
RESEARCH ARTICLE

Deep learning assisted detection of

glaucomatous optic neuropathy and potential

designs for a generalizable model

Yu-Chieh KoID
1,2,3☯, Shih-Yu Wey4☯, Wei-Ta Chen5, Yu-Fan Chang1,3, Mei-Ju Chen1,2,

Shih-Hwa Chiou3,6, Catherine Jui-Ling Liu1,2‡*, Chen-Yi Lee4‡*

1 Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, 2 Faculty of Medicine,

National Yang-Ming University School of Medicine, Taipei, Taiwan, 3 Institute of Clinical Medicine, National

Yang-Ming University School of Medicine, Taipei, Taiwan, 4 Department of Electronics Engineering, National

Chiao-Tung University, HsinChu, Taiwan, 5 Neurological Institute, Taipei Veterans General Hospital, Taipei,

Taiwan, 6 Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan

☯ These authors contributed equally to this work.

‡ These authors also contributed equally to this work.

* jlliu@vghtpe.gov.tw (CJL); cylee@si2lab.org (CYL)

Abstract

Purpose

To evaluate ways to improve the generalizability of a deep learning algorithm for identifying

glaucomatous optic neuropathy (GON) using a limited number of fundus photographs, as

well as the key features being used for classification.

Methods

A total of 944 fundus images from Taipei Veterans General Hospital (TVGH) were retro-

spectively collected. Clinical and demographic characteristics, including structural and func-

tional measurements of the images with GON, were recorded. Transfer learning based on

VGGNet was used to construct a convolutional neural network (CNN) to identify GON. To

avoid missing cases with advanced GON, an ensemble model was adopted in which a sup-

port vector machine classifier would make final classification based on cup-to-disc ratio if

the CNN classifier had low-confidence score. The CNN classifier was first established using

TVGH dataset, and then fine-tuned by combining the training images of TVGH and Drishti-

GS datasets. Class activation map (CAM) was used to identify key features used for CNN

classification. Performance of each classifier was determined through area under receiver

operating characteristic curve (AUC) and compared with the ensemble model by diagnostic

accuracy.

Results

In 187 TVGH test images, the accuracy, sensitivity, and specificity of the CNN classifier

were 95.0%, 95.7%, and 94.2%, respectively, and the AUC was 0.992 compared to the

92.8% accuracy rate of the ensemble model. For the Drishti-GS test images, the accuracy

of the CNN, the fine-tuned CNN and ensemble model was 33.3%, 80.3%, and 80.3%,
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respectively. The CNN classifier did not misclassify images with moderate to severe dis-

eases. Class-discriminative regions revealed by CAM co-localized with known characteris-

tics of GON.

Conclusions

The ensemble model or a fine-tuned CNN classifier may be potential designs to build a gen-

eralizable deep learning model for glaucoma detection when large image databases are not

available.

Introduction

Glaucoma is one of the leading causes of irreversible blindness [1]. Early diagnosis and inter-

vention are key to prevent glaucoma blindness [2,3]; however, it is difficult to achieve early

detection because of the asymptomatic nature of most types of glaucoma. Even in developed

countries, the diagnostic rate of glaucoma is below 50% [4,5]. Population-based screening can

identify glaucoma at an asymptomatic stage but is not feasible currently due to low cost-effec-

tiveness [6]. Nevertheless, the combination of automated glaucoma detection with teleglau-

coma may enable large-scale glaucoma screening targeted at high-risk populations [7].

Optic disc photography remains the fundamental approach in glaucoma screening [8,9].

Disc photography reviewed by experienced specialists can achieve similar diagnostic perfor-

mance as that of advanced imaging technology such as optical coherence tomography (OCT)

[10], and combining other modalities with fundus images did not necessarily increase the diag-

nostic power in teleglaucoma [7]. However, evaluation of the optic disc is subjective, and likely

to encounter interobserver discordance even among glaucoma specialists [8,11]. Qualified

interpretation of fundus images at limited cost through automated glaucoma detection using

artificial intelligence may make fundus photography-based glaucoma screening feasible.

In the pre-deep learning era, automated glaucoma detection using fundus images was based

primarily on the cup-to-disc ratio (CDR), and in some cases, defects of the retinal nerve fiber

layer (RNFL) or the presence of parapapillary atrophy [12]; however, the CDR-based approach

may miss important diagnostic information such as disc hemorrhage or have inadequate accu-

racy if the disc size is not adjusted [8,13]. The development of deep learning techniques in

recent years, especially the use of convolutional neural network (CNN) and its variants for

computer vision, has allowed improved medical image analysis through expanded capability

to extract either low-level, coarse visual features, or high-level refined features [14]. CNN-

based algorithm achieved a high diagnostic rate in differentiating the glaucomatous fundus

from the healthy fundus [15–17], but its generalizability remains unclear because most studies

verified the performance of the algorithm only in the images from the same dataset [15,16].

Furthermore, with the complicated diagnostic process of glaucoma involving both structural

and functional assessment [18], it is difficult to build large fundus image datasets for the analy-

sis of glaucoma. Nevertheless, the number of training images will affect the diagnostic perfor-

mance and generalizability of a deep learning model [19,20]. Therefore, it is intriguing to

know whether it is possible to build a CNN classifier for glaucoma detection using limited fun-

dus images and to improve its applicability across different datasets by adding universal diag-

nostic characteristics, such as enlarged CDR to the model.

This study aimed to evaluate the performance of a CNN algorithm constructed with limited

training images to discern glaucomatous change in images from different resources, benefits
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of including CDR estimation as an ensemble model, and the key features extracted for the clas-

sification in the CNN algorithm.

Materials and methods

Database

This study included fundus photographs in JPEG format of 465 non-glaucomatous eyes and

479 eyes with primary open angle glaucoma (POAG), which were collected retrospectively

from the image database of the Department of Ophthalmology, Taipei Veterans General Hos-

pital (TVGH). The fundus images were obtained from subjects with POAG at regular follow-

up, and subjects who visited our department for ocular screening or disorders not affecting the

optic disc and retina. This study followed the tenets of the Declaration of Helsinki, and was

approved by the Institutional Review Board of TVGH. The written informed consent was

waived because of the retrospective nature of the study and the analysis was performed using

anonymized clinical data and images.

Eyes with POAG were diagnosed in the presence of glaucomatous disc changes with corre-

sponding RNFL loss and reproducible visual field (VF) defects, and a normal open angle on

gonioscopy. In all subjects with POAG, VF analysis using the 24–2 Swedish interactive thresh-

old algorithm standard of the Humphrey Field Analyzer 750i (version 4.2, Zeiss-Humphrey

Instruments, Dublin, CA, USA) and RNFL scanning using Cirrus HD-OCT (Model 4000; Carl

Zeiss Meditec, Inc., Dublin, CA, USA) were performed. The normal eyes had an intraocular

pressure (IOP) of< 21 mmHg, and a disc with normal appearance without RNFL defect. The

fundus images were acquired using three fundus cameras, Canon CR-DGi NM fundus camera,

Canon CX-1 hybrid mydriatic/non-mydriatic digital retinal camera, and Canon CR-2 PLUS

AF non-mydriatic retinal camera (Canon USA, Inc., Lake Success, NY, USA) at 45˚ centered

at the macula. All images included had a clear view of the disc. The images were reviewed by

two glaucoma specialists (YK and CL) to confirm the diagnosis and define the vertical CDR.

Standard anonymization was performed for all images before further analysis.

The fundus images were 3888 x 2552 pixels in size, with resolution of 120 dpi and bit depth

of 24. The images were divided into a training set and test set for model training and evalua-

tion based on stratified sampling with 763 images and 181 images at the training and test sets,

respectively. The clinical information of the images is listed in Table 1. The CNN model estab-

lished based on the training images from TVGH dataset was specified as TVGH-CNN model.

