic and functional levels.
Significantly altered oral bacteria in lung cancer patients
were identified and validated, and their dysregulated func-
tions were determined. Our integrated metaproteomic anal-
ysis revealed the “key pathogens” that were dysregulated in
both abundance and their executed functions in lung cancer.

2. Results

2.1. Experimental Design. In this study, we first developed a
metaproteomics strategy, in which the oral microbiome
samples were subjected to 3 different workflows: (i) direct
analysis workflow (representing the conventional workflow
for oral metaproteomics), (ii) pretreatment workflow (simi-
lar to the conventional workflow for gut metaproteomics,
while we modified it to fit the oral metaproteomics), and
(iii) FFIEF workflow (Figure 1(a)). To determine the effi-
ciency of the pretreatment method, samples from 5 healthy
subjects were pooled together and then divided into two ali-
quots for workflows (i) and (ii), respectively. To determine
the efficiency of the FFIEF, samples from another 5 healthy
subjects were pooled together and then divided into two
aliquots for workflows (ii) and (iii), respectively. At the
application phase, samples from 18 healthy subjects and 16
lung cancer patients were pooled and went through the
established metaproteomics workflow.

In total, we identified 22335 peptides with taxonomy
annotation, of which 12840 were bacterial peptides, corre-
sponding to 3647 bacterial proteins. Meanwhile, the
numbers of human-originated peptides and proteins were
9495 and 974, respectively (Figures 1(b) and 1(c)).

2.2. Microbiome Sample Pretreatment Facilitated the
Bacteria Identification via Reducing the Host Interference.
Since the oral microbiome sample contained substantial host
interferences such as mucin and oral epithelial cells, it is
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important to remove them so that the low-abundant bacteria
could be revealed. By using the direct analysis workflow (i),
we identified 1803 bacterial peptides, 3798 interfering
peptides, 209 species peptides, and 56 species in an average
of three technical replicates. The proportions of bacterial
peptide intensity and number over the total peptide were
9.43% and 32.19%, respectively (Figure 2(a)). By using pre-
treatment workflow (ii), we only identified 1790 interfering
peptides, which significantly decreased by 52.87% compared
to workflow (i). With fewer identified interfering peptides,
the numbers of bacterial peptides, species peptides, and species
were increased to 2049, 370, and 81, respectively. The propor-
tions of bacterial peptide intensity and number were also
increased to 11.58% and 53.38%, respectively (Figure 2(a)).

Furthermore, the workflow (ii) exhibited a higher repro-
ducibility in bacteria identification than the workflow (i).
Pearson correlation coefficients of identified bacterial pep-
tides were 0.97 for pretreated samples versus 0.92 for directly
analyzed samples (Figure 2(b)). More bacterial taxa were
identified in the pretreated samples than in directly analyzed
samples (249 versus 239), and the proportion of taxa over-
laps in three replicates was higher in the pretreated samples
(69% versus 54%, Figure 2(c)). The relative standard devia-
tions (RSD) of the bacterial taxa that identified in only one
technical replicate were 3.06% and 5.57% in workflow (ii)
and workflow (i), respectively. Our results demonstrated

that the pretreatment method facilitated the identification
of oral microbiome with improved reproducibility.

2.3. FFIEF-MS Method Allowed for More In-Depth Analysis
and Identification of Bacterial Peptides. Based on our previ-
ously established method [53], we further optimized the
experimental parameters and adjusted the instrument for
in-depth metaproteomic analysis. Then, themicrobial sample
was separated through FFIEF after pretreatment (FFIEF-MS,
workflow (iii)) to obtain eight fractions (Supplemental
Figure 1). Since repeating LC-MS/MS measurements of the
same sample could also increase the number of identified
peptides, we ran the corresponding sample with LC-MS/MS
(without FFIEF, control method, workflow (ii)) eight times
for a fair comparison (eight fractions versus eight replicates).
In total, 3858 bacterial peptides were identified from the
eight FFIEF fractions. However, only 2348 bacterial peptides
were identified in the eight replicates, which accounted for
61% of the bacterial peptides identified by the FFIEF-MS
approach (Figure 3(a)). Therefore, the increased number of
identified bacterial peptides by FFIEF-MS did not simply
rely on the increment of MS measuring times.

