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The mechanistic target of rapamycin (mTOR) is often
referred to as a master regulator of the cellular metabolism that
can integrate the growth factor and nutrient signaling. Fasting
suppresses hepatic mTORC1 activity via the activity of the
tuberous sclerosis complex (TSC), a negative regulator of
mTORC1, to suppress anabolic metabolism. The loss of TSC1
in the liver locks the liver in a constitutively anabolic state even
during fasting, which was suggested to regulate peroxisome
proliferator-activated receptor alpha (PPARα) signaling and
ketogenesis, but the molecular determinants of this regulation
are unknown. Here, we examined if the activation of the
mTORC1 complex in mice by the liver-specific deletion of
TSC1 (TSC1L−/−) is sufficient to suppress PPARα signaling and
therefore ketogenesis in the fasted state. We found that the
activation of mTORC1 in the fasted state is not sufficient to
repress PPARα-responsive genes or ketogenesