
RESEARCH ARTICLE

Kernel-based gene–environment interaction

tests for rare variants with multiple

quantitative phenotypes

Xiaoqin Jin, Gang ShiID*

State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, Shaanxi, China

* gshi@xidian.edu.cn

Abstract

Previous studies have suggested that gene–environment interactions (GEIs) between a

common variant and an environmental factor can influence multiple correlated phenotypes

simultaneously, that is, GEI pleiotropy, and that analyzing multiple phenotypes jointly is

more powerful than analyzing phenotypes separately by using single-phenotype GEI tests.

Methods to test the GEI for rare variants with multiple phenotypes are, however, lacking. In

our work, we model the correlation among the GEI effects of a variant on multiple quantita-

tive phenotypes through four kernels and propose four multiphenotype GEI tests for rare

variants, which are a test with a homogeneous kernel (Hom-GEI), a test with a heteroge-

neous kernel (Het-GEI), a test with a projection phenotype kernel (PPK-GEI) and a test with

a linear phenotype kernel (LPK-GEI). Through numerical simulations, we show that correla-

tion among phenotypes can enhance the statistical power except for LPK-GEI, which simply

combines statistics from single-phenotype GEI tests and ignores the phenotypic correla-

tions. Among almost all considered scenarios, Het-GEI and PPK-GEI are more powerful

than Hom-GEI and LPK-GEI. We apply Het-GEI and PPK-GEI in the genome-wide GEI

analysis of systolic blood pressure (SBP) and diastolic blood pressure (DBP) in the UK

Biobank. We analyze 18,101 genes and find that LEUTX is associated with SBP and DBP

(p = 2.20×10−6) through its interaction with hemoglobin. The single-phenotype GEI test and

our multiphenotype GEI tests Het-GEI and PPK-GEI are also used to evaluate the gene–

hemoglobin interactions for 22 genes that were previously reported to be associated with

SBP or DBP in a meta-analysis of genetic main effects. MYO1C shows nominal significance

(p < 0.05) by the Het-GEI test. NOS3 shows nominal significance in DBP and MYO1C in

both SBP and DBP by the single-phenotype GEI test.

Introduction

Genome-wide association studies (GWASs) have identified numerous common variants asso-

ciated with common diseases or phenotypes [1]. Nevertheless, a small portion of the heritabili-

ties can be explained by the discovered common variants [2, 3]. Sequencing studies showed

that some of the “missing heritability” was attributable to rare variants [4, 5]. Complex diseases
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are usually influenced by genetic factors, environmental factors and the interplay between

them. Wang et al. showed that the interactions between SMC5 variants and alcohol consump-

tion are associated with fasting plasma lipid levels [6]. Yang et al. demonstrated that the inter-

actions between PDE3B variants and smoking are associated with pulmonary function [7].

Johansson et al. revealed that the interactions between NFE2L2 variants and second-hand

smoke are associated with pediatric asthma risk [8]. For a long time, gene–environment inter-

actions (GEIs) have been expected to explain some of the “missing heritability” and shed light

on the genetic etiology of complex diseases [9].

Existing studies suggest that the interaction between a common variant and an environ-

mental factor may be associated with multiple correlated phenotypes, which is called GEI plei-

otropy [10]. Kilpeläinen et al. identified four loci in or near CLASP1, LHX1, SNTA1 and

CNTNAP2 that are associated with three blood lipid levels: low density lipoprotein, high den-

sity lipoprotein and triglycerides through their interactions with physical activity [11]. Novel

gene-sleep interactions were also identified for known lipid loci, including LPL and PCSK9
[12]. To date, all the reported GEI pleiotropies are with common variants. From a methodo-

logical perspective, Majumdar et al. showed that statistical power to detect GEI effects can be

improved by analyzing multiple phenotypes jointly [10]. However, multiphenotype methods

for testing GEIs with rare variants are lacking.

To the best of our knowledge, there is only one method currently available for testing GEIs

with rare variants and multiple phenotypes [13]. The method consists of three steps: remove

correlation among multiple phenotypes by using principal component analysis or other linear

transformations; obtain p value for each transformed phenotype by testing the effects of an

optimally weighted combination of GEIs for rare variants (TOW-GE) [14]; employ Fisher’s

combination test (FCT) to combine the p values of multiple phenotypes. We denote the

method as TOWGE-FCT in this paper. It can be expected that the degree of freedom of TOW-

GE-FCT would become larger with the increasing number of phenotypes, which might limit

statistical power of the test.

In this work, we model the correlations among the GEI effects of a variant on multiple phe-

notypes by assuming four different kernel matrices, similar to those for multiphenotype tests

of genetic main effects [15]. We extend the single-phenotype GEI test [16] and propose four

multiphenotype GEI tests for rare variants, which are the test with homogeneous kernel

(Hom-GEI), the test with heterogeneous kernel (Het-GEI), the test with projection phenotype

kernel (PPK-GEI) and the test with linear phenotype kernel (LPK-GEI). We conduct simula-

tion studies to examine the empirical distributions of the four test statistics under the null

hypothesis and compare their statistical power under different scenarios. In the analysis of sys-

tolic blood pressure (SBP) and diastolic blood pressure (DBP) in the UK Biobank, we chose

hemoglobin (Hb) as the environmental variable, which is known to be associated with both

SBP and DBP [17, 18]. With the whole-exome sequencing data in 200,643 samples, we applied

Het-GEI and PPK-GEI in the genome-wide analyses of gene-Hb interactions. We also carried

out single-phenotype and multiphenotype GEI tests to evaluate the gene-Hb interactions for

22 genes that were previously reported to be associated with SBP or DBP in a meta-analysis of

main genetic effects [19].