We further performed two more biological replicates to
evaluate the FFIEF-MS method (workflow (iii)). After
FFIEF-MS, 4808 bacterial peptides were identified, account-
ing for 59.59% of the total peptides. Compared to 2466
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Figure 1: The metaproteomics workflow for the analysis of human oral microbiome. (a) At the method development phase, oral
microbiome was processed through: (i) direct Analysis, in which the sample was directly centrifuged to obtain the pellet and extract the
proteins for metaproteomics analysis; (ii) with pretreatment, in which the sample was pretreated with differential centrifugation and
filtration to remove the interferents from the oral cavity; and (iii) with FFIEF, in which the sample was fractionated by FFIEF to reduce
the complexity of microbiome and enrich the low-abundant bacteria for in-depth analysis of the oral microbiome. At the method
application phase, the sample went through the optimized FFIEF-MS-based metaproteomics workflow. (b) Total numbers of identified
bacterial and human peptides. (c) Total numbers of identified bacterial and human proteins.
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bacterial peptides identified by the control method (work-
flow (ii), which accounted for 48.71% of total peptides),
the number of bacterial peptides was significantly increased
by 94.97% through our FFIEF-MS method (Figure 3(b)).
The intensity percentage of bacterial peptides was also
increased from 13.49% to 20.47%. At the species level, the
identified peptide and species numbers were both signifi-
cantly increased from 285 peptides and 49 species to 608
peptides and 71 species (113.33% and 44.90% increase,
respectively). Shannon diversity was also increased signifi-
cantly from 2.32 to 2.83 after FFIEF-MS (Figure 3(b)). In
addition, the posterior error probability (PEP) value and
the peptide searching score distribution of these newly iden-
tified bacterial peptides by the FFIEF-MS method showed
that these peptides had a low PEP value and comparable
searching score with the total peptides, suggesting that the
identification of these peptides was highly confident

(Supplemental Figure 2). We randomly selected 4 MS/MS
spectra of these newly identified peptides and found that
all four peptides had satisfactory coverage and intensity of
b/y ions, which further demonstrated that these new
peptides were reliably identified by our FFIEF-MS method
(Supplemental Figure 3).

Moreover, 100% (53 out of 53), 88% (36 out of 41), and
98% (54 out of 55) of bacterial species identified by the
control method were also retained by the FFIEF-MS method
(Figure 3(c)), which showed only minimum loss in taxonomy
after FFIEF. In addition, based on the cumulative curves in
Figure 3(d), we found that as the species abundance accumu-
lates, the numbers of identified peptides increased with both
methods, while the increment was more obvious with our
FFIEF-MS method than the control method, especially from
the low-abundant species, indicating that the FFIEF-MS
method has an advantage in identifying low-abundant species.
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Figure 2: The performance of the sample pretreatment method. (a) The numbers of identified bacterial peptides and other peptides (top),
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Figure 3: The performance of FFIEF-MS metaproteomics. (a) The number of identified bacterial peptides from the sample without FFIEF
separation (8 replicates) and from 8 FFIEF fractions. (b) The identified bacterial peptide number, the proportions of bacterial peptide
number and intensity to total peptides (top 3 bar plots), the identified species peptide number, species number, and Shannon diversity
(bottom 3 bar plots) from the microbiome samples with the FFIEF-MS method or control method without FFIEF. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, two-sided paired t-test (n = 3, three biological replicates). (c) Venn diagrams of the identified bacterial species from oral
microbiome samples with the FFIEF-MS method or control method (n = 3, three biological replicates). (d) Cumulative number of
identified species peptides with the FFIEF-MS method or control method under the cumulative abundance of species arranged from high
to low (n = 3, three biological replicates). (e) The intensities of bacteria phylum that were identified by direct analysis (workflow (i)),
pretreatment only (workflow (ii)), and FFIEF-MS (workflow (iii)). The intensities were calculated by label-free quantification (MaxLFQ
algorithm) according to their corresponding peptide intensities. (f) Venn diagram of the identified bacterial species through direct
analysis (workflow (i)), pretreatment only (workflow (ii)), and FFIEF-MS (workflow (iii)).

5Research



When the intensities of bacteria phylum were compared
among the direct analysis (workflow (i)), pretreatment only
(workflow (ii)), and FFIEF-MS (workflow (iii)), we found a
gradual increase in phylum intensity as each module (pre-
treatment and FFIEF) was introduced into our metaproteo-
mics strategy (Figures 1(a) and 3(e)). Not only did some
high-abundant phyla increase but also the low-abundant
phyla were enriched through FFIEF-MS, such as Cyanobac-
teria and Synergistetes. The total species identified by the
three workflows showed that apart from the increased spe-
cies number identified by the FFIEF-MS (41% increase when
compared with the direct analysis and 23% increase when
compared with the pretreatment), more than 92% (n = 3)
of the species were preserved during the FFIEF-MS work-
flow (Figure 3(f)). Together, these data demonstrated the
ability of our strategy to reduce the interferences, enrich
the low-abundant species, and improve the sensitivity of
microbiome identification, while preserving most species
for metaproteomics analysis.

