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Background: Adrenoleukodystrophy (ALD) is a rare sex-linked recessive disorder that 
disrupts adrenal gland function and the white matter of the nervous system. According to 
recent epidemiological statistics, up to this moment, the disease is the most recorded 
peroxisomal disorder. ABCD1 is a gene related to ALD, with more than 850 unique 
mutations have been reported. Early diagnosis of the disease would help to consult families 
with ALD to plan for interventions to prevent passing along the pathogenic mutations to their 
children.
Material and Methods: A heterozygous ABCD1 gene mutation related to ALD found in 
a Vietnamese woman was used to design primers for the polymerase chain reaction (PCR) to 
amplify the segment spanning the mutation. Then, combining sequencing methods for the 
PCR products, especially Sanger sequencing and next-generation sequencing (NGS), 
a protocol was developed to detect mutations on the ABCD1 gene to apply for the DNA 
samples of in-vitro fertilization (IVF) embryos biopsied at the blastocyst stage to screen for 
pathogenic alleles.
Results: The established protocol for PGD of ALD detected mutant alleles in 5/8 embryos 
(62.5%), while the remaining 3 embryos (37.5%) did not carry any mutation. One of the 3 
embryos was transferred, and a healthy female baby was born after a full-term pregnancy.
Conclusion: The developed protocol was helpful for the preimplantation genetic diagnosis 
process to help families with the monogenic disease of ALD but wish to have healthy 
children.
Keywords: adrenoleukodystrophy, ALD, peroxisome disorder, ABCD1 gene mutation, 
preimplantation genetic diagnosis, PGD

Introduction
ALD is a rare sex-linked hereditary disease with the incidence dropped between 
1:20,000 and 1:30,000 male newborns, without significant differences among 
countries and ethnic groups globally; however, this figure is increasing prior to 
the widespread application of newborn screening. Mutations in the ABCD1 gene are 
the pathogenic factors leading to the impaired β-oxidation process in peroxisomes. 
All patients with ALD carry the mutations; up to date, more than 850 non-recurrent 
mutations of this disease have been cataloged without correlation to phenotypes.1–3 

The gene ABCD1 is located near the end of the X chromosome’s long arm: at Xq28 
and has a length of 19.9 kb with 10 exons.4,5 ABCD1 encodes a transmembrane 
protein made up of 745 amino acids called adrenoleukodystrophy protein, or ALDP. 
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This protein is located across the peroxisome membrane, 
transporting VLCFA (very long chain fatty acids) from the 
cytoplasm through the membrane into the organelle to 
participate in the β-oxidation process.6–8 Mutations in the 
ABCD1 gene will directly affect the ALD protein, result in 
a change in the protein’s structure and quantity, making it 
unable to carry out its transport function, thereby causing 
the accumulation of VLCFA in the cytoplasm. This accu-
mulation has negative effects on cells, especially on ner-
vous system cells.1,9,10

There are three main phenotypes of ALD that can be 
listed as follows: cerebral ALD, adrenomyeloneuropathy 
(AMN), and primary adrenal insufficiency. ALD patients 
are often asymptomatic at birth; however, clinical symp-
toms will potentially develop during life, which will even-
tually cause severe disabilities, especially in males. As the 
disease progresses, patients might develop primary adrenal 
insufficiency symptoms and neurologic disease. Hence, 
ALD is a rapidly progressive disorder that may cause 
devastating situations for affected patients since an effec-
tive treatment such as stem cell transplant can only prevent 
disease development yet leave them at risk for AMN. In 
order to find the appropriate therapy, patients must have 
regular screening to timely detect and diminish the possi-
bility for lethal disease.11–15

ALD is a sex-linked recessive genetic disorder with 
95% of reported cases received the ABCD1 pathogenic 
variant from their parents; only about 5% of reported 
cases are caused by de novo mutations.1,4,16,17 