Methods

Single-phenotype GEI test

Assume that n unrelated individuals are sequenced in a gene or region withm rare variants

and K quantitative phenotypes are measured. For the k-th phenotype, yk = (y1k, y1k, � � �, ynk)T

denotes an n × 1 phenotype vector, and X = (X1, X2, � � �, Xq+1) is an n × (q + 1) matrix
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comprised of intercept and covariate vectors with Xt = (X1t, X2t, � � �, Xnt)T, t = 1, 2, . . ., q+1. The

first vector X1 represents the intercept vector with elements Xi1 = 1 and i = 1, 2, � � �, n. The other

q vectors are the covariate vectors. Let G = (G1,G1, � � �, Gm) be an n ×m genotype matrix, in

which Gj = (G1j, G2j, � � �, Gnj)T, j = 1, 2, . . .,m, and Gij is the number of minor alleles. E = diag

{Ei} denotes an n × n diagonal matrix of environmental measurements, and Ei is centralized and

included in X as a covariate for adjusting the environmental effect. Following the single-pheno-

type GEI test for rare variants in rareGE [16], we consider the linear mixed model as follows:

yk ¼ Xαk þ GWβk þ EGWγk þ εk; ð1Þ

where αk = (αk1, αk2, � � �, αk(q+1))
T is a (q+1)×1 vector of covariate effects for the k-th phenotype.

W = diag{wj} is anm ×mweight matrix for them variants. The weight of the j-th variants is wj
= Beta(MAFj, 1, 25) [20], where MAFj is the minor allele frequency (MAF) of the j-th variants.

In addition, βk = (β1k, β2k, � � �, βmk)
T is anm × 1 vector consisting of genetic main effects for the

k-th phenotype, and γk = (γ1k, γ2k, � � �, γmk)
T is anm×1 vector of the interaction effects. Here, the

main genetic effects βk are assumed to be fixed and the interaction effects γk to be random, γk*
MVN(0, σ2Im). In addition, εk = (ε1k, ε2k, � � �, εnk)

T denotes an n×1 error vector, and

εk � MVNð0; s2
kInÞ. The null hypothesis for testing the GEI interactions is H0: σ2 = 0. The

model under the null hypothesis is

yk ¼ Xαk þ GWβk þ εk; ð2Þ

Here, αk, βk, and s2
k can be estimated by linear regression, and the estimated mean and vari-

ance-covariance matrix of yk are

μ̂k ¼ Xα̂k þ GWβ̂k

V̂ k ¼ ŝ
2

kIn

where μ̂k ¼ ðm̂1k; m̂2k; � � � ; m̂nkÞ
T
, ðα̂T

k ; β̂
T
k Þ

T
¼ ðZTZÞ� 1ZTyk with Z = (X, GW). The score statis-

tic for testing the GEI effects is

Qk ¼ ðyk � μ̂kÞ
TV̂ � 1

k EGWWG
TEV̂ � 1

k ðyk � μ̂kÞ; ð3Þ

which is mathematically equivalent to

Qk ¼
Xm

j¼1

w2

j S
2

jk: ð4Þ

Here, Sjk ¼
Pn

i¼1

EiGijðyik � m̂ikÞ=ŝ2
k is the score statistic for the j-th variant.

Under H0, Qk �
P

j
ljw

2
1;j follows a mixture of chi-square distributions with 1 degree of free-

dom, and λj are nonzero eigenvalues of the regional relationship matrix

Ψ k ¼WG
TEðIn � ZðZ

TZÞ� 1ZTÞV̂ � 1

k EGW: ð5Þ

The p-value can be computed by using Kuonen’s saddlepoint approximation method [16,

21]. In the same spirit, we extend the single-phenotype GEI test for multiple phenotypes.

Kernel-based multiphenotype GEI tests

Denote y = (y1, y2, � � �, yK) as the n × Kmatrix of K phenotypes and A = (α1, α2, � � �, αK) as the

(q+1) × Kmatrix of covariate effects. Let B = (β1, β2, � � �, βK) be them × Kmatrix of genetic

PLOS ONE Multiphenotype gene-environment interaction tests for rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0275929 October 12, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0275929


main effects and Γ = (γ1, γ2, � � �, γK) be them × Kmatrix of GEI effects. In addition, ε = (ε1,

ε2, � � �, εK) is the n × K error matrix. In light of the correlation among phenotypes, we assume