In addition, images from the Drishti-GS Dataset [21], (http://cvit.iiit.ac.in/projects/mip/

drishti-gs/mip-dataset2/Home.php), an open-access datasets containing training and test data-

sets of 50 and 51 images, respectively were used to evaluate the diagnostic ability of our model.

Table 1. Clinical and demographic characteristics of the image dataset from Taipei Veterans General Hospital.

POAG Control

Number of images 479 465

Age (y) 58.78±13.8 61.20±19.34

Gender (Female, %) 168 (35.07%) 226 (48.60%)

Cup-to-disc ratio 0.80±0.12 0.42±0.20

Mean Deviation (dB) -6.89±6.01

Average RNFL thickness (μm) 72.73±11.34

Values are presented as mean ± SD or percentage (%). POAG, primary open angle glaucoma; RNFL, retinal nerve

fiber layer.

https://doi.org/10.1371/journal.pone.0233079.t001
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Proposed detection system

The workflow of our detection system is illustrated in Fig 1. The fundus images were prepro-

cessed and region of interest (ROI) of area of 256 × 256 pixels centered at the disc were

extracted. Images with incorrectly extracted ROI were deleted automatically. Subsequently, a

CNN model was used for classification. In the last layer of this CNN model, each image was

classified as normal or glaucoma with a probability value, which was treated as the confidence

score of the CNN classifier. If the confidence score was lower than a self-defined threshold,

then the image was subjected to the support vector machine (SVM) classifier for final classifi-

cation based on customized features, including enlarged vertical CDR, and thinning of the

superior and inferior neuroretinal rim. The ensemble model coupling a SVM classifier based

on these features was used to avoid missing subjects with moderate to advanced diseases, who

will inevitable have enlarged CDR.

Image preprocessing and ROI extraction

Fundus images were first preprocessed to compensate for the levels of brightness and clarity of

each image. Unsharp masking by Gaussian blur method was used to enhance the optic disc

structure and blood vessels. ROI detection centered at the disc was implemented to remove

redundant features using the concept of guided backpropagation [22]. Following ROI extrac-

tion, images with the optic disc located at the central area of the image were considered as

qualified images. Invalid cases with incorrect ROI were automatically excluded through distri-

bution of the histogram on the red and green channel. Images with the disc centered at the

ROI would show a peak at the center and were included in subsequent analysis (Fig 2). Finally,

data augmentation by adding deformations and noise to the dataset was performed by rota-

tion, shifting, sheering, and zooming using the Keras library (https://keras.io/).

Fig 1. Overall Framework. Original color images were preprocessed to contrast the vessels and then submitted for ROI extraction. Image with incorrect ROI selection,

referred as noise, were excluded from the CNN model. Images with low confidence score in CNN classification were forwarded to an ML-based classifier based on the

key characteristics of CDR value and thinning of the superior and inferior neuroretinal rim according to the ISNT rule. CDR, cup-to- disc ratio; CNN, convolutional

neural network; ML, machine-learning; ROI, region of interest; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0233079.g001
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Detection based on CNN

In our CNN model, preprocessed and qualified images were submitted for processing through

a series of convolutional, nonlinear functions (ReLU), pooling, fully connected (FC) layers,

and finally softmax loss layer, which incorporated the concept of cross entropy and softmax

layer to provide a probability value for the final classification of each image. Moreover, Sto-

chastic Gradient Descent was performed for optimization to minimize the loss of function.

Instead of training a model from scratch, transfer learning was performed using VGGNet

(invented by Visual Geometry Group from University of Oxford) [23], a pre-trained CNN

model through the following steps: removal of top layers such as the FC layers; retraining the

CNN model initialized from the trained weights of VGGNet with a series of convolutional lay-

ers of 3 x 3 filter size (Fig 3) [24,25]. Regularization methods, such as data augmentation and

dropout layer, were used to improve the condition of convergence and prevent overfitting.