2.4. FFIEF-MS Workflow Facilitated a Comprehensive
Understanding of Oral Microbiome. Taxonomy classification
of the eight FFIEF fractions (F1-F8, workflow (iii)) and the
eight replicates (R1-R8, workflow (ii)) showed that 5 phyla
(Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
and Proteobacteria) and 60 species were identified by
FFIEF-MS (Figure 4(a)). Phylum Firmicutes contained most
of the identified species in the oral microbiome with the
highest abundance. The low-abundant species, such as
Rothia dentocariosa and Streptococcus parasanguinis, were
greatly enriched after FFIEF (red denoted in Figure 4(a)
and Supplemental Table S2). The composition of the eight
replicates showed a similar pattern; in contrast, the eight
FFIEF fractions were very different from each other. In the
most acidic fraction F1, Granulicatella adiacens and
Peptostreptococcus stomatis were greatly enriched when
compared to other fractions. In the most basic fraction F8,
Porphyromonas gingivalis and Peptostreptococcus anaerobius
were enriched. From the three biological replicates, the
numbers of significantly enriched species by FFIEF-MS were
27, 25, and 34. Among them, 77% of species were low
abundant (abundance < 0:1%) and were masked in the
control method (Supplemental Table S3).

Gene ontology (GO) was used for functional annotation
of the bacterial peptides. The overviews of their core func-
tions were the same before and after FFIEF fractionation,
which means that the functional structure of the micro-
biome was not changed by FFIEF-MS, while the number of
GO annotated peptides was increased (Figure 4(b)). We
found that 98 bacterial functions were enriched by our
FFIEF-MS method, and no significant depletion of func-
tional annotations was observed (Figure 4(c)), which sug-
gested that no functional information was lost during
FFIEF, and no bias was introduced to distort the functional
analysis. The functional cluster also revealed the same
enrichment trend mentioned above, with F3 and F7 enrich-
ing most functional annotations that were not enriched by
the control method (Supplemental Figure 4).

We further performed the taxonomy-function integra-
tion analysis for the significantly enriched low-abundant
species by FFIEF-MS and their corresponding functions
(Figure 4(d)). In these species, Granulicatella adiacens
was the most abundant one, which was responsible for
the top 3 abundant functions: cytoplasm, formate C-
acetyltransferase activity, and carbohydrate metabolic
process, along with other 4 functions. The low-abundant
Peptostreptococcus stomatis and Porphyromonas gingivalis
executed diversified functions (9 and 6 GO terms, respec-
tively). For instance, P. stomatis was the most activate species
in the molecular function, involving nucleotide binding, pyr-
idoxal phosphate binding, transaminase activity, and peroxi-
redoxin activity (Supplemental Figure 5). P. gingivalis was
involved in many biological processes that seem to be
deleterious, including pathogenesis, proteolysis, and
hemolysis in other organism (Supplemental Figure 6). These
low-abundant bacteria and their functions revealed by our
FFIEF-MS method could not be identified by conventional
methods (workflows (i) and (ii)), which therefore stressed
the value of our strategy.

2.5. Identification of Lung Cancer-Associated Bacteria with
FFIEF-MS-Based Metaproteomics. Since the oral bacteria
can serve as indicators for lung cancer, we applied our
FFIEF-MS method to identify lung cancer-associated bacte-
ria through comparing the taxonomy differences between
the lung cancer group (group P, n = 16, pooled sample)
and the healthy group (group N, n = 18, pooled sample).
Without FFIEF separation, the microbiome diversity in
group P was significantly lower than that in group N, which
was in accordance with previous studies [60]. While with
FFIEF-MS, the microbiome diversity increased significantly
in both groups (Supplemental Figure 7). Taxonomic
composition revealed drastic differences between group N
and group P (Figure 5(a) and Supplemental Table S4).
Overall, Actinobacteria and Firmicutes were decreased in
group P, while Fusobacteria and Proteobacteria were
increased. We then conducted the linear discriminant
effect size (LEfSe) analysis to explore marked differences of
bacteria between the two groups (Figure 5(b)). Genus
Fusobacterium and Neisseria, family Neisseriaceae and
Actinomycetaceae, and order Burkholderiales were
characteristic bacteria in lung cancer, while decreased genus
Actinomyces and class Spirochaetia was found in lung cancer,
which corroborates the findings in previous sequencing-based
studies [9, 61–66].

Moreover, among the 84 identified species, we discovered
43 significantly different species between lung cancer and
healthy groups by our FFIEF-MS method (Figures 5(b) and
5(c)). In comparison, only 24 differential species were identi-
fied by the control method without FFIEF. Figure 6(a) shows
the log2 transformed fold change (log2FC) (P/N) of the
significantly different species that were identified with or
without FFIEF (43 species in FFIEF-MS, 24 species in the
control method). The quantitative differences were more
apparent for most species with the FFIEF-MS method. Inter-
estingly, some species identified by the control method
showed lower fold changes or even a reversed trend with
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the FFIEF-MS method. For example, the log2FC of Strepto-
coccus mitis was reduced from 6.64 to 3.86. Selenomonas sp.
oral taxon 126 was identified as upregulated in group P by
the control method, while it was determined as downregu-
lated by FFIEF-MS (Figure 6(a)). The reason was that S. mitis
was a low-abundant species in healthy people, which was
masked in the group N and solely identified in the group P
by the control method. Therefore, the fold change (P/N)
was determined as more than 100, corresponding to 6.64 in
log2FC. Since S. mitis was enriched to a detectable level in
group N by FFIEF-MS (0.29%), its log2FC was reduced to
3.86. Similarly, Selenomonas sp. oral taxon 126 was not found
in group N by the control method. With the FFIEF-MS
method, this low-abundant species was enriched and
revealed in group N, which caused the reversed trend.