ε = (ε1, ε2, � � �, εK) * MVN(0, Σ), i = 1, 2, � � �, n. Then, the mixed model for multiple pheno-

types can be formulated in a matrix form as follows:

y ¼ XAþ GWBþ EGWΓ þ ε: ð6Þ

Stack columns of the phenotype matrix y into a vector vecðyÞ ¼ ðyT
1
; yT

2
; � � � ; yTKÞ

T
and col-

umns of the error matrix ε into vecðεÞ ¼ ðεT
1
; εT

2
; � � � ; εTKÞ

T
. We have vec(ε)~MVN(0, Σ� In),

where� is the Kronecker product [22]. We rewrite model (6) in vector form as

vecðyÞ ¼ ðIK � XÞvecðAÞ þ ðIK � GWÞvecðBÞ þ ðIK � EGWÞvecðΓÞ þ vecðεÞ: ð7Þ

Assume vec(Γ)~MVN(0, σ2ΣP� Im), where ΣP is a K × K kernel in the phenotype space

and models the correlation among the GEI effects of a variant on multiple phenotypes. As a

result, vec(y)~MVN(vec(μ), H), where μ = XA + GWB andH = σ2(ΣP� EGWWGT E) + Σ�
In. The null hypothesis for testing the GEI effects with multiple phenotypes is H0: σ2 = 0, and

the score statistic is

Q ¼ vecðy � μ̂ÞTfðΣ̂ � 1ΣPΣ̂
� 1Þ � ðEGWWGTEÞgvecðy � μ̂Þ; ð8Þ

where μ̂ and Σ̂ are the estimated mean and variance-covariance matrix, respectively.

The score statistic Q asymptotically follows a mixture of 1-freedom chi-square distributions
X

j

ljw
2

1;j and λj are nonzero eigenvalues of

Ψ ¼ Σ1=2

P Σ̂ � 1Σ1=2

P �WG
TEPEGW; ð9Þ

where P = In−Z(ZTZ)−1ZT and Z is the same as in the single-phenotype GEI test. The corre-

sponding p-values can be computed via Kuonen’s saddlepoint method [21].

As can be seen in (8), our proposed tests depend on the kernel matrix ΣP. Similar to [15],

we use four types of kernel matrices to model the correlation among the GEI effects on multi-

ple phenotypes.

Homogeneous kernel. Assume that the GEI effects of a variant on multiple different phe-

notypes are homogeneous, implying that γj1 = γj2 = � � � = γjK. The kernel is constructed as

ΣP ¼ ΣHom ¼ 1K1
T
K ;

where 1K = (1, 1, � � �, 1)T is a K × 1 vector. ΣHom indicates the GEI effects of a variant on multi-

ple phenotypes to be the same.

Heterogeneous kernel. Assuming that the GEI effect sizes of a variant on multiple pheno-

types are heterogeneous, the kernel is

ΣP ¼ ΣHet ¼ IK ;

where IK is a K × K identity matrix. Here, ΣHet implies that the GEI effects of a variant on mul-

tiple phenotypes are independent.

Projection phenotype kernel. Assume that the correlation among the GEI effects of a var-

iant on multiple phenotypes can be depicted by the correlation among the phenotypes. That is,

ΣP ¼ ΣPPK ¼ Σ̂ ;

where Σ̂ is the estimated variance-covariance matrix of the phenotypes.
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Linear phenotype kernel. Assume that the GEI effects of a variant on multiple pheno-

types equal the squared correlation among the phenotypes. That is,

ΣP ¼ ΣLPK ¼ Σ̂ 2:

Similar to the proof in [22], the test score statistic (8) is

QLPK� GEI ¼ fvecðyÞ � vecðμ̂ÞgTfIK � ðEGWWG
TEÞgfvecðyÞ � vecðμ̂Þg; ð10Þ

which can be rewritten as

QLPK� GEI ¼
XK

k¼1

Xm

j¼1

w2

j S
2

jk: ð11Þ

Therefore, the LPK-GEI test simply combines statistics of single-phenotype GEI tests across

multiple phenotypes.

Based on different choices of the kernel matrix ΣP, we propose four multiphenotype GEI

tests, which are named Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI.

Results

Numerical simulations

To evaluate the null distributions and statistical power of the four proposed tests, we carried

out extensive simulation studies. Using the calibrated coalescent model implemented in COSI

[23], we generated 10,000 haplotypes in a 200 kb genomic region. Parameters in the coalescent

model were used to mimic the linkage disequilibrium pattern, local recombination rate and

demographic history for the population of European ancestry. We randomly paired these hap-

lotypes to form diploid genotype data of 10,000 individuals and randomly selected 5000 out of

the 10,000 individuals. A subregion length of 3 kb was randomly selected from the 200 kb

region to obtain the genotype data of the 5000 samples for each replicate, and 1000 replicates

of genotype data were generated. Variants with MAF� 0.01 were considered to be rare and

used for simulations.

