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ABSTRACT
Background: Patients with essential tremor (ET) have an increased risk of cognitive 
impairment, yet little is known about the predictors of cognitive decline in these patients. 
Exposures to infectious agents throughout the lifespan may impact the later development 
of cognitive impairment. For example, high Infection exposure has been associated 
with lower cognitive performance in Alzheimer’s and Parkinson’s disease. However, this 
predictor has not been examined in ET.

Objectives: To determine whether a higher baseline infection burden is associated with 
worse cognitive performance at baseline and greater cognitive decline over time in an ET 
cohort. 

Method/Design: 160 elderly non-demented ET participants (80.0 ± 9.5 years) underwent 
an extensive cognitive evaluation at three time points.  At baseline, participants completed 
an infection burden questionnaire (t-IBQ) that elicited information on previous exposure 
to infectious agents and number of episodes per disease. Analysis of covariance and 
generalized estimated equations (GEEs) were used.

Results: Overall, infection burden was not associated baseline cognitive performance. 
Adjusted GEE models for repeated measures yielded a significant time interaction 
between moderate infection burden at baseline and better performance in the attention 
domain over time (p = 0.013). Previous history of rubella was associated with faster rate 
of decline in visuospatial performance (p = 0.046).

Conclusion: The data were mixed. Moderate self-reported infection burden was associated 
with better attention performance over time. Self-reported history of rubella infection 
was related to lower visuospatial performance over time in this cohort. Follow-up studies 
with additional design elements would be of value. 
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INTRODUCTION 

Essential tremor (ET) is one of the most common 
movement disorders, with a worldwide prevalence of 
4.6% in adults age 65 and older [1]. ET has traditionally 
been characterized by its motor features [2]. However, 
recent evidence has shown that ET is a multidimensional 
disorder with non-motor (e.g., cognitive) features as well 
[3]. Indeed, patients with ET appear to have an increased 
odds or risk of developing mild cognitive impairment (MCI) 
and dementia [4–7]. While the characterization of cognitive 
deficits in ET remains ongoing, surprisingly little is known 
about the predictors of cognitive impairment and decline in 
these patients [4, 8]. Hence, the epidemiology of cognitive 
decline in ET is largely unexplored.

Exposures throughout the lifespan may impact the later 
development and progression of cognitive impairment over 
time. These exposures may range from toxicological to 
traumatic to infections [9–11]. Infection burden has been 
studied as a predictor of cognitive decline in several settings 
and with many different approaches [12, 13]. Several 
different mechanisms by which infection burden could 
influence cognitive impairment have been hypothesized. 
First, specific infectious agents may influence the 
accumulation of neuropathological changes associated 
with dementia [14, 15]. For example, herpes simplex 
virus (HSV) and respiratory syncytial virus (RSV) could 
promote the aggregation of amyloid β-peptide, a major 
component of amyloid plaques in Alzheimer’s disease 
(AD) [14]. Second, infectious epitopes can trigger chronic 
inflammation in the central nervous system, potentially 
predisposing for neuropsychiatric disorders [16, 17]. In 
support of these hypothesis, high immunoglobulin titers for 
several different viruses including HSV, RSV, hepatitis B virus 
and cytomegalovirus (CMV) have been associated with 
poor cognitive performance in AD and Parkinson’s disease 
(PD) [17, 18]. Additional studies have demonstrated that 
greater infection burden was associated with worse global 
cognition at baseline and decreased memory performance 
over time in a multiethnic cohort [19–21].

As noted above, infectious exposures have been 
examined in the context of several neurological disorders, 
with an emphasis on cognitive performance in diseases 
related to ET such as AD and PD [22–24]. To our knowledge, 
however, baseline infection burden has not been examined 
as a risk factor for cognitive decline in ET. We hypothesize 
that a higher overall baseline infection burden would be 
associated with lower cognitive performance at baseline 
and would predict greater cognitive decline over time in our 
ET cohort. We also explored the effects of certain specific 
infectious agents that have been implicated as associated 
with cognitive impairment in other disorders.