To validate the bacteria with significantly different levels,
we performed qPCR analysis for them in an independent
cohort (24 lung cancer patients and 24 healthy subjects),
which confirmed the MS-based identification of the lung
cancer-associated bacteria, including the downregulated
Actinomyces graevenitzii and Prevotella histicola and the
upregulated Capnocytophaga sp. oral taxon 329, Fusobacter-
ium nucleatum, and Kingella denitrificans in the cancer
group (Figure 6(b)). In addition, the highly sensitive qPCR

enabled the quantification of low-abundant bacteria and
confirmed the presence of these species identified by our
FFIEF-MS method. For instance, we quantified the Seleno-
monas sp. oral taxon 126 (0.09%) and S. mitis (0.17%) in
healthy subjects by qPCR, both of which could not be
detected by the control method, while both were enriched
by our FFIEF-MS method (0.47% and 0.29%, respectively).
The qPCR analysis further demonstrated the downregula-
tion of Selenomonas sp. oral taxon 126 and the upregulation
of S. mitis in the cancer group, which validated our findings
from the FFIEF-MS (Figures 6(a) and 6(b)). Our results
indicated that FFIEF-MS-based metaproteomics facilitated
the identification of lung cancer-associated bacteria, and it
may eliminate the inappropriate association caused by inad-
equate measurement of low-abundant species in a complex
microbiome with the conventional metaproteomics method.

2.6. Functional Analysis and Taxonomy-Function Integration
of the Lung Cancer-Associated Oral Microbiome. In the func-
tion analysis, 57 GOs were upregulated and 290 GOs were
downregulated in the lung cancer group (Figures 7(a) and
7(b)), in which the bacterial cell development and mobility
increased in lung cancer, such as the bacterial-type flagellum
basal body, distal rod, L ring (GO:0009427), and regulation
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of cell development (GO:0060284). Meanwhile, the immune-
related functions were decreased, such as leukocyte-mediated
immunity (GO:0002443) and natural killer cell-mediated
cytotoxicity (GO:0042267).

To gain more insights into the relationship between the
imbalanced bacteria and the dysregulated functions, we inte-
grated the taxonomic and functional annotations from our
metaproteomics data. Figure 7(c) shows the significantly
different species between lung cancer and healthy control
groups with their top 3 abundant functions (left) and the
significantly dysregulated functions with their correspond-
ing executors (right). We found that A. graevenitzii was
responsible for cytoplasm (GO:0005737), glycolytic process
(GO:0006096), and cell cycle (GO:0007049), in which the
cytoplasm and cell cycle (marked by “∗”) were also the
significantly downregulated functions executed by the
imbalanced species like Solobacterium moorei, as well as
some unchanged species such as Prevotella marshii
(Figure 7(c), right). Besides, the low-abundant P. histicola
was involved in two dysregulated functions (peroxidase
activity, GO:0004601, and cell redox homeostasis,
GO:0045454) and it showed consistency in the taxonomy-
function integration, suggesting that it was also the main
executor of these two functions. The diminished level of its
abundance and corresponding functions could be an impor-
tant indicator that reflects the imbalanced redox environ-
ment in lung cancer [67].

However, most of the species that were predominant in
the lung cancer group executed basic functions without
significant difference, such as the cell outer membrane
(GO:0009279), porin activity (GO:0015288), and ion trans-
membrane transport (GO:0034220) performed by K. denitri-
ficans and Cardiobacterium valvarum (Figure 7(c)). In
addition, most of the top 15 significantly elevated functions
in lung cancer belong to the higher taxonomy level, including
regulation of cell development (GO:0060284) and regulation
of macroautophagy (GO:0016241) (Figure 7(c)), which
implies that these dysregulated functions were executed by
multiple homogeneous species with synergistic effect on the
disease that could not be specified at the species level [8].

The KEGG enrichment analysis showed that cell motility
and cancer-related categories were enriched in the lung can-
cer group, and the significantly enriched pathways were
cyclooxygenase inhibitors and flagellar assembly
(Figure 7(d)). In the healthy control group, the microbial
metabolism was more diverse than the lung cancer group
(Supplemental Figure 10). Besides, the environmental
adaptation pathway was solely enriched in the lung cancer
group, indicating that there might be disrupted homeostasis
between the microbiome and the host in lung cancer. We
further constructed the metabolic pathways by mapping
our identified bacterial proteins to KEGG, which showed
that the healthy control group had much higher coverage of
the metabolic pathways than the lung cancer group
(Supplemental Figure 8). The fatty acid metabolism
pathway was selected for further demonstration, since
studies have shown that the metabolic activities of the oral
microbiome may be involved in carcinogenesis by
regulating obesity and obesity-induced inflammation [3].