Heterozygote detection for at-risk females leading to pre-
natal testing or preimplantation genetic testing for at-risk 
pregnancies is necessary if the familial pathogenic variant 
is known.18 In the last decades, preimplantation genetic 
diagnosis plays a valuable tool to avoid inherited diseases 
by transferring unaffected in-vitro fertilization (IVF) 
embryos and having alternative potentiality to prenatal 
diagnosis. Indeed, PGD first concluded the selection 
usually embryos for patients at risk of transmitting 
X-linked recessive disorders.19,20 Furthermore, the wide-
spread application of advances in molecular biology fos-
ters the advent of specific diagnoses for monogenic 
defects. The fifth report of the European Society for 
Human Reproduction and Embryology (ESHRE) PGD 
Consortium recommended over 40 monogenic diseases 
with PGD indication.21 However, setting up and testing 
embryonic molecular diagnosis is work-intensive, precise, 
and costly because the main reason, which is the DNA 
sample, is limiting. Much effort has been spent to obtain 

genomic DNA of adequate and quality for genetic analy-
sis. Consequently, whole genome amplification (WGA)20 

is a standard solution to solve the existing problem, but its 
main drawback is the generation of nonspecific amplifica-
tion artifacts.22,23 As a result, we described a PGD proto-
col using WGA followed by conventional PCR, then 
applying Sanger sequencing for detecting the mutation. 
This work aimed to expand the dependability of PGD for 
ALD and increase the accuracy and economic effect of the 
test.

Materials and Methods
Patients Description
A 26-year-old Vietnamese female partner whose family has 
a background of ALD was enrolled in the study. Her healthy 
husband was 28 years old and did not present any clinical or 
genetic alteration of interest. By studying her genetic infor-
mation with Next-Generation Sequencing (NGS), it was 
reported that the wife carried a heterozygous mutation 
c.854G>C (p.Arg285Pro) on exon 1 of ABCD1. According 
to up-to-date statistics related to ALD (https://adrenoleuko 
dystrophy.info/, accessed April 2021), the mutation 
c.854G>C has only been reported as pathogenic twice in 
the past, none of which was found in Vietnam, for that 
reason, the mutation identified in this female carrier can be 
considered as the third time recorded in the history of 
research on ALD and the first report in Vietnam.

All people described in this research were signed writ-
ten informed consent for the publication of the case 
details, and the protocol was approved by the Ethical 
Review Committee of Vietnam Military Medical 
University (No.1068/2019/VMMU-IRB). This study was 
also conducted using good clinical practice following the 
Declaration of Helsinki and its later amendments or com-
parable ethical standards.

DNA Extraction from Whole Blood
DNA was extracted from the collected blood samples by 
following the protocol of the G-spin™ Total DNA 
Extraction Kit (Lot.No. 105260653; Exp. Oct. 2022). 
DNA went through a quality check process with 
a SpectraMax QuickDrop to measure optical density 
(OD) and A260/A280 index. Hence, the DNA collected 
from the sample was qualified to be used in the next 
steps of the research. DNA samples were stored 
at −20°C.
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Blastocyst Embryo Biopsy
There were seven embryos (TR1 – TR7) cultured to the 
fifth day and one embryo (TR8) cultured to the sixth day 
of the described couple who had done IVF at the Military 
Institute of Clinical Embryology and Histology (MICEH). 
Then, the embryos were biopsied (3–5 cells) and washed 
with PBS 1X and 1% PVP solution. After that, the washed 
embryo cells were contained in the 0.2 mL PCR tube. The 
embryo cells were stored at −20°C.

Whole Genome Amplification for 
Embryos’ Genome
The DNA from the biopsied embryos was amplified 
with REPLI-g® Single Cell Kit (Lot.No. 166013027; 
Exp. Sep. 2021) and diluted by nuclease-free water to 
reach a concentration of around 20 ng/µL. The concen-
tration and purification were calculated with 
a SpectraMax QuickDrop. Therefore, the amplified 
DNA collected from the embryonic cells was qualified 
to be used in the research. DNA samples were stored 
at −20°C.

Polymerase Chain Reaction (PCR) 
Analysis
First, primers were designed to amplify the segment 
spanning the detected mutation c.854G>C. Afterward, 
a PCR was performed by using the designed primers 
and DNA collected from the mother – the mutated allele 
carrier and DNA amplified from biopsied embryonic 
cells. PCR products were then electrophoresed on 2% 
agarose gel on multiSUB Choice, Wide Midi Horizontal 
Electrophoresis System (Cleaver Scientific, SKU: 
MSCHOICE10) to check for the appropriate desired 
products. The detailed information on the primers and 
PCR reaction was presented in Supplementary 1.