Fig 2. Process to determine noisy cases with incorrect ROI selection. (A) Color fundus image; (B) fundus image after preprocessing; (C) further preprocessing on the

red and green channel; (D) binary display of the image; (E) histogram of the projection on x-axis and y-axis, which indicates correct ROI selection with both peaks of the

axes located at the center. ROI, region of interest.

https://doi.org/10.1371/journal.pone.0233079.g002

Fig 3. Transfer learning and VGGNet architecture. Under transfer learning strategy, the CNN model was initialized with the trained weight of VGGNet with a 3 x

3-sized filter. The final model contained convolutional layers, pooling layers, and the fc layer. VGGNet, invented by Visual Geometry Group from University of Oxford;

CNN, convolutional neural network; conv, convolutional; fc, fully connected. �Russakovsky O, et al. ImageNet large scale visual recognition challenge. IJCV. 115, 211–

252 (2015).

https://doi.org/10.1371/journal.pone.0233079.g003
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Cross-validation of the CNN model

We performed 5-fold cross validation to evaluate the performance and to avoid overfitting of

the CNN model. Within each fold, the combined images were partitioned into independent

training and validation sets using an 80–20 percentage split. The performance of each fold was

evaluated not only on the validation sets, but also the test images. The parameters of the fold

with best performance were selected as the final model, unless there were significant variation

on the performance of each fold.

Class activation map (CAM) for visualization

CAM was applied to identify features recognized by the proposed CNN model to differentiate

between the glaucomatous and normal discs [26]. Through global average pooling (GAP) per-

formed on the convolutional feature maps and an FC layer that produced the desired output,

the important regions of each image were identified by projecting the weights of the output

layer back on to the convolutional feature maps (Fig 4) [27].

SVM classifier based on enlarged CDR

The characteristic changes of the glaucomatous disc, including an increased value of CDR, and

thinning of the superior or inferior neuroretinal rim were selected as the features for SVM

classifier. Preprocessed images were first processed with the green and red channel. The disc

margin was determined by the red channel, and the cup area by green channel. The vertical

disc diameter was decided according to the superior and inferior junctional points of the disc

boundary along the vertical meridian. K-means clustering was used to determine the cup area

after removing the redundant information by subtracting the mean and standard deviation

Fig 4. Class activation map attached to the final layer of the proposed CNN model. CAM revealed the important areas for the final classification and was generated

using GAP with the multiplication of each channel by the given weight from the fully connected (fc) layer (W1, W2. . .Wn). CAM, class activation map; CNN,

convolutional neural network; CONV, convolutional; GAP, global average pooling.

https://doi.org/10.1371/journal.pone.0233079.g004
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from the green channels, and the K value was set to 2 as dividing the preprocessing image into

two regions (Fig 5) [28]. The CDR was calculated as the vertical cup length divided by the ver-

tical disc diameter; the rim-to-disc ratio was calculated as the remaining part at each side

including the superior and inferior neuroretinal rim width divided by the vertical disc diame-

ter. The three features were input into the SVM classifier with RBF kernel for classification.

Prediction was implemented by using a grid search and the SVM model provided by scikit-

learn [29].

Statistical analysis

The performance of our model was evaluated by the indices of sensitivity, specificity, and accu-

racy defined as the sum of correct classification of both the healthy and glaucomatous images

divided by the total number of test images. The receiver operating characteristic (ROC) curve

and area under the ROC curve (AUC) were plotted using the python scikit-learn library

according to the definition, wherein, the true positive rate is the Y-axis, and the false positive

rate is the X-axis. Nonparametric tests were used to compare the clinical characteristics

between images with correct and incorrect prediction because most measurements of the test

images were not normally distributed. Mann-Whitney U test was used for continuous vari-

ables, and chi-square test for categorical variables. The analyses were conducted using SPSS

(version 18.0.0, SPSS Inc., Chicago, IL, USA).