The utilization of malonyl-CoA for fatty acid synthesis was
significantly decreased in lung cancer, including the
complete steps of fatty acid biosynthesis initiation and
elongation from malonyl-CoA to stearoyl-CoA in cytoplasm
(Supplemental Figure 9). The fatty acid synthesis with the
acetyl-CoA module and beta oxidation with the
hexadecanoyl-CoA degradation module were enriched in the
lung cancer group. Our results suggested a defected fatty
acid biosynthesis pathway involving malonyl-CoA and a
potentially accelerated fatty acid oxidation process in the
microbiome of lung cancer patients.

3. Discussion

Given the importance of human oral microbiome inmaintain-
ing health and indicating diseases, a thorough study aimed at
exploring its taxonomy/function correlation by metaproteo-
mics is needed. When compared with sequencing-based
methods like metagenomics and metatranscriptomics, meta-
proteomics provides valuable mechanistic insights through
deciphering the executors of biological functions—proteins—-
from the host and microbiome [68, 69]. However, the oral
microbiome is interfered by the substantial amount of host
proteins that may saturate MS analysis, which requires a com-
prehensive strategy to improve its identification efficiency.

In this study, we developed an FFIEF-MS based metapro-
teomics methodology to achieve a more in-depth analysis of
the oral microbiome. Our strategy can reduce the host inter-
ference, enrich the low-abundant bacteria, and integrate the
data from both taxonomy and function levels. In total, we
identified 12840 bacterial peptides corresponding to 3647
bacterial proteins. To the best of our knowledge, this is the
most comprehensive metaproteomics study on the oral
microbiome. In previous studies, the numbers of identified
bacterial proteins were around 1000 to 2600, with direct anal-
ysis of saliva or pelleted saliva [27–29]. The predominant
host proteins (e.g., mucin, amylase, and proteins from oral
epithelial cells) greatly interfered with the identification of
bacterial proteins. In our pretreatment module, we effectively
removed the host cells and proteins. The number of interfer-
ing peptides was drastically decreased by 52.87%, which led
to a significantly increased number of identified bacteria
and better reproducibility. Therefore, reducing the host
interference was necessary to improve the sensitivity and to
achieve a more reliable identification of the microbiome.

By incorporating the FFIEF to separate the complex
microbiome and enrich the low-abundant species to a
detectable level, we further improved the efficiency of bacte-
rial identification and revealed diversified functions of these
low-abundant species. Since some specific low-abundant
species may have dominant effects on aggravating dysbiosis
in disease [37], it is critical to enrich and identify them. In
this regard, FFIEF-MS has unique strength in achieving an
in-depth analysis of microbiomes. It should be noted that
this improvement was not achieved by simply increasing
the MS measuring time. We analyzed one microbiome sam-
ple by using two methods in parallel, one with the FFIEF-MS
method (8 FFIEF fractions) and the other with the control
method (without FFIEF, 8 replicates). The identified
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bacterial peptides were nearly doubled by using the FFIEF-
MS method. Besides, the seemly unsaturated trend of these
FFIEF fractions makes it possible for identifying more bacte-
rial peptides if we could add more FFIEF fractions to the MS
analysis. However, it would also significantly increase the
analysis time and cost for a single experiment. It is a tradeoff
between the efficiency and cost that should be considered,
which led us to use 8 FFIEF fractions in this study. More-
over, the taxonomy and functional annotations are well
retained and further enriched by the FFIEF-MS method,
which demonstrates that FFIEF does not damage the bacte-
ria during separation and no bias was introduced prior to
downstream MS analysis.

Lung cancer is the leading cause of all cancer deaths
worldwide, with a low 5-year survival rate and sometimes
poor immunotherapy outcome [13, 70]. It is important to
detect lung cancer in a convenient and noninvasive manner
and to explore the mechanisms of its development. Human
saliva is an easily accessible body fluid for disease diagnos-
tics, and lung cancer patients’ saliva contains oral microbiota
that were distinct from healthy people [7, 9, 30, 71], making
it an ideal medium to reveal lung cancer-associated bacteria
and their functions. Although increasing evidence has linked
microbiome to lung cancer, most studies were focused on
the taxonomic imbalance and the functional interpretation
of the microbiota is still lacking [72].

With our established metaproteomics platform, we identi-
fied several lung cancer-associated bacteria from the genus to
the class level that is consistent with previous sequencing-
based studies [9, 61–66] and revealed novel lung cancer-
related bacteria that were underestimated by conventional
methods. Through an independent cohort validation, 7
species were confirmed to be lung cancer associated. We then
found the increased cell development level of bacteria and the
decreased immune-related functions in lung cancer. Although
the long-term immune response and chronic inflammation
are associated with carcinogenesis, increasing evidences suggest
that themicrobiome can shape the adaptive immunity to escape
from immune surveillance [67]. Besides, immune defects may
lead to microbiome-driven carcinogenesis and bacteria translo-
cation [3, 73]. Our study also revealed a significantly enriched
flagellar assembly pathway in lung cancer, which represents
an increased level of bacterial migration and supported the
abovementioned finding. In addition, we found that cancer-
related pathways, cell motility, and the cyclooxygenase (COX)
inhibitor pathways were enriched in the lung cancer micro-
biome. COX is involved in the synthesis of protective human
mucosa [74]. Inhibiting its activity may lead to barrier failure,
bacterial translocation, and microbiome-driven carcinogenesis
[3], which reflected the potential impact of an imbalanced
microbiome on lung cancer development.