Sanger Sequencing and the 
Next-Generation Sequencing Analysis
The amplified PCR products showing the accurate 
bands on electrophoresis results would be sequenced 
by Sanger sequencing to scan for the c.854G>C muta-
tion. Next, any embryos that did not have any mutated 
allele would be screened for chromosomal abnormal-
ities with Next-Generation Sequencing system. The 
flowchart of the study protocol was shown in Figure 1.

Results
Preimplantation Genetic Diagnosis 
Program for ALD
The PCR reaction using the described component and the 
thermal cycle was performed in triplicate. After that, the 
PCR products were electrophoresed on 2% agarose gel and 
observed under UV light, and the results obtained were 
consistent in all reactions. By annotating the gel electro-
phoresis (Supplementary 2), it could be stated that the 
PCR reaction successfully amplified the desired gene seg-
ment of all embryos in comparison with the positive con-
trol that was the heterozygous woman’s DNA. The product 
bands appeared bright and clear at the position correspond-
ing to the standard scale size of about 200 bp, proving that 
the amplified segment had the size of 199 bp, consistent 
with the initial expectation. From here, the PCR products 
would be purified and sequenced via the Sanger method to 
detect the c.854G>C mutation in these cells.

Sanger Sequencing and NGS Results
Sanger sequencing was carried out using only one primer to 
amplify the forward strand so that the interpretation of the 
results would be more homogeneous. The obtained electro-
pherograms were analyzed using BioEdit software 
(Supplementary 3) and the annotated results are shown in 
Table 1.

Sanger sequencing results showed 3 embryos (37.5%) 
that did not carry any pathogenic mutant alleles. In com-
parison, 4 embryos (50%) had the allele with the patho-
genic mutation in the heterozygous form, which had the 
same mutation peak as the mother or the positive control, 
and 1 embryo (12.5%) carried the pathogenic allele in the 
hemizygote form. The father was known to carry no ALD 
mutation proves that embryos carrying pathogenic alleles 
during meiosis to form gametes have received the mutated 
alleles from the mother. These embryos will be assessed as 
unsuitable for use in embryo transfer, and those that do not 
carry the mutant allele will continue to be subjected to 
preimplantation genetic screening tests for evaluating the 
quality of embryos before transferring. For DNA samples 
of TR1, TR5, and TR7 embryos with normal results which 
do not carry any pathogenic mutant allele will be 
sequenced according to the next-generation sequencing 
method to screen for chromosomal abnormalities. NGS 
screening results for these 3 embryos without ALD are 
shown in Supplementary 4.
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Both TR1 and TR7 samples had abnormalities in the 
chromosomes; in detail, the TR1 sample had abnormalities 
in Chromosome 11 when TR7 has abnormalities in 
Chromosome 2, 4, 6, 8, 11, 17, 18, whereas the sample 
TR5 had none of these. Therefore, we concluded that the 
TR5 embryo’s quality was acceptable and should be trans-
ferred into the mother’s uterus.

Discussion
As in many X-linked recessive disorders, it can be 
assumed that females remain asymptomatic carriers; they 
often have an association with their extended family hav-
ing reported ALD patients. However, Engelen et al sug-
gested that heterozygous women with ALD did show 
milder symptoms of neurologic diseases compared to 
men at a later stage of their lives, especially in their 40s 
and 60s.24 Consequently, a genetic diagnosis of ALD is 
necessary to detect heterozygous women who could be 
offered prenatal or preimplantation diagnosis for pregnan-
cies in the future.2,25 Prenatal diagnosis of ALD was first 

performed in 1982 when Moser et al carried out amnio-
centesis in heterozygous women for the VLCFA level 
determination.26 Later on, Imamura et al documented the 
mutation by genome analysis. Hence, prenatal diagnosis 
was a crucial measure for families with ALD history by 
analyzing the fetal DNA from amniotic fluid or placenta 
source.27,28 Nevertheless, amniocentesis is an invasive 
measure that may have a drawback of insufficient fetal 
DNA level collected for diagnosis and adversely affects 
the mother’s health.