Fig 5. Process to determine the disc margin, cup area, vertical cup-to-disc ratio, and superior and inferior neuroretinal rim-to-disc ratio. (A) Color fundus image

after ROI extraction; (B) green and red channel processing; (C) removal of the vessels; (D) processing by subtracting the mean and standard deviation; (E) K-means

clustering; (F) morphological operations to remove noise; (G) the cup boundary (green line); (H) vertical disc diameter (between blue points), cup diameter (between

red points), superior rim (green arrow), and inferior rim (purple arrow). ROI, region of interest.

https://doi.org/10.1371/journal.pone.0233079.g005
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Result

Diagnostic performance of the CNN models

In a total of 187 test images from the Taipei Veterans General Hospital (TVGH) dataset, the

diagnostic accuracy of the TVGH-CNN model was 95.0%, sensitivity was 95.7%, and specific-

ity was 94.2% in differentiating the glaucomatous eyes from the normal eyes; the AUC of the

TVGH-CNN model for identifying glaucomatous eyes was 0.992 (Table 2 and Fig 6). However,

the accuracy of the TVGH-CNN model used to classify the 51 test images of the Drishti-GS

dataset was comparatively lower at 33.3%, which indicated poor generalizability of the

TVGH-CNN model. Two approaches were used to overcome this problem: the first was to

fine-tune the TVGH-CNN model using the training images of the Drishti-GS dataset; the sec-

ond was to develop an ensemble model which used CDR for classification when the confidence

score of the CNN classifier was low.

Fifty training images of the Drishti-GS dataset were added to the TVGH training dataset to

establish a fine-tuned CNN model (T&D-CNN model), which improved the classification

accuracy of the CNN model applied to the Drishti-GS test images. The diagnostic accuracy of

the T&D-CNN model for Drishti-GS test images was improved to 80.3%, with a sensitivity of

73.6%, specificity of 100%, and an AUC of 0.937 (Table 2 and Fig 7). To determine optimum

incorporation of the limited training images of Drishti-GS dataset into the TVGH dataset, we

analyzed the effects of preprocessing, augmentation, and ROI extraction of the training images

on the performance of the T&D-CNN model. The result indicated that ROI selection increased

the performance of the model. For dataset with limited images such as Drishti-GS, preprocess-

ing and augmentation may increase the model performance (Table 3).

Diagnostic performance of the ensemble model

An ensemble model for classification was also established with the aim to avoid missing sub-

jects with moderate to advanced disease, which used a SVM classifier based on CDR for final

classification when the probability value of the CNN classifier was lower than the threshold of

0.85. The probability value refers to the binary classification confidence of the CNN classifier

for the predicted classification. The threshold value was selected by calculating the sensitivity

and specificity of the ensemble model with different threshold values starting from 0.5 with an

increment of 0.05 till 1.0. The ensemble model had highest sensitivity and specificity on test

images including TVGH and Drishti-GS datasets at a threshold value of 0.85. The SVM classi-

fier, which was established based on the TVGH dataset, had a diagnostic accuracy of 76.7%

and 72.5% for the TVGH and Drishti-GS test images, respectively. The ensemble model had

Table 2. Diagnostic capability of the CNN model, SVM model, ensemble model and fine-tuned CNN model in identifying glaucomatous disc.

Dataset of test images

TVGH Drishti-GS

Models Accuracy Specificity Sensitivity AUC (95% CI) Accuracy Specificity Sensitivity AUC (95% CI)

TVGH-CNN modela 95.0% 94.2% 95.7% 0.992 (0.984–1.0) 33.3% 100% 10.0% 0.763 (0.632–0.894)

SVM modela 76.7% 78.1% 75.5% 0.806 (0.740–0.872) 72.5% 76.9% 71.0% 0.783 (0.617–0.950)

Ensemble model 92.8% 95.4% 90.4% 80.3% 92.3% 76.3%

Fine-tuned T&D-CNN modelb 93.9% 95.4% 92.6% 0.984 (0.972–0.998) 80.3% 100% 73.6% 0.937 (0.874–1.0)

aThe model was constructed based on the TVGH training dataset.
bThe model was constructed based on the mixed training images of the TVGH and Drishti-GS datasets (T&D-CNN model). CNN, convolutional neural network; SVM,

support vector machine; TVGH, Taipei Veterans General Hospital; AUC, area under the curve; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0233079.t002
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better diagnostic accuracy for the Drishti-GS test images than that of the TVGH-CNN model,

but similar diagnostic accuracy as that of the fine-tuned T&D-CNN model; moreover, there

was no increase in the overall diagnostic accuracy for the TVGH test images than that of the

TVGH-CNN model (Table 2).