Notably, to the best of our knowledge, it is the first time
that the upregulated species F. nucleatum and its association
with the downregulated natural killer cell-mediated cytotox-
icity were identified in lung cancer patients. F. nucleatum
has been reported to directly inhibit natural killer cell-
mediated cytotoxicity in colorectal cancer [75]. It promotes
cancer development via the virulence factor FadA to invade
cells and interact with E-cadherin to activate the beta-

catenin signaling pathway [76]. The same pathway was also
involved in lung cancer metastasis [77], which may reflect
the mechanistic similarity of the two immune-related cancer
and explain the association. However, the causal relationship
between F. nucleatum and lung cancer has not been estab-
lished. Future studies are warranted to further investigate
what role it plays in lung cancer development.

By the integrated analytical method, we can determine
the function of the whole microbiome as well as specify
the functions to their bacterial executors. Linkages between
taxonomy and function were determined with the following
insights informed: (1) some dysregulated bacteria indeed
execute disrupted functions, (2) some other dysregulated
bacteria did not execute the disrupted functions that lead
to disease, and (3) some disrupted functions were facilitated
by the unchanged bacteria that might be underestimated by
the sequencing-based “taxonomy-only” methods. As indi-
cated by our integrated analysis, the dysregulated bacteria
that only execute the unchanged functions may not serve
as the true indicator to differentiate health and disease
[20]. On the other hand, some unchanged bacteria that
execute the disrupted functions could be insightful, because
their roles in the microbiota may change during disease
processes. Accordingly, Hajishengallis et al. showed that
some low-abundant bacteria can remodel the normally
benign microbiota into a dysbiotic one to facilitate diseases,
while their abundance may not change [37]. More impor-
tantly, the identified bacteria with dysregulated abundances
and functions may serve as valuable biomarkers to diagnose
diseases as well as to study the mechanism of the diseases,
making them the “key pathogen” for lung cancer study.
In a disease-related environment, they change in both num-
bers and main functions, which means that they might
potentially play a key role in the disease and are worth fur-
ther exploring. For example, we found the downregulated
P. histicola and its executed functions of peroxidase activity
and cell redox homeostasis, which were significantly down-
regulated functions in the lung cancer group. The cell redox
homeostasis is a key indicator for microbiota to main-
tain its symbiotic relationship with the host [78]. Down-
regulation of this function could cause dysbiosis and
inflammation to the host [79]. It is well known that chronic
inflammation could lead to cancer development, including
lung cancer [80]. Therefore, the downregulation of its
abundance and corresponding redox function could be an
important indicator that reflects the imbalanced redox envi-
ronment in lung cancer [67]. Our method revealed the
cancer-associated functional changes in these imbalanced bac-
teria. Therefore, only focus on the taxonomic changes may not
comprehensively identify the disease-associated bacteria,
whereas the integration of taxonomy and function can be
more informative and reliable.

Currently, most of the studies on lung cancer and micro-
biome are correlational, in which the causality of micro-
biome to carcinogenesis remains largely unknown [81]. A
previous study has linked the presence of lung microbiota
to lung adenocarcinoma via activating γδ T cells that pro-
duced IL-17 to promote tumor [41]. But they missed the
opportunity to explain which bacteria or what bacterial
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functions activated the γδ T cells. With our systematic meta-
proteomic analysis of microbiomes of lung cancer patients,
future studies are warranted to focus on the dysregulated
functions and their executors, whether the taxonomic com-
positions are significantly different or not, and to mine the
causal relationships between microbiome and lung cancer
in large cohorts.

4. Conclusions

In summary, we developed an FFIEF-MS-based metaproteo-
mics strategy that significantly reduced the interference from
the host, enriched the low-abundant bacteria, separated the
complex microbiota into different fractions to simplify the
downstream analysis, and integrated the taxonomy/function
analysis. The efficiency of bacterial identification and
characterization was significantly improved with good
reproducibility by our strategy. We further identified lung
cancer-associated bacteria from the phylum to the species
level and revealed their dysregulated functions. Seven bacte-
rial species were discovered and validated, which were
significantly altered in the lung cancer oral microbiome.
Integrated analysis of taxonomy and function revealed that
oral bacteria in lung cancer patients were engaged in energy
metabolism, reproduction, and migration. Meanwhile, the
mutualistic relationship between the host and microbiome
was broken. Our data collectively demonstrate that the
FFIEF-MS method is a robust and promising strategy in
improving the sensitivity of metaproteomics analysis, which
has the unique strength in studying the functional perturba-
tions of microbiome in cancer. It may have wider applica-
tions in studying the mechanisms between human
microbiome and other human diseases.