To evaluate null distributions of our proposed tests, four phenotypes of the 5000 unrelated

individuals under the null hypothesis were generated. For the sake of simplicity, phenotypes

shared the same covariate sets and were generated as follows:

yi1 ¼ 0:1sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj1l1 þ εi1

yi2 ¼ 0:5sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj2l2 þ εi2

yi3 ¼ 0:1sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj3l3 þ εi3

yi4 ¼ 0:5sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj4l4 þ εi4

; ð12Þ

Where yi1, yi2, yi3, yi4 are the four phenotypes for the i-th individual (i = 1, 2, . . ., n). For the

i-th individual, sexi is a binary covariate following a Bernoulli distribution with probability 0.5,

namely, sexi ~ Bernoulli(0.5). Both agei and bmii are continuous covariates: agei ~ N(50, 25),

bmii ~ N(50, 25). Gij (j = 1, 2, � � �,m) are the coded genotypes of the simulated causal variants
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for individual i. Here, we assumed a proportion of causal variants θ = 0.1, 0.2, 0.3. In addition,

wj (j = 1, 2, � � �,m) is the weight of variant j; βj1, βj2, βj3, and βj4 are the main genetic effects for

phenotype 1, phenotype 2, phenotype 3 and phenotype 4, respectively, with βj1 = 0.1, βj2 = 0.2,

βj3 = 0.1, and βj4 = 0.2; and l1, l2, l3, and l4 are indicator variables, with lk = 1 when phenotype k
is associated with genetic variants and lk = 0 otherwise. Since not all of the phenotypes may be

associated with the rare variants [22, 24], we considered scenarios under which pleiotropy

exists or does not exist. Specifically, we assumed that the first t phenotypes were associated

with the rare variants, namely, l1 = � � � = lt = 1 and lt+1 = � � � = l4-t = 0, t = 1,2,3,4. εik is a random

error for the i-th individual and the k-th phenotype, εi = (εi1, εi2, εi3, εi4)T ~ MVN(0, Σ),

where Σ ¼

2
ffiffiffi
2
p

r
ffiffiffi
2
p

r
ffiffiffi
2
p

r
ffiffiffi
2
p

r 1 r r
ffiffiffi
2
p

r r 1 r
ffiffiffi
2
p

r r r 1

2

6
6
6
6
4

3

7
7
7
7
5

and ρ represents the correlation among different

phenotypes. Three levels of correlation strength were considered: weak correlation with ρ =

0.25, moderate correlation with ρ = 0.5 and strong correlation with ρ = 0.75. For each simula-

tion setup, 20 replicates of phenotypes and covariates were simulated based on one genotype

dataset; thus, a total of 20,000 replicates of phenotypes and covariates were simulated.

To evaluate the statistical power of our proposed four multiphenotype GEI tests, we simu-

lated the four correlated phenotypes for 5000 independent individuals under the alternative

hypothesis. For each of the genotype datasets, one phenotype and covariates set was simulated

according to the following model:

yi1 ¼ 0:1sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj1l1 þ
Xm

j¼1

EiGijwjgj1l1 þ εi1

yi2 ¼ 0:5sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj2l2 þ
Xm

j¼1

EiGijwjgj2l2 þ εi2

yi3 ¼ 0:1sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj3l3 þ
Xm

j¼1

EiGijwjgj3l3 þ εi3

yi4 ¼ 0:5sexi þ 0:05agei þ 0:1bmii þ
Xm

j¼1

Gijwjbj4l4 þ
Xm

j¼1

EiGijwjgj4l4 þ εi4

; ð13Þ

where sexi, agei, bmii, Gij, wj, βjk (k = 1,2,3,4), lk (k = 1,2,3,4) and εi = (εi1, εi2, εi3, εi4)T are the

same as described in model (12). The body mass index (BMI) was centered and used as the

environmental variate Ei. Here, γjk is the gene-BMI interaction effect of the j-th causal rare var-

iant on the k-th phenotype, with γjk ~ N(0, 0.05)2. Since the interaction effects of a variant on

each phenotype were simulated independently, the gene–BMI interaction effects of a variant

on multiple phenotypes are heterogeneous.

In all simulations and the analyses of the simulated data, variant weights were the density

function of beta distribution with degrees of freedom of 1 and 25 evaluated at the MAF of rare

variants [20] as described in the single-phenotype GEI test. We considered the gene–BMI

interaction to be significant if its p-value was less than 2.5×10−6, corresponding to a correction

for multiple testing in genome-wide studies of 20,000 genes. Empirical power was the portion

of significant results in 1000 replicates.

Null distributions. We examined null distributions of test statistics for Hom-GEI, Het-

GEI, PPK-GEI and LPK-GEI with causal rare variant proportion θ = 0.2 and all phenotypes

associated with genetic variants. We first estimated means and residuals by performing
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phenotype-specific regression analyses. The variance-covariance matrix Σ was estimated by

residuals from all phenotypes. Test statistics of the four tests were computed as in (8) with cor-

responding kernels for Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI. Using Kuonen’s saddle-

point approximation method [21], the p-values of the four test statistics were computed.

Finally, we compared distributions of empirical p-values with the expected uniform distribu-

tion between 0 and 1.

The quantile-quantile (Q–Q) plots of the four multiphenotype statistics under weak (ρ =

0.25), moderate (ρ = 0.5) and strong (ρ = 0.75) correlations among phenotypes are shown in

Figs 1–3, respectively. The empirical distributions of the four test statistics are aligned with

their theoretical distributions, as expected.