METHODS
STUDY DESIGN
The Clinical-Pathological Study of Cognitive Impairment 
in ET (COGNET) is an ongoing, prospective, longitudinal 
study of cognition and its neuropathological correlates in 
an elderly ET cohort. Eligible participants met each of the 
following criteria: (1) diagnosis of ET in the absence of other 
movement disorders, (2) willingness to become a brain 
donor, (3) willingness to participate in extensive cognitive 
testing every 1.5 years, and (4) no previous brain surgery 
for ET. Between 2014 and 2019, 186 participants were 
interviewed by trained research assistants at three different 
time points: baseline (T1), 18 months after baseline (T2), 
and 36 months after baseline (T3). Demographic and 
clinical data were collected at each interview. During 
each interview, a neuropsychological test battery was 
administered over two consecutive days. A videotaped 
neurological evaluation, followed by a tremor rating by a 
senior movement disorders neurologist (E.D.L.), resulted in 
a total tremor score (0–36) [25, 26], and the final diagnosis 
of ET was assigned using valid and reliable criteria [27]. The 
Internal Review Boards of University of Texas Southwestern 
Medical Center and Columbia University approved the study 
protocol and each participant provided informed, written 
consent during the in-person visit.

NEUROCOGNITIVE EVALUATION
The neuropsychological battery was designed to measure 
performance in overall cognition and five cognitive 
domains: memory, executive function, attention, language, 
and visuospatial function. As described previously, the 
test battery was specifically designed for the ET cohort, 
as it excluded tests for which scores rely on the speed or 
accuracy of motor responses [28].

For each interval, the research team conducted an 
informant’s interview with a designated family member or 
close friend. The informant answered several questionnaires 
related to the participant’s daily life and level of involvement 
with their household and community [28]. 

After every interview, Clinical Dementia Rating Score 
(CDR) (0 = no dementia, 0.5 = questionable dementia, 
1 = mild dementia, 2 = moderate dementia, and 3 = severe 
dementia) [29] and cognitive diagnosis (normal cognition 
(ET-NC), mild cognitive impairment (ET-MCI), or dementia 
(ET-D)) were assigned to participants during a consensus 
conference. A neuropsychologist (S.C.) and geriatric 
psychiatrist (E.D.H.) reviewed CDR scores assigned by the 
research assistant based on examiner and informant 
interview, and assigned diagnoses based on CDR score and 
neuropsychological testing [30]. Raw cognitive test scores 
were standardized using the mean and standard deviation 
of the ET-NC group. 
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INFECTION BURDEN QUESTIONNAIRE 
Twenty-four common infectious agents were 
itemized in 25 questions (Supplementary Figure 1). 
The viral infections section assessed: Influenza virus, 
Varicella zoster (Alphaherpesviridae) (reported in 
the questionnaire as either shingles or chickenpox), 
Rhinovirus (Picornaviridae enterovirus), Measles virus 
(Paramyxoviriade family), Mumps virus (Paramyxoviriade 
family), Rubella virus (Togaviridae), Hepatitis A 
(Picornaviridae), Hepatitis B (Hepadnaviridae), Hepatitis C 
(Flaviviridae), Cytomegalovirus (Herpesviridae), Poliovirus 
(Picornaviridae), Ebstein-Barr virus (Herpesviridae), 
Herpes Simplex Virus type 1 (HSV1) and type 2 (HSV-2) 
(Herpesviridae), and Human Immunodeficiency Virus 
(HIV) (Retroviridae). For bacterial agents, the following 
microorganisms were included: Streptococcus pyogenes, 
Borrelia burgdorferi, Clostridium tetani, Vibrio cholera, 
Yersinia pestis, Mycobacterium tuberculosis, Treponema 
pallidum, Chlamydia trachomatis, and Neisseria 
gonorrhoeae (Supplementary Figure 1).

Research assistants administered the questionnaire at 
baseline and employed non-scientific terms to describe the 
infectious diseases following published recommendations 
[31]. For each question (“have you ever had this infection?”), 
the participant could answer “yes” or “no” to the questions, 
and 1 point was allotted for every “yes”. A third response 
could be “I don’t know” and that answer received 0 
points when calculating the index. Raw infection burden 
(r-IBQ) was computed by adding the number of times the 
participant answered “yes” and possible values ranged 
from 0 to 24. Next, the participants indicated how many 
times in their lifetime they had had each infection and total 
infection burden (t-IBQ) was calculated by adding the total 
frequencies (except for Rhinovirus or common cold, which 
was very frequent and would have dwarfed other data). 
The possible values could range from 0 to infinity. 