5. Methods

5.1. Oral Microbiome Sample Collection. According to the
approved protocol (IRB#M15017) by the Institutional
Review Board (IRB) of Shanghai Jiao Tong University, unsti-
mulated whole saliva (5mL) was collected from each study
subject in a sterile centrifuge tube on ice, which was followed
by centrifugation at 10000 g for 10min at 4°C to collect the
pellet. The sample pellet was stored at −80°C for further
use. Lung cancer patients were newly diagnosed and treat-
ment naive at the Shanghai Chest Hospital. Healthy control
subjects met the following criteria: no history of chronic
pulmonary disease, no respiratory conditions, no oral
disease or any type of disease that may influence the oral
bacteria (such as chronic inflammation and autoimmune
disease), without antibiotic administration in at least three
months before sample collection, and with good physical
status. Written informed consent was obtained from each
human subject. The summarized clinicopathological
parameters of lung cancer and healthy subjects are listed
in Supplemental Table S1.

5.2. Sample Pretreatment. The sample pellets were resus-
pended in precooled PBS buffer and subjected to sample
pretreatment, which consisted of differential centrifugation

and filtration steps as inspired by the gut microbiome
sample processing to remove most of the large particles,
such as host cells and cell debris [23]. The resuspended
pellets were centrifuged at 500 g for 5min at 4°C to collect
the supernatants. The remaining pellets were resuspended
in cold PBS and washed for two more times. The resulting
supernatants were then subjected to a high-speed centrifuga-
tion at 16000 g for 20min at 4°C to collect the pellets, which
were further washed with cold PBS and centrifuged again to
remove the remaining salivary proteins. After the differential
centrifugation, the pelleted bacteria were then resuspended
by PBS and filtered through a 5μm filter to further remove
host interferences.

5.3. FFIEF Fractionation. The oral microbiome samples after
pretreatment were fractionated by FFIEF as previously
described with a few modifications [53]. Briefly, the freshly
prepared FFIEF carrier buffer (1% ampholyte, 0.5% Triton
X-100, 1.1 g/L Ficoll, and 250mM mannitol in 80mL
ddH2O) was injected into the instrument with a constant
power of 20W at 4°C for 1 h to pre-establish a stable pH gra-
dient. Meanwhile, the microbiome samples were incubated
in 5mM precooled CaCl2 buffer at 4°C for 20min. After
incubation, samples were centrifuged at 16000 g for 20min
at 4°C and resuspended by FFIEF carrier buffer to perform
the electrophoresis fractionation, with the instrument setting
changing to a constant voltage of 300V and a 4mA current
limit for 1 h, with a flow rate of 1.5mL/min per channel.

After the FFIEF fractionation, thirty-two fractions were
collected, which were then combined based on the following
rules to simplify downstream analysis: four most acidic frac-
tions 1–4 were mixed as F1, four most basic fractions 29–32
were mixed as F8, and other fractions were crosscombined
in which fraction 5, 11, 17, and 23 were mixed as F2; frac-
tions 6, 12, 18, and 24 were mixed as F3; fractions 7, 13,
19, and 25 were mixed as F4, and so on, until fractions 10,
16, 22, and 28 were mixed as F7 (Supplemental Figure 1).

5.4. Protein Extraction, Tryptic Digestion, and LC-MS/MS
Analysis. The microbiome samples were resuspended in a
lysis buffer (4% SDS and 8M urea in 50mM Tris-HCl,
pH8.0) with protease inhibitor cocktails (Roche Diagnostics
GmbH, German) and subjected to ultrasonication on ice for
5min (10 s on/off). The lysates were centrifuged at 16000 g
for 10min at 4°C to remove the cell debris. The resulting
supernatants were precipitated by 5-fold volume of
precooled precipitation solvent (50% v/v acetone, 50% v/v
ethanol, and 0.1% v/v acetic acid) at −20°C overnight. The pre-
cipitated proteins were pelleted by centrifugation at 16000g
for 30min at 4°C and washed three times by precooled acetone
for desalting. Protein pellets were resuspended by dissolving
buffer (6M urea in 50mM ammonium bicarbonate buffer),
and protein concentrations were determined by the Bradford
assay (Thermo Fisher Scientific, USA).

For tryptic digestion, 30μg proteins were first reduced
with 10mM dithiothreitol (DTT) for 1 h at 37°C and alky-
lated with 20mM iodoacetamide (IAA) for 40min at room
temperature in the dark. Then, the filter-aided sample prep-
aration protocol (FASP) was applied to digesting proteins
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[82], with slight modifications. Briefly, the alkylated proteins
were transferred into filtration devices (Sartorius, Germany)
and centrifuged at 16000g for 10min at 10°C. The proteins
were then diluted with 8M urea and centrifuged. This step
was repeated three times. Afterwards, 50mM ammonium
bicarbonate buffer was added to the filtration devices and cen-
trifuged at 16000g for 15min at 10°C two times. Trypsin solu-
tion (1 : 50 enzyme-to-protein ratio) was added and the samples
were incubated at 37°Covernight. After digestion, peptides were
desalted using the ZipTip C18 (Millipore, Billerica, MA).