Statistical power. The statistical power of Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI

under weak, moderate and strong correlations among phenotypes are shown in Figs 4–6,

respectively. In each figure, the power with three different proportions of causal variants and

different numbers of associated phenotypes are presented. All four tests show improved power

as the proportion of causal variants increases. This is because an increased proportion of causal

variants leads to larger interaction effects under the test. Taking Fig 5D as an example, for the

causal rare variant proportion θ = 0.1, Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI have pow-

ers of 0.067, 0.424, 0.431 and 0.199, respectively. For θ = 0.2, the corresponding powers are

0.145, 0.72, 0.725 and 0.428, respectively. For θ = 0.3, the power increases further to 0.278,

0.867, 0.869 and 0.608.

From Figs 4–6, we can see that the four tests provide improved power with more pheno-

types associated with the interactions, which suggests that our multiphenotype analyses can

Fig 1. Q–Q plots of the test statistics under the null hypothesis with weak among-phenotype correlation ρ = 0.25.

The horizontal and vertical axes represent the negative log10 of the expected p-values and the negative log10 of the

observed p-values, respectively. A: Hom-GEI; B: Het-GEI; C: PPK-GEI; D: LPK-GEI.

https://doi.org/10.1371/journal.pone.0275929.g001
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exploit GEI pleiotropy effectively. For instance, in Fig 6, with the causal proportion θ = 0.2,

when only the first phenotype is associated with the interactions, the powers of Hom-GEI,

Het-GEI, PPK-GEI and LPK-GEI are 0.013, 0.206, 0.292 and 0.045, respectively, as shown in

Fig 6A. When the first two phenotypes are associated with the interactions, the corresponding

power improves to 0.092, 0.607, 0.629 and 0.152, as shown in Fig 6B. With three phenotypes

associated with the interactions, the power become even larger and are 0.173, 0.766, 0.767 and

0.252, as shown in Fig 6C. When all phenotypes are associated with the interactions, the power

further increase to 0.236, 0.827, 0.828 and 0.345, as shown in Fig 6D.

We can also see from Figs 4–6 that Hom-GEI, Het-GEI and PPK-GEI have enhanced

power as the correlation among phenotypes becomes stronger, but LPK-GEI suffers power

loss. For instance, we observe the power of the four tests with causal proportion θ = 0.2. When

the correlation among phenotypes is weak, the power values of Hom-GEI, Het-GEI, PPK-GEI

and LPK-GEI are 0.105, 0.508, 0.523 and 0.370, respectively, in Fig 4C. When the correlation is

moderate, the power values are 0.104, 0.597, 0.598 and 0.311, as shown in Fig 5C. With a

strong correlation, the power values are 0.173, 0.766, 0.767 and 0.252, as shown in Fig 6C. This

demonstrates that Hom-GEI, Het-GEI and PPK-GEI can benefit from the increased correla-

tions among phenotypes. However, since LPK-GEI directly combines statistics from single-

phenotype GEI tests and ignores the phenotypic correlations, the increased correlation among

phenotypes leads to a substantial power loss.

Among almost all of the considered scenarios in Figs 4–6, PPK-GEI has approximately the

same or slightly larger power than Het-GEI, and the two tests outperform Hom-GEI and

LPK-GEI. Hom-GEI shows the poorest power performance among all the proposed tests. This

Fig 2. Q–Q plots of the test statistics under the null hypothesis with moderate among-phenotype correlation ρ =

0.5. The horizontal and vertical axes represent the negative log10 of the expected p-values and the negative log10 of the

observed p-values, respectively. A: Hom-GEI; B: Het-GEI; C: PPK-GEI; D: LPK-GEI.

https://doi.org/10.1371/journal.pone.0275929.g002

PLOS ONE Multiphenotype gene-environment interaction tests for rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0275929 October 12, 2022 8 / 19

https://doi.org/10.1371/journal.pone.0275929.g002
https://doi.org/10.1371/journal.pone.0275929


is because the phenotypes were simulated based on heterogeneous interaction effects, violating

the assumption that Hom-GEI is based upon. Because the GEI effects of a variant on multiple

phenotypes can hardly be homogeneous in reality, Hom-GEI may not be a good choice for

real data analysis. Therefore, we choose Het-GEI and PPK-GEI for our genome-wide interac-

tion analysis in UK Biobank.

With the proportion of causal rare variant θ = 0.1 and the among-phenotype correlation ρ
= 0.5, we compared the power of our tests with the TOWGE-FCT under different numbers of

phenotypes associated with the interactions, the results are shown in Fig 7. Because TOW-

GE-FCT is a permutation based method, which is computationally very expensive, the power

results were evaluated at the significance level of 0.05. As can be observed from Fig 7 that all

the five tests can provide enhanced power as more phenotypes associated with the interactions.

Het-GEI, PPK-GEI and LPK-GEI tests have higher power than TOWGE-FCT, however,

Hom-GEI has lower power than TOWGE-FCT. We can also see that Het-GEI and PPK-GEI

tests outperform the other tests, further indicating Het-GEI and PPK-GEI to be two powerful

tests. For instance, when only the first two phenotypes are associated with the interactions, the

power values for Hom-GEI, Het-GEI, PPK-GEI, LPK-GEI and TOWGE-FCT are 0.177, 0.507,

0.517, 0.403 and 0.304, respectively.

Gene-Hb interaction analysis of blood pressure phenotypes in UK Biobank

UK Biobank is a prospective study that recruited approximately 500,000 volunteers aged 40

and 69 years in the United Kingdom and collected extensive genetic and phenotypic data [25,

26]. We used the whole-exome sequencing data released by UK Biobank with a total of

Fig 3. Q–Q plots of the null distributions under the null hypothesis with strong among-phenotype correlation ρ =

0.75. The horizontal and vertical axes represent the negative log10 of the expected p-values and the negative log10 of the

observed p-values, respectively. A: Hom-GEI; B: Het-GEI; C: PPK-GEI; D: LPK-GEI.

https://doi.org/10.1371/journal.pone.0275929.g003
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200,643 samples. Individuals who had withdrawn and one member in each pair with kinship

larger than 0.25 measured via KING [27] were removed. We considered SBP and DBP as the

blood pressure (BP) phenotypes and Hb as the environmental factor, which is known to be

associated with both SBP and DBP [17, 18]. Covariates included age, age2, sex, BMI and 20

principal components to adjust for population stratification. SBP and DBP averaged over mul-

tiple measurements at baseline were used. For individuals taking BP-lowering medications, 10

mm Hg and 5 mm Hg were added to the SBP and DBP, respectively [28, 29]. Phenotypes and

covariates located 5 standard deviations away from their respective means were defined as

Fig 4. Statistical power of Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI under weak among-phenotype correlation ρ = 0.25.

The horizontal and vertical axes represent the proportion of causal rare variants and the statistical power, respectively. A: Power

when only the first phenotype is associated with interactions; B: Power when the first two phenotypes are associated with

interactions; C: Power when the first three phenotypes are associated with interactions; D: Power when all four phenotypes are

associated with interactions.

https://doi.org/10.1371/journal.pone.0275929.g004
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outliers. Outliers or individuals with missing phenotypes or missing covariates were removed.

As a result, 157,514 individuals, including 71,501 males (45.4% males) and 86,013 females

(54.6% females), were included in our gene-Hb interaction analyses. BP phenotypes, age, BMI

and Hb were standardized before the analysis.

We carried out genome-wide analysis on 18,101 genes from 22 autosomal chromosomes.

Variants in the genotype dataset were annotated via VEP [30]. We restricted to variants anno-

tated as stop_loss, missense_variant, start_lose, splice_donor_variant, inframe_deletion, fra-

meshift_variant, splice_acceptor_variant, stop_gained or inframe_insertion with PolyPhen

Fig 5. Statistical power of Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI under moderate among-phenotype correlation ρ =

0.5. The horizontal and vertical axes represent the proportion of causal rare variants and the statistical power, respectively. A:

Power when only the first phenotype is associated with the interactions; B: Power when the first two phenotypes are associated

with the interactions; C: Power when the first three phenotypes are associated with the interactions; D: Power when all four

phenotypes are associated with the interactions.

https://doi.org/10.1371/journal.pone.0275929.g005
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scores larger than 0.15 and Sift scores less than 0.05 [31]. Those variants with MAFs less than

3% were extracted via PLINK [32]. Genotypes were further transformed into numeric values

using fcGENE [33].

For each of the 18,101 genes, we performed Het-GEI and PPK-GEI analysis of the gene-Hb

interactions on SBP and DBP phenotypes. Manhattan plots of p-values from the two tests are

presented in Fig 8, and QQ plots of the Het-GEI and PPK-GEI tests are shown in Fig 9. With a

genome-wide significance level of 2.5×10−6, only LEUTX is significant according to the Het-

GEI test (p-value = 2.2×10−6), and its p-value according to the PPK-GEI test is 7.43×10−6. If we

Fig 6. Statistical power of Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI under strong among-phenotype correlation ρ =

0.75. The horizontal and vertical axes represent the proportion of causal rare variants and the statistical power, respectively. A:

Power when only the first phenotype is associated with the interactions; B: Power when the first two phenotypes are associated

with the interactions; C: Power when the first three phenotypes are associated with the interactions; D: Power when all four

phenotypes are associated with the interactions.

https://doi.org/10.1371/journal.pone.0275929.g006
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consider a suggestive significance level at 1×10−4, twelve genes passed the threshold, whose

details are presented in Table 1.