GERIATRIC DEPRESSION SCALE AND PHYSICAL 
ACTIVITY SCALE OF THE ELDERLY
Due to the potential association between physical activity, 
depression and cognitive impairment, two additional 
questionnaires administered at baseline were included in 
the statistical analyses [32, 33]. Depression was measured 
using the Geriatric Depression Scale (GDS). The instrument 
relies on self-report and the values range from 0 to 30, 
with higher values indicating greater depressive symptoms 
[34]. Second, physical activity was measured using the 
Physical Activity Scale for the Elderly (PASE), a valid and 
reliable measure of leisure time, household, and work-
related physical activity. The questionnaire is based on 
10 items and scores can range from 0 to 400, although in 

some cases higher values can be registered [34, 35]. Higher 
scores indicate more physical activity. 

FINAL SAMPLE 
Initially, the study enrolled 243 participants. A total of 83 
cases were excluded from the analysis according to the 
following criteria: diagnosis of MCI or dementia at baseline 
(n = 11); diagnosis of ET with dystonic or parkinsonian 
features (n = 38); only completed one interview (n = 34). 
Of the remaining 160 participants, 120 participants fully 
completed the IBQ questionnaire and 40 did not due to 
time constraints during the interviews. We analyzed the 
two groups to evaluate for a possible no-response bias. The 
40 participants who did not complete the questionnaire 
had a mean age of 79 years (SD = 9.6), a mean education 
level of 15 years (SD = 2.5), mean tremor duration of 40 
years (SD = 21.0) and 30 (75.0%) were female. The 120 
participants that answered the questionnaire had similar 
characteristics: a mean age of 77 years (SD = 39.0), mean 
education level of 16 years (SD = 2.6), mean tremor 
duration of 36 years (SD = 23.3) and 60 (50%) were female. 
The gender difference was significant (chi-square = 4.73, 
p = 0.03). For the statistical analyses we included only 
the participants that fully completed the questionnaire 
(n = 120).

STATISTICAL ANALYSES
Variables at baseline were described using mean and 
standard deviation if continuous, and frequencies and 
percentages if categorical. Standardized z scores were 
assigned for each participant’s cognitive domains applying 
the methodology described above. Furthermore, t-IBQ was 
transformed to a logarithmic scale due to the non-normal 
distribution of the data. The r-IBQ were stratified into two 
categories: low and high infection burden. The t-IBQ had a 
wider range and was stratified into three categories: low, 
moderate, and high infection burden. One-way ANOVA was 
used to examine significant differences between the means 
in age, years of education, number of medications, PASE, 
GDS, and cognitive domains z scores across the three levels 
of t-IBQ. We implemented one way analysis of covariance 
(ANCOVA) to determine the potential association between 
infectious burden at baseline and z scores of cognitive 
domains (global, memory, executive function, attention, 
language and visuospatial) while controlling for the 
variables previously described. 

For repeated measures, generalized estimating 
equations (GEEs) were used to assess the effect of baseline 
t-IBQ on performance for each cognitive domain over 
time. The role as a predictor between infection burden 
at baseline and z scores of each cognitive domain was 

https://doi.org/10.5334/tohm.624


4Iglesias-Hernandez et al. Tremor and Other Hyperkinetic Movements DOI: 10.5334/tohm.624

evaluated through the time interaction of the model. Initial 
unadjusted models were conducted to observe the nature 
of the interactions and subsequent adjusted models 
included the following covariates at baseline as potential 
confounders: age, gender, years of education, total number 
of prescription medications, PASE, and GDS. 

Self-reported past infections of Rubella, Measles, 
and HSV-1 were evaluated as potential predictors of 
cognitive decline in individual GEE models. These three 
microorganisms have been extensively associated with 
neuropathological changes in the central nervous system 
that might affect higher cognitive functions [36–38]. 
Since using an index that combines numerous different 
infectious agents might mask the effect of certain viruses 
in the outcome, this analysis was deemed necessary [39, 
40]. The predictors were dichotomized as “0” if no history 
of infection was mentioned or “1” if the participant had had 
the disease at least once. Unadjusted GEE models were 
followed by adjusted GEE models to control for potential 
confounding effects. Data analysis was performed using 
IBM SPSS v. 26.

RESULTS 

The mean age of our participants was 80.0 ± 9.5 years 
(range = 57–97 years) (Table 1). The score for r-IBQ ranged 
from 2 to 9 (mean = 5.9, SD = 1.89), and the t-IBQ ranged 
from 1 to 369 (mean = 73.8, SD = 65.2) (Table 1). 

Comparison of the means showed significant differences 
in overall cognition (F = 3.18, p = 0.046) and visuospatial 
function (F = 3.25, p = 0.04) across the three levels of t-IBQ. 
Participants with low infection burden had lower z scores in 
global cognition (–0.24 ± 0.74) and visuospatial (0.41 ± 0.66) 
domains, suggesting worse cognitive performance as 
compared to participants in the moderate and high infection 
burden categories (Table 2). However, ANCOVA did not 
reveal any significant associations between baseline t-IBQ 
and z scores for each cognitive domain after controlling 
for the following baseline covariates: age, gender, years of 
education, medications, PASE and GDS (Table 3).  

The longitudinal analysis included 120 participants for 
whom 120 observations were recorded at baseline, 120 
at T2 and 110 at T3, for a total of 350 repeated measures 
used in the GEE models. Initial unadjusted models showed 
no significant association between categorized t-IBQ 
and cognitive outcomes at baseline. In these unadjusted 
models, the association between t-IBQ at baseline and 
cognitive z scores by time interaction was not significant 
in any of the levels of the variable (see Table 4). Similarly, 
the adjusted models yielded no significant associations 
between t-IBQ and cognitive z scores at baseline. 

However, there was a significant time interaction in the 
attention domain where moderate t-IBQ predicted better 
performance over time (b = 0.01, p = 0.013). (Table 4). 

Similar adjusted and unadjusted models with r-IBQ as 
potential predictor yielded no significant associations (all 
p > 0.05) (data not shown). 

Subsequent GEE models were performed with individual 
infectious agents (Rubella, Measles and HSV-1), as 
discussed in the Methods section. For the unadjusted 
models, rubella was the only agent significantly associated 
with the time trend of the visuospatial z scores (B = –0.01, 
p = 0.014). In adjusted models, the same time interaction 
was observed (B = –0.01, p = 0.034) indicating that previous 
rubella infection was associated with a decrease of 0.01 in 
the time trend for visuospatial z scores (Table 5).

MEAN ± STANDARD 
DEVIATION OR N (%)

Age (years) 80.0 ± 9.5

Gender (female) 73 (60.8)

Education (years) 15.7 ± 2.6

Number of prescription medications 5.6 ± 4.1

PASE score 106.9 ± 74.0

GDS score 6.5 ± 4.6

Cognitive Z scores

Overall 0.01 ± 0.53

Memory –0.02 ± 0.90

Executive Function 0.05 ± 0.64

Attention –0.22 ± 0.77

Language 0.05 ± 0.53

Visuospatial 0.47 ± 0.67

Rubella in childhood 29 (23.2)

Raw Infection burden (r-IBQ) 5.9 ± 1.8

Categorical raw infection burden (r-IBQ): 

Low (0–4) 49 (40.8)

High (5–9) 71 (59.2)

Total infection burden (t-IBQ) 73.8 ± 65.2

Categorical total infection burden (t-IBQ): 

Low (1–37) 40 (33.3)

Moderate (38–87) 39 (32.5)

High (≥88) 39 (32.5)

Table 1 Baseline features of 120 ET participants.
Note: GDS = Geriatric Depressive Symptoms Scale, PASE = Physical 
Activity Scale of the Elderly, bolded numbers indicate significant 
p values (p < 0.05).
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MEAN (STANDARD DEVIATION) F P-VALUE

Age (years) 0.44 0.65

Low t-IBQ 78.9 (9.1)

Moderate t-IBQ 77.0 (9.3)

High t-IBQ 77.6 (9.3)

Education (years) 0.63 0.53

Low t-IBQ 15.8 (2.5)

Moderate t-IBQ 15.1 (6.1)

High t-IBQ 15.8 (2.7)

Number of prescription medications 1.45 0.24

Low t-IBQ 5.5 (3.1)

Moderate t-IBQ 5.3 (3.8)

High t-IBQ 6.1 (4.4)