An EASY-nLC 1000 LC system coupled with an
Orbitrap Q-Exactive Plus mass spectrometer (Thermo
Fisher Scientific, USA) was used for LC-MS/MS analysis
with a 120min gradient from 5 to 35% acetonitrile (v/v) at
a flow rate of 300nL/min. The mass spectrometer was oper-
ated in positive ion mode with an electrospray voltage of
2 kV. The full MS scan was set from 350 to 1500m/z with
the resolution of 70000, followed by data-dependent MS/
MS scans of the 20 most intense ions with the resolution
of 17500 and a dynamic exclusion duration of 30 s.

5.5. Taxonomic and Functional Analysis. The peptide/protein
identification, quantification, and taxonomic annotation were
constructed by the MetaLab software (version 2.0.0) [48] that
searched against the Human Oral Microbiome Database
(HOMD) (release 2017_2_16, 2401922 entries) [83] and the
Human Uniport database (release 2017_11_28, 20244 entries)
[84] with the default settings. This software employs an itera-
tive database search strategy for comprehensive database
search with a false discovery rate (FDR) threshold of 0.01, both
at the peptide level and at the protein level. It utilizes the
MaxLFQ algorithm on MaxQuant for accurate quantification
[51]. The identification of total protein was performed based
on following rules: unique peptide ≥ 1 and FDR < 1% at both
peptide and protein levels [23]. The lowest common ancestor
(LCA) method was used for taxonomic assignment, and taxa
with equal or greater than 3 distinct peptides were retained
for further analysis [23, 52, 85]. The functional analysis was
performed with the Unipept (http://unipept.ugent.be) [86]
for peptide-based functional annotation and the Kofam-
KOALA (https://www.genome.jp/tools/kofamkoala/) [87] for
protein-based functional annotation. The identified protein
sequences were extracted from the HOMD database to
perform KEGG annotation, and significantly upregulated bac-
terial proteins (unique peptide ≥ 2, jlog2FCj>1, p value <
0.05) in lung cancer (216 proteins) and healthy groups (430
proteins) were selected for KEGG enrichment analysis. The
taxonomy-function integration was conducted on the Galaxy
platform (https://usegalaxy.eu/) [88] using the metaQuan-
tome module [59].

5.6. Quantitative Real-Time PCR, Statistical Analysis, and
Data Visualization. Quantitative real-time PCR (qPCR)
was performed to validate the lung cancer-associated bacte-
ria. The specific primers of each target bacteria and universal
primer of the total bacteria were chosen from established
works or designed by NCBI Primer BLAST (Supplemental
Table S5) [89–91]. The details of qPCR procedures were
the same as described previously [53].

The biomass of each taxon was determined by summing
the intensity of its corresponding peptides. The LFQ intensi-
ties of quantified peptide/protein were log2 transformed and
used for statistical analysis. Statistical significance was assessed
by the two-sided unpaired t-test for univariate statistical dif-
ference between two groups with Gaussian distribution and
by the two-sided paired t-test for paired comparison; other-
wise, the Wilcoxon rank sum test was used. For two-sample
comparison, G test (w/Yates’) +Fisher’s exact test was applied
[92]. For multiple comparisons, FDR-correlated p values were
used. Linear discriminant effect size (LEfSe) analysis was used
to determine the significant different taxa between the lung
cancer and healthy groups (8 fractions for each group) with
the linear discriminant analysis (LDA) threshold greater than
3 [93]. For identifying the lung cancer-associated bacteria, we
combined the results from both LEfSe analysis and the
STAMP software (Wilcoxon rank sum test) for comprehen-
sive analysis [53, 94].

Bar and violin plots were generated with the GraphPad
Prism 8. Taxonomic composition bar plots were generated
using iMetaLab (http://imetalab.ca/). Heatmaps with cluster-
ing information were visualized using the Galaxy platform
(https://usegalaxy.eu/). RStudio was used for Pearson corre-
lation coefficient plot, volcano plots, Circos plots, Venn
diagrams, and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment plot generation. Sankey plot was gener-
ated using SankeyMATIC (http://sankeymatic.com/). KEGG
pathway maps were customized by uploading KO numbers
to the KEGG website (http://www.kegg.jp) [95].
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from the newly identified peptides (red) and the total
peptides (cyan). Figure S3: the randomly selected MS/MS
spectra of 4 newly identified bacterial peptides after FFIEF.
A. Peptide that belongs to Fusobacterium. B. Peptide that
belongs to Treponema. C. Peptide that belongs to Firmi-
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