Recently, Surendran et al. reported 22 genes associated with SBP or DBP in a meta-analysis

of 1.3 million samples from multiple cohorts, including UK Biobank, the Million Veterans

Program and deCODE [19]. For the 22 genes, we looked up our genome-wide results for the

possible interactions with Hb. For comparison, we also conducted single-phenotype GEI tests

using the INT-FIX function from the rareGE R package [16] for the two BP phenotypes

Fig 7. Statistical power of Hom-GEI, Het-GEI, PPK-GEI, LPK-GEI and TOWGE-FCT with different correlated phenotypes, ρ = 0.5,

θ = 0.1. The horizontal and vertical axes represent the number of phenotypes associated with interactions and the statistical power,

respectively. The significance level is 0.05.

https://doi.org/10.1371/journal.pone.0275929.g007
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Fig 8. Manhattan plot of genome-wide multiphenotype analysis of gene-Hb interactions in BPs. The horizontal

and vertical axes represent the genomic position and the negative log10 of the p-values, respectively. A: Het-GEI; B:

PPK-GEI.

https://doi.org/10.1371/journal.pone.0275929.g008

Fig 9. Q–Q plots of genome-wide multiphenotype GEI analysis of gene-Hb interactions in BPs. The horizontal and

vertical axes represent the negative log10 of the expected p-values and the negative log10 of the observed p-values,

respectively. A: Het-GEI; B: PPK-GEI.

https://doi.org/10.1371/journal.pone.0275929.g009

PLOS ONE Multiphenotype gene-environment interaction tests for rare variants

PLOS ONE | https://doi.org/10.1371/journal.pone.0275929 October 12, 2022 14 / 19

https://doi.org/10.1371/journal.pone.0275929.g008
https://doi.org/10.1371/journal.pone.0275929.g009
https://doi.org/10.1371/journal.pone.0275929


separately. The number of rare variants involved in the analysis and p-values from the multi-

phenotype and single-phenotype GEI tests are provided in Table 2.

There are no significant results after correcting the multiple testing. At the nominal signifi-

cance level of 0.05, only one gene,MYO1C, shows interactions with Hb for BP phenotypes by

the PPK-GEI test (p-value = 0.038). With the single-phenotype GEI test, NOS3 has a p-value of

0.026 for DBP, andMYO1C has p-values of 0.018 and 0.011 for SBP and DBP, respectively.

Discussion

In this paper, we propose four statistical tests, Hom-GEI, Het-GEI, PPK-GEI and LPK-GEI, to

test GEI effects with rare variants for multiple correlated quantitative phenotypes. Through

simulation studies, the statistical power of the tests was investigated in terms of the proportion

of causal variants, the number of phenotypes associated with interactions and the correlation

strength among phenotypes. Simulation results show that all tests demonstrate improved sta-

tistical power when the proportion of causal variants or the number of associated phenotypes

increases. Hom-GEI, Het-GEI and PPK-GEI benefit from correlation among phenotypes;

however, the LPK-GEI test suffers power loss, especially when correlation among phenotypes

is strong. This is because LPK-GEI directly combines statistics from single-phenotype GEI

tests and ignores phenotype dependence. In addition, among almost all of the considered sce-

narios, Het-GEI and PPK-GEI have almost the same power and outperform the other two

tests. Hom-GEI shows the poorest power due to its unrealistic assumption. In summary, Het-

GEI and PPK-GEI are two powerful tests for investigating GEI with multiple quantitative

phenotypes.

We applied Het-GEI and PPK-GEI in the genome-wide analysis of SBP and DBP in order

to detect possible gene-Hb interactions in UK Biobank. We analyzed 18,101 genes and identi-

fied LEUTX to be associated with BP phenotypes through its interaction with Hb via the Het-

GEI test. At the suggestive significance level, twelve genes were identified to be associated with

BP phenotypes through their interactions with Hb. LEUTX was previously reported to play a

central role in embryo genome activation [34] whose role in BP regulation is unclear. Recent

study of rare variants suggests that BP-associated variants are enriched in active chromatin

regions of fetal tissue and potentially link fetal development to BP regulation in later life [19].

Table 1. Genes showing suggestive evidence (p-values< 1 × 10−4) of gene-Hb interactions in the Het-GEI or PPK-GEI tests.

Gene Chr Pos RV Num P value

Het-GEI PPK-GEI

ALX3 1 110060374: 110070700 27 3.34×10−5 5.21×10−5

CFHR1 1 196819730: 196832189 19 4.96×10−5 2.50×10−4

ARID5A 2 96536726: 96552634 16 9.60×10−2 1.53×10−4

OXCT1 5 41730064: 41870689 18 2.29×10−5 5.99×10−5

EMC2 8 108443623: 108486907 11 6.69×10−5 8.32×10−5

COQ4 9 128322511: 128334072 36 2.12×10−1 6.26×10−4

FAM120AOS 9 93446499: 93453592 5 3.57×10−5 3.01×10−6

NCR3LG1 11 17351761: 17377321 6 5.59×10−4 2.30×10−5

OR2D3 11 6921001: 6921994 15 1.36×10−1 3.86×10−4

CPSF6 12 69239536: 69274358 4 3.81×10−5 4.76×10−6

PYDC1 16 31215961: 31217074 2 5.29×10−5 2.41×10−4

LEUTX 19 39776593: 39786135 15 2.20×10−6 7.43×10−6

Abbreviations are as follows: Chr, chromosome. Pos, position. RV Num, number of rare variants.

https://doi.org/10.1371/journal.pone.0275929.t001
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Thus, LEUTXmight be associated with the BP phenotypes in a similar manner. In the analysis

of 454,787 UK Biobank participants, genetic main effect of LEUTX was not associated with BP

phenotypes at the nominal significance level of 0.05 [35]. However, our tests identified LEUTX
to be interacted with Hb in BP phenotypes at the genome-wide significance level of 2.5×10−6

in the sample of 157,514 UK Biobank participants. We also conducted a single-phenotype GEI

test and multiphenotype GEI tests to evaluate the gene-Hb interactions for 22 genes that were

previously reported to be associated with SBP or DBP in a meta-analysis of genetic main

effects.MYO1C shows nominal significance by the Het-GEI test. NOS3 shows nominal signifi-

cance in DBP andMYO1C in SBP and DBP by the single-phenotype GEI test.

Our proposed multiphenotype GEI tests are an extension of the single-phenotype GEI test

in rareGE [16]. The tests retain the desirable properties of the single-phenotype GEI test,

which allows for adjusting covariates and is powerful when the GEI effects of variants act in

different directions on phenotypes. Our proposed multiphenotype GEI tests, except for Hom-

GEI, are more powerful than the existing multiphenotype GEI test TOWGE-FCT. Moreover,

our methods are computationally less expensive. This is because that TOWGE-FCT employs

permutations to evaluate p value for each transferred phenotype, however, our tests are based

on asymptotic distributions and p values can be computed analytically.

Our proposed multiphenotype GEI tests have the following limitations. First, our tests have

specific assumptions on the correlation structure for the GEI effects among multiple pheno-

types, violating the assumption would lead to a substantial loss of power. Second, our tests

Table 2. Multiphenotypic analyses and single-phenotype analyses of gene-Hb interactions in BP-associated genes.

Gene Chr Pos RV Num P value

Het-GEI PPK-GEI INT-FIX (SBP) INT-FIX (DBP)

NPR1 1 153678687: 153693992 75 0.459 0.528 0.688 0.291

AGT 1 230702522: 230714590 46 0.556 0.497 0.599 0.213

PHC3 3 170087579: 170181749 40 0.630 0.371 0.264 0.157

NR3C2 4 148078763: 148442520 17 0.922 0.690 0.542 0.240

SLC39A8 4 102251040: 102345498 23 0.766 0.522 0.296 0.289

ENPEP 4 110476072: 110563337 74 0.663 0.785 0.510 0.912

NOS3 7 150991055: 151014599 126 0.183 0.065 0.129 0.026

ZFAT 8 134477787: 134713049 67 0.091 0.161 0.353 0.309

DBH 9 133636362: 133659344 81 0.828 0.627 0.371 0.339

PLCE1 10 93993988: 94328391 73 0.269 0.343 0.495 0.269

PLCB3 11 64251522: 64269452 85 0.227 0.344 0.241 0.792

ALKBH8 11 107502726: 107565735 41 0.924 0.926 0.644 0.871

PDE3B 11 14643722: 14872058 81 0.336 0.542 0.780 0.500

PDE3A 12 20369244: 20684107 26 0.205 0.304 0.440 0.400

RAPGEF3 12 47734669: 47759106 63 0.051 0.103 0.106 0.888

HDAC7 12 47782723: 47819980 38 0.402 0.470 0.673 0.336

HEATR5A 14 31291787: 31420582 129 0.740 0.468 0.165 0.382

SOS2 14 50117127: 50231381 60 0.170 0.491 0.647 0.981

SLC9A3R2 16 2026867: 2039026 47 0.968 0.893 0.685 0.594

MYO1C 17 1464185: 1492707 165 0.468 0.038 0.018 0.011

GATA5 20 62463496: 62475970 77 0.610 0.704 0.756 0.475

FOXS1 20 31844299: 31845617 44 0.563 0.553 0.285 0.592

Abbreviations are as follows: Chr, chromosome. RV Num, number of rare variants. Pos, position. SBP, systolic blood pressure. DBP, diastolic blood pressure.

https://doi.org/10.1371/journal.pone.0275929.t002
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assume individuals to be unrelated. Familiar correlation is not considered, and related samples

must be excluded, which may substantially reduce the sample size and result in a loss of power.

Third, our proposed GEI tests are for rare variants only, while both common and rare variants

may contribute to complex diseases [36–38]. In future work, we plan to consider a unified test

to address these issues. Finally, while we identified LEUTX to interact with Hb in BP pheno-

types, the result lacks independent validation. Thus, it should be considered as being prelimi-

nary and further experiments are necessary.

Conclusion

In this paper, we modeled the correlation among the GEI effects of a variant on multiple phe-

notypes by using four kernels. Based on these kernels, we proposed four multiphenotype GEI

tests for rare variants. The four tests retain the desirable properties of the single-phenotype

GEI test and provide enhanced statistical power by analyzing multiple phenotypes simulta-

neously. We applied Het-GEI and PPK-GEI to test gene-Hb interactions for 18,101 genes in

SBP and DBP in UK Biobank. LEUTX was associated with BP phenotypes through the interac-

tion with Hb via the Het-GEI test. At the suggestive significance level, twelve genes were

reported. Our proposed tests can be readily used to test GEIs in a variety of correlated pheno-

types and hopefully contribute to the genetic studies of complex diseases.
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