PASE score 1.44 0.24

Low t-IBQ 113.8 (78.1)

Moderate t-IBQ  96.7 (78.4)

High t-IBQ 108.1 (68.0)

GDS score 2.23 0.11

Low t-IBQ 5.5 (4.3)

Moderate t-IBQ  6.6 (5.4)

High t-IBQ 6.0 (5.0)

Cognitive z scores at baseline

Overall 3.18 0.046

Low t-IBQ –0.24 (0.74)

Moderate t-IBQ 0.08 (0.84)

High t-IBQ 0.22 (0.51)

Memory 2.38 0.10

Low t-IBQ 0.06 (0.72)

Moderate t-IBQ 0.43 (0.73)

High t-IBQ 0.27 (0.27)

Executive Function 0.83 0.44

Low t-IBQ 0.15 (0.58)

Moderate t-IBQ 0.31 (0.40)

High t-IBQ .26 (00.48)

Attention 0.56 0.57

Low t-IBQ –0.21 (0.68)

Moderate  t-IBQ –0.03 (0.79)

High t-IBQ –0.05 (0.73)

Language 0.39 0.69

Low t-IBQ .012 (0.45)

Moderate  t-IBQ 0.18 (0.47)

High  t-IBQ 0.60 (0.63)

Visuospatial 3.25 0.04

Low t-IBQ 0.41 (0.66)

Moderate t-IBQ 0.54 (0.63)

High t-IBQ 0.80 (0.58)

Table 2 Demographic and clinical data across strata of low, moderate and high infection burden (t-IBQ).
Note: GDS = Geriatric Depressive Symptoms Scale, PASE = Physical Activity Scale of the Elderly, bolded numbers indicate significant 
p values (p < 0.05).
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F MEAN SQUARE P-VALUE

Global Cognition

Age 0.071 0.02 0.790

Male vs. female 0.015 0.01 0.930

Years of education 0.225 0.06 0.636

Medications 0.795 0.20 0.375

PASE score 4.175 1.06 0.044

GDS score 0.245 0.07 0.622

Total infection burden (t-IBQ categorical) 1.442 3.65 0.242

Memory

Age 0.038 0.029 0.846

Male vs. female 0.065 0.050 0.800

Years of education 0.365 0.283 0.547

Medications 0.046 1.902 0.121

PASE score 2.454 0.024 0.835

GDS score 0.043 0.036 0.830

Total infection burden (t-IBQ categorical) 2.180 1.690 0.119

Executive Function

Age 0.215 0.097 0.644

Male vs. female 0.369 0.166 0.545

Years of education 0.015 0.007 0.903

Medications 0.229 0.103 0.633

PASE score 2.824 1.271 0.096

GDS score 0.706 0.318 0.403

Total infection burden (t-IBQ categorical) 0.660 0.297 0.519

Attention

Age 1.122 0.595 0.292

Male vs. female 0.404 0.214 0.527

Years of education 0.489 0.259 0.486

Medications 0.147 0.078 0.017

PASE score 5.855 3.104 0.690

GDS score 0.160 0.085 0.703

Total infection burden (t-IBQ categorical) 0.147 1.264 0.098

Language

Age 2.088 0.592 0.152

Male vs. female 0.011 0.003 0.918

Years of education 0.064 0.018 0.801

Medications 1.554 0.441 0.435

PASE score 0.616 0.175 0.490

GDS score 0.481 0.136 0.216

Total infection burden (t-IBQ categorical) 0.319 0.090 0.728

(Contd.)
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Table 3 Analysis of covariance between baseline total infectious burden (t-IBQ) and baseline global cognition, memory, executive function, 
attention, language and visual spatial domains. 
Note: GDS = Geriatric Depressive Symptoms Scale, PASE = Physical Activity Scale of the Elderly, bolded numbers indicate significant p 
values (p < 0.05).