Factors affecting the performance of the CNN classifier

To understand the potential factors leading to misclassification through our model, we com-

pared the clinical characteristics for the images with correct and incorrect prediction

(Table 4). For glaucoma, the images being correctly classified as glaucoma had larger CDR and

worse visual field defect than those being incorrectly classified. All images with GON that were

incorrectly classified as normal had a mean deviation of better than -6 dB. The images of

healthy eyes that were incorrectly classified as glaucoma had larger CDR values than those that

were correctly classified.

Fig 6. ROC curve of the CNN models to differentiate between the normal disc and glaucomatous disc. The TVGH ROC curve indicated the result

through the TVGH-CNN model established based on the TVGH training images to predict the TVGH test images. The Drishti ROC curve indicated the

result through the CNN model established using the Drishti-GS training images to predict the Drishti-GS test images. �TVGH and �Drishti used the

combined TVGH and Drishti training dataset to predict the TVGH and Drishti test images, respectively. ROC, receiver operating characteristic; CNN:

convolutional neural network.

https://doi.org/10.1371/journal.pone.0233079.g006
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Fig 7. Representative CAMs and superimposed images showing different patterns between the glaucomatous and healthy eyes. The hot spots (red color) were

localized at the cup and the region of parapapillary atrophy in the glaucomatous eyes (A, B), and at the neuroretinal rim or along the nerve fibers bundles in the healthy

eyes (C, D). The superimposed images with CAM centered at the disc, showed the different patterns of CAM between the glaucomatous (E) and healthy eyes (F). CAM,

class activation maps.

https://doi.org/10.1371/journal.pone.0233079.g007

Table 3. Impact of image processing on the performance of the proposed CNN model in identifying glaucomatous discs using a mixed training dataset including

training images of Drishti-GS and TVGH datasets.

Dataset of test images

TVGH Drishti-GS

Methods included in image processing Specificity Sensitivity AUC (95% CI) Specificity Sensitivity AUC (95% CI)

All a 95.4% 92.6% 0.984 (0.972–0.998) 100% 73.6% 0.937 (0.874–1.0)

All except ROI selection 93.4% 89.4% 0.978 (0.960–0.996) 100% 55.2% 0.887 (0.789–0.984)

All except preprocessing 97.7% 94.6% 0.993 (0.985–1.0) 84.6% 84.2% 0.897 (0.794–0.999)

All except augmentation 95.4% 96.8% 0.990 (0.997–1.0) 92.3% 68.4% 0.925 (0.849–1.0)

aROI selection, preprocessing, and augmentation were performed. The augmentation was performed by rotation, shifting, sheering, and zooming with a final image

number of 30000 using the 50 training images from the Drishti-GS dataset. CNN: convolutional neural network; TVGH, Taipei Veterans General Hospital; AUC, area

under the curve; CI, confidence interval; ROI, region of interest.

https://doi.org/10.1371/journal.pone.0233079.t003
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Visualization of predictive features

CAM was used to reveal features recognized by our CNN model for classification. Areas criti-

cal for the classification were marked as red, while areas with low impact as blue. The CAM

was different between the glaucomatous and healthy eyes. The hot spots were located most

commonly at the cup area and region of parapapillary atrophy in the images of the glaucoma-

tous eyes, but at the neuroretinal rim or along the retinal nerve bundles in the images of the

healthy eyes. The superimposed images revealed the difference between the two groups (Fig 7).