Because of solving the matters mentioned above, the 
preimplantation diagnosis was developed with molecular 
biology advances. In the beginning, PGD was mainly the 
selection of female embryos for patients having 
a background of X-linked recessive diseases.19 However, 
half of the discarded male embryos which are not trans-
ferred are unaffected by the disease. In this way, not only 
does the pregnancy outcome decrease, but it also brings up 
many ethical problems. Otherwise, fifty percent of selected 
female embryos carried the mutant gene that would 

Figure 1 Flowchart of PGD protocol for ALD.
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transmit the mutated allele to the next generation, so the 
inheritance of the disease to the offspring is not perma-
nently stopped. There are prior reports of sex selection 
using different techniques to identify affected Xq28 loci. 
They had the same procedure and outcome: to use multiple 
displacement amplification technologies for adequate input 
DNA materials and, in the end, to determine the sex of the 
embryos. Only one prior study reported by Miriam Iglesias 
et al in 2008 that made use of PGD to prevent ALD 
indicated a successful pregnancy.29–32 Up to date, molecu-
lar biology becoming more and more essential with many 
advances has led to the fact that, once the mutation is 
identified, the couples would undergo specific genetic 
diagnosis instead of simple sex selection. Hence, our 
study with the successful live birth after a full-term preg-
nancy is more suitable with the modern trend and avoids 
ethical concerns by not choosing the sex but applying 
sequencing technology to determine the pathogenic 
gene.33–35

Setting up the new PGD protocol for monogenic dis-
eases is always time-consuming and demanding much of 
the labor’s effort to improve the technique. Firstly, multi-
ple biopsy methods are now available with their advan-
tages. Among them, 5–10 trophectoderm (TE) cells 
biopsied at the blastocyst stage provide more genetic 
material as well as make the diagnosis more reliable and 
have fewer errors. Even though the chosen biopsy method 
generates the highest DNA yields, WGA is still necessary 
to increase the amount of template DNA available up to 
106 times for diagnostic reactions, then template DNA is 
further amplified in a targeted fashion using conventional 
PCR.36–38 PCR primers must be explicitly designed to 
amplify the mutation and optimize other PCR conditions 
to diminish the amplification failure and ADO rate.

The Sanger sequencing method was first developed in 
1977. Though spreading current NGS circulation, improve-
ments in the Sanger sequencing methodology, commercia-
lization, and automation have enabled it to remain the most 
suitable sequencing method for many current applications. 
Sanger sequencing technology remains vastly advantageous 
for applications where high throughput is not required.39 

Our PGD procedure was carried out on the embryos of 
one family and owing to its rapidity and efficiency. 
However, the embryonic aneuploidy prevalence was high 
even in young patients with a monogenic disorder back-
ground. The majority of the patient population (53.2%) had 
at least one blastocyst with unaffected single gene defect 
were aneuploid, approximately 26.5% of normal or non- 
pathogenic blastocysts diagnosed based on monogenic dis-
ease PGD were aneuploid which would have been trans-
ferred, resulting in negative impacts in pregnancy outcome 
unless PGS had performed.40 Conversely, concurrent 
screening demonstrably aided in embryo selection, as evi-
denced by the significant improvement in single embryo 
transfer rates, so 24-chromosome aneuploidies screening 
became more and more popular to apply in embryos biop-
sied for PGD to reduce the risk of miscarriage in the gesta-
tional period.41–43 Indeed, PGD combined with PGS 
allowed opting for an embryo that did not carry the mutated 
allele and euploid embryos to transfer into the mother’s 
uterus then, fortunately, achieved pregnancy with a baby 
girl. Later on, her peripheral blood sample was collected 
and applied to the developed protocol to confirm the accu-
racy. The baby girl was a wild-type homozygote and com-
pletely free of ALD.

Conclusion
The established protocol was helpful for the preimplanta-
tion genetic diagnosis process to help families with the 
monogenic disease of ALD but wish to have healthy 
children. This process not only has the potential to identify 
embryos with pathogenic mutations but also prevent their 
inheritance among generations at an early stage.

Data Sharing Statement
The data that support the findings of this study are avail-
able from the corresponding author, upon reasonable 
request. If you have concerns about sharing the data, 
please contact vunhatdinh@vmmu.edu.vn.

Table 1 Genotypes of Eight in vitro Fertilization Embryos by 
Annotating Sanger Sequencing Results

Samples Diagnosis Sex

TR1 Wild-type homozygous Female

TR2 ALD heterozygous Female

TR3 ALD heterozygous Female
TR4 ALD heterozygous Female

TR5 Wild-type homozygous Female

TR6 ALD hemizygous Male
TR7 Wild-type homozygous Female

TR8 ALD heterozygous Female
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