F MEAN SQUARE P-VALUE

Visuospatial 

Age 0.075 0.036 0.783

Male vs. female 0.001 0.001 0.971

Years of education 3.402 1.610 0.068

Medications 1.317 0.623 0.254

PASE score 0.433 0.205 0.512

GDS score 0.055 0.026 0.815

Total infection burden (t-IBQ categorical) 0.090 0.042 0.914

B (SE) P-VALUE

Global Cognition

Unadjusted model main effects:

Time from baseline (months) 0.00 (0.00) 0.901

Baseline total infection burden 

Moderate (38–87) 0.02 (0.12) 0.840

High (≥88) 0.06 (0.14) 0.670

Unadjusted model time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.00 (0.00) 0.519

High (≥88) 0.00 (0.01) 0.946

Adjusted model main effects:

Baseline age –0.03 (0.05) <0.001

Male vs. female 0.05 (0.09) 0.618

Baseline education 0.03 (0.02) 0.167

Medications –0.03 (0.01) 0.054

PASE score 0.00 (0.00) 0.109

GDS score –0.02 (0.01) 0.667

Time from baseline (months) 0.00 (0.00) 0.783

Baseline total infection burden 

Moderate (38–87) 0.02 (0.09) 0.810

High (≥88) 0.01 (0.10) 0.904

Adjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.02 (0.09) 0.375

High (≥88) 0.00 (0.01) 0.919

(Contd.)
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B (SE) P-VALUE

Memory B (se) p-value

Unadjusted model main effects:

Time from baseline (months) 0.01 (0.00) 0.018

Baseline total infection burden 

Moderate (38–87) 0.14 (0.19) 0.459

High (≥88) –0.01 (0.17) 0.939

Unadjusted model with time interaction:

Time × baseline total infection burden interaction

Moderate (38–87) –0.03 (0.00) 0.439

High (≥ 88) –0.03 (0.01) 0.569

Adjusted model main effects:

Baseline age –0.03 (0.01) <0.001

Male vs. female –0.32 (0.14) 0.024

Baseline education 0.08 (0.03) 0.026

Number of medications –0.02 (0.02) 0.389

PASE score 0.00 (0.00) 0.235

GDS score 0.01 (0.02) 0.753

Time from baseline (months) 0.01 (0.00) 0.008

Baseline total infection burden 

Moderate (38–87) 0.11 (0.16) 0.620

High (≥88) –0.14 (0.14) 0.340

Adjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.00 (0.00) 0.335

High (≥88) –0.01 (0.01) 0.561

Executive Function B (se) p-value

Unadjusted model main effects:

Time from baseline (months) –0.01 (0.00) 0.003

Baseline total infection burden 

Moderate (38–87) –0.13 (0.19) 0.497

High (≥ 88) 0.08 (0.19) 0.668

Unadjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.01 (0.01) 0.054

High (≥88) –0.01 (0.00) 0.289

Adjusted model main effects:

Baseline age –0.03 (0.01) <0.001

Male vs. female 0.117 (0.10) 0.252

(Contd.)
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B (SE) P-VALUE

Baseline education 0.04 (0.02) 0.066

Number of medications –0.05 (0.02) 0.006

PASE score 0.00 (0.00) 0.349

GDS score 0.00 (0.01) 0.734

Time from baseline (months) –0.01 (0.00) 0.418

Baseline total infection burden 

Moderate (38–87) 0.01 (0.04) 0.188

High (≥88) –0.02 (0.11) 0.786

Adjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.01 (0.00) 0.188

High (≥88) –0.01 (0.01) 0.786

Attention B (se) p-value

Unadjusted model main effects: 0.00 (0.00) 0.003

Time from baseline (months)

Baseline total infection burden 

Moderate (38–87) –1.28 (0.19) 0.497

High (≥88) 0.08 (.019) 0.668

Unadjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.01 (0.00) 0.054

High (≥88) 0.01 (0.01) 0.289

Adjusted model main effects:

Baseline age –0.04 (0.01) <0.001

Male vs. female 0.02 (0.12) 0.999

Baseline education 0.01 (0.02) 0.769

Number of medications –0.05 (0.01) <0.001

PASE score 0.00 (0.00) 0.326

GDS score –0.00 (0.01) 0.879

Time from baseline (months) –0.01 (0.00) 0.040

Baseline total infection burden 

Moderate (38–87) –0.13 (.13) 0.255

High (≥88) 0.04 (.12) 0.842

Adjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.01 (.00) 0.013

High (≥88) 0.01 (.01) 0.134

(Contd.)
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B (SE) P-VALUE

Language B (se) P value

Unadjusted model main effects:

Time from baseline (months) –0.01 (0.00) 0.217

Baseline total  infection burden 

Moderate (38–87) 0.01 (0.01) 0.852

High (≥88) 0.04 (0.01) 0.611

Unadjusted model with time interaction:

Time × Baseline total infection burden interaction

Moderate (38–87) 0.01 (0.01) 0.852

High (≥88) 0.01 (0.01) 0.611

Adjusted model main effects:

Baseline age –0.03 (0.01) 0.001

Male vs. female 0.44 (0.15) 0.003

Baseline education 0.02 (0.04) 0.628

Number of medications –0.01 (0.02) 0.875

PASE score 0.00 (0.00) 0.789

GDS score –0.01 (0.02) 0.799

Time from baseline (months) 0.04 (0.00) 0.374

Baseline total infection burden 

Moderate (38–87) 0.37 (0.01) 0.863

High (≥88) –0.18 (0.27) 0.513

Adjusted model with time interaction:

Time × Baseline total infection burden 

Moderate (38–87) 0.00 (0.01) 0.590

High (≥88) 0.00 (0.01) 0.554

Visuospatial B (se) p value

Unadjusted model main effects:

Time from baseline (months) 0.00 (0.00) 0.929

Baseline total infection burden 

Moderate (38–87) 0.83 (0.16) 0.596

High (≥88) 0.25 (0.19) 0.163

Unadjusted model with time interaction:

Time × Baseline total infection burden 

Moderate (38–87) –0.02 (0.04) 0.604

High (≥88) –0.01 (0.01) 0.252

Adjusted model main effects:

Baseline age –0.03 (0.00) <0.001

Male vs. female 0.06 (0.12) 0.601

(Contd.)
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DISCUSSION

In previous studies of cognitively normal adults, high 
infection burden has been associated with lower global 
cognition [19, 20]. The literature also shows that higher 
seropositivities have been associated with lower mini-
mental state examination (MMSE) scores in a cohort of AD 
adults [18]. In 2005, Dunn et al. established that diagnosis 
of dementia in an elderly cohort was associated with a 
history of two or more infections in the four years preceding 
the diagnosis [40]. Additional evidence spans the last two 
decades with multiple publications aiming to identify the 
role of infectious diseases in cognitive decline [18, 39, 41].

The COGNET study is in a unique position to explore the 
impact of infection burden in ET because of the detailed, 
prospective, longitudinal cognitive evaluation. Overall, we 
only found an association between moderate infectious 
burden and better performance over time in the attention 
domain. Ecological studies have found similar results where 
childhood infectious diseases have been associated with 
both positive and negative cognitive outcomes in adulthood 
[42, 43]. A population based study of healthy adults over 
65 also determined that late-life MMSE scores improved as 
the number of reported childhood diseases (chickenpox, 
measles and mumps) increased [44]. Nevertheless, the 
mechanisms for possible positive outcomes in cognition 
are not clear [42, 45]. The evidence in the literature must 
be treated cautiously due to potential unaccounted 
confounding as well as the ecological fallacy [46, 47].

VISUOSPATIAL B (SE) P-VALUE

Unadjusted model main effects:

Time from baseline (months) –0.01 (0.00) 0.33

Baseline Rubella in childhood 0.08 (0.17) 0.66

Unadjusted model with time 
interaction:

Time × Rubella in childhood –0.01 (0.01) 0.014

Adjusted model main effects:

Time from baseline (months) 0.00 (0.00) 0.935

Baseline Rubella in childhood 0.08 (0.12) 0.546

Baseline age –0.04 (0.01) <0.001

Male vs. female 0.03 (0.12) 0.858

Baseline education 0.01 (0.02) 0.500

Number of medications 0.01 (0.01) 0.969

PASE score 0.00 (0.00) 0.105

GDS score –0.02 (0.01) 0.155

Adjusted model with time 
interaction:

Time × Rubella in childhood –0.01 (0.01) 0.034

Table 5 Generalized estimated equations of visual spatial 
performance predicted by previous Rubella infection.
Note: GDS = Geriatric Depressive Symptoms Scale, PASE= Physical 
Activity Scale of the Elderly, bolded numbers indicate significant 
p values (p < 0.05).

Table 4 Generalized estimated equations of global cognition, memory, executive function, attention, language and visual spatial 
performance predicted by total infection burden (t-IBQ).
Note: GDS = Geriatric Depressive Symptoms Scale, PASE= Physical Activity Scale of the Elderly, bolded numbers indicate significant p values 
(p < 0.05).

B (SE) P-VALUE

Baseline education 0.01 (0.03) 0.762

Number of medications –0.01 (0.02) 0.833

PASE score 0.01 (0.00) 0.091

GDS score –0.02 (0.01) 0.174

Time from baseline (months) –0.01 (0.00) 0.537

Baseline total infection burden 

Moderate (38–87) 0.10 (0.14) 0.455

High (≥88) 0.23 (0.14) 0.116

Adjusted model with time interaction:

Time × Baseline total infection burden 

Moderate (38–87) –0.01 (0.05) 0.964

High (≥88) –0.01 (0.01) 0.584
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At the same time, previous history of rubella infection 
might predict lower cognitive performance in visuospatial 
function over time. These results should be confirmed by 
further studies.

Rubella has been extensively studied because of its 
effect in pregnancy and potentially fatal complications 
such as multiphasic acute disseminated encephalomyelitis 
[48]. In both congenital and childhood postnatal infection, 
development of progressive neurologic deterioration often 
manifests as prominent cognitive impairment, seizures, 
cerebellar degeneration, and dementia [49]. However, 
subtle changes in cognition over time have not been 
described in cohorts with prior rubella infection. 

An important factor to consider is the age of the 
cohort and the prevalence of certain infections in the 
last century. The mean age of our participants was 80 
years and common childhood diseases such as measles 
and rubella were more prevalent before the MMR vaccine 
was distributed in the United States in 1963 [50]. Before 
nationwide vaccination, more than 90% of the worldwide 
population had been infected with measles between 10 
and 15 years of age [50]. This high prevalence is reflected in 
the results we report, as 96% (n = 115) of the participants 
answered “yes” when asked about previous infections 
with measles (Figure 1). Therefore, assessing an interaction 

becomes challenging when the majority of the cohort has 
been exposed to said agent.  

Another limitation was the use of a self-reported 
questionnaire to measure infection burden. The instrument 
relies heavily on the memory of participants, increasing 
the possibility of recall bias. This is the main reason why 
participants diagnosed with MCI or dementia at baseline 
were excluded from the analyses [51]. Additional limitations 
of this instrument include the level of knowledge needed 
to identify several infectious diseases increasing the 
possibility of underreport [31]. Hence, the literature favors 
alternative approaches to measure infection burden such 
as antibody titers and disability adjusted life years (DALY) 
[21, 52–55]. Nevertheless, self-report questionnaires are 
considered reliable and valid and are frequently used in 
epidemiological studies to complement objective data 
[48, 56, 57]. This analysis is in many ways a preliminary, 
hypothesis-generating one, and future studies, more 
narrowly focused, should explore the use of such titers. 
Furthermore, additional approaches, such as the use of 
medical records, national databases and immunoglobulin 
titers could complement the information gathered through 
clinical questionnaires [56]. One other potential limitation 
is that we found that the 120 participants who answered 
the questionnaire were less likely to be female than the 

Figure 1 Frequency of positive answers by infection agent. For each item, the 120 participants answered “yes” or “no” according to their 
previous medical history.
Note: Strep = Streptococcus, Hep = Hepatitis, CMV = Cytomegalovirus, Polio = Poliomyelitis, TB = Tuberculosis, Mono = Mononucleosis, 
HSV = Herpes simplex virus, HIV = human immunodeficiency virus. 
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40 who did not. It is unlikely, though, that this difference 
affected our results; furthermore, we adjusted for gender 
in our analyses.

These manuscript joins a growing number of studies 
focused on the association between infections and cognitive 
function and, to our knowledge, are the only such data for 
ET. Moderate infectious burden might be associated to 
better performance over time in the attention domain. On 
the other hand, Rubella could be involved in this cohort’s 
lower performance in the visuospatial domain overtime. 
The research group encourages further analyses to explore 
the nature of the observed interactions.  

ADDITIONAL FILE

The additional file for this article can be found as follows:

•	 Supplementary Figure 1. Infection Burden 
Questionnaire administered at baseline. DOI: https://doi.

org/10.5334/tohm.624.s1
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