Discussion

This study found that CNN-based automated glaucoma detection using color fundus images

acquired by a desktop fundus camera achieved high accuracy on test images whose quality is

similar to that of the training dataset. However, the generalizability of the classification model

depended on the diversity of the training data. Addition of a limited number of images from

the target test population to the training dataset significantly increased the accuracy of the

CNN detection model. With this modification, CNN achieved similar or better diagnostic per-

formance than the ensemble model that considered CDR. CAM revealed that our CNN model

captured characteristics areas of the optic disc as that through human perception to identify

glaucomatous changes.

The key to achieving accurate classification of retinal images using deep learning is the

number and quality of the training images [19,20]. Unlike the diagnosis and grading of dia-

betic retinopathy which uses only fundus photographs, the diagnosis of glaucoma involves var-

ious structural and functional examinations [18]. It is very difficult to collect tens of thousands

of glaucomatous fundus images with definite diagnosis and complete profiles of functional

and structural measurements. This issue was settled in some studies aiming for building CNN

classifier using large number of fundus photographs by identifying referable GON but not def-

inite GON based on findings of the fundus images and agreement between doctors [16,30].

The major limitation of this approach is that one cannot evaluate the diagnostic performance

of any proposed system for images with different level of disease severity. Christopher et al

reported that the performance of deep learning algorithm differed according to the severity of

GON [15]. In line with their findings, glaucomatous eyes at an earlier stage were more likely to

be misclassified as normal in our model. Thus, diagnostic performance of deep learning

Table 4. Clinical characteristics for the test images and relationship with the prediction of the deep learning algorithm.

POAG Control

CNN prediction CNN prediction

Correct N = 87 Incorrect N = 7 P- valuea Correct N = 83 Incorrect N = 4 P- valuea

Age (years) 58.85±15.71 62.00±2.52 0.389 62.26±19.55 51.75±23.26 0.297

Sex (Female, %) 33 (37.9%) 1 (14.28%) 0.210 49 (59.03%) 4 (100%) 0.101

CDR 0.80±0.11 0.67±0.21 0.037 0.41±0.14 0.57±0.10 0.018

Visual field

Mean deviation (dB) -6.49±5.47 -2.16±2.27 0.015

PSD (dB) 6.28±3.72 2.97±1.51 0.011

Average RNFL thickness (μm) 72.79±11.06 80.71±10.92 0.750

Seven images with wrong automated ROI selection were excluded in the analysis.

Values are presented as mean ± SD or percentage (%).
a Mann-Whitney U test was used for continuous variables, and Chi-square test for categorical variables. POAG, primary open angle glaucoma; CNN, convolutional

neural network; D, diopter; CDR, cup-to-disc ratio; PSD, pattern standard deviation; RNFL, retinal nerve fiber layer.

https://doi.org/10.1371/journal.pone.0233079.t004
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algorithms as currently available diagnostic tool for glaucoma may vary according to the dis-

ease severity and is more likely to miss early GON [15].

The generalizability of our deep learning model trained with limited fundus images was

inadequate. Lack of diversity of our database may explain the poor generalizability of our

model; however, it is unclear if the generalizability of a deep learning model would be

improved by using a larger number of images of various origins because verification of the

CNN model on other database has not been thoroughly evaluated [15,16]. Phene et al reported

that a deep learning algorithm trained with 58033 fundus images still had variable diagnostic

performance in detecting GON on two validation datasets with an AUC of 0.940 and 0.858

[17]. Liu et al used 241032 images from 68013 patients to build a CNN classifier for automated

glaucoma detection [30]. However, even with the largest image dataset to date, the CNN classi-

fier still had suboptimal performance on images from subjects of different ethnicities and of

variable qualities, with an AUC dropping from 0.996 with internal validation set to 0.923 and

0.823, respectively. Gulshan et al. found that the performance of a deep learning model in

detecting diabetic retinopathy reached a plateau at around 60000 images [19]. Therefore, to

improve the generalizability of a CNN classifier for glaucoma detection, approaches other than

expanding the number of images of the training dataset should also be considered.

We proposed two approaches to improve the generalizability of our model: The first was to

fine-tune the CNN model with limited number of images from the target test dataset which

could dramatically improve the diagnostic performance of this mixed model for images of dif-

ferent origin. This approach is not novel but practical, with an aim to build clinic-based glau-

coma screening algorithm using limited images from each clinic when neither a universal deep

learning algorithm for glaucoma detection nor the access to large-scale glaucoma image data-

sets is available. Similar finding was noted in Diaz-Pinto et al’s study [31]. They used 5 public

datasets to evaluate the generalizability of their CNN model and found that the diagnostic per-

formance of the model varied according to whether the training images of the test dataset were

included for model training or not with an AUC varied from 0.9605 to 0.7678, respectively.

The second was to use an ensemble model that considered the CDR when the confident score

of the CNN classifier was low. The original goal of the ensemble model was to avoid missing

cases with advanced GON. However, the results revealed that the fine-tuned CNN model

achieved similar diagnostic performance as that of the ensemble model. Therefore, when a

large image dataset of images with definite diagnosis of GON is not available, a CNN model

could be first constructed using hundreds of images with high quality and then fine-tuned

using some images from the target test population to improve the diagnostic power of the

model in the target test population.

The CAM revealed that the class-discriminative regions of the CNN model co-localized

with the known characteristics of GON. The hot spots of the CAM were located at the cup area

in most images that were correctly classified as glaucoma, but at the neuroretinal rim and

nerve bundles in the images of healthy eyes. This finding agreed with the report of Christopher

et al that the inferior and superior regions of the neuroretinal rim are the most important parts

for distinguishing between the eyes with GON and healthy eyes through deep learning algo-

rithm [15]. These findings clarified the classification of glaucoma based on CNN model and

may enable further modification of the CNN model to achieve higher accuracy.

Our study has some limitations. The major limitation is that the training dataset was col-

lected at one medical center with limited number of images, which may lead to questionable

generalizability of our model. As expected, our model showed poor performance on test

images of other origin, which could be overcome by using the fine-tuned model. Further eval-

uation to verify the generalizability of deep learning algorithm for glaucoma detection is

needed since the fundus images taken for glaucoma diagnosis may vary in layout, clarity, and
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visibility of the RNFL, especially for population-based glaucoma screening. The second limita-

tion of our study is that ROI centered at the ONH was used to construct the model to reduce

the image size and complexity, which may result in loss of information and complicated pre-

processing at clinical application. However, ROI extraction increased both the sensitivity and

specificity of the model as compared with those of the whole images (Table 3). Third, we did

not verify the performance of our approaches using different deep learning algorithms in addi-

tion to VGGNet because the performance and generalizability of the TVGH-CNN model did

not change significantly with other CNN algorithms, such as AlexNet, GoogLeNet, or Xcep-

tion (data not shown). In line with our findings, Christopher et al’s study revealed that the dif-

ference of VGGNet, Inception, and ResNet50 in detecting GON is marginal, with an AUC of

0.89, 0.91, and 0.91 respectively [15]. Finally, cases with anomalous or extreme disc appearance

and retinopathy except for drusen were excluded from the dataset; hence, our model may not

be applicable to such cases. Meanwhile, we did not measure disc size, not count disc hemor-

rhage or peripapillary atrophy in this study, therefore the impact of disc size, disc hemorrhage

and peripapillary atrophy on the performance of CNN classifier is unknown.

Conclusions

The proposed deep learning model trained with limited fundus images achieved high accuracy

in identifying GON on images of similar quality, and did not misclassify any cases with moder-

ate to advanced disease. The model could be successfully fine-tuned to increase its diagnostic

accuracy for images of different origins, which might be a feasible approach to build CNN clas-

sifier for clinic-based glaucoma screening. The CAM revealed that the model captured similar

characteristics in identifying GON as those through human perception. Based on these find-

ings, deep learning assisted detection of GON may be a viable option to assist glaucoma

screening, but the generalizability of a deep learning model must be verified first before being

applied to the targeted test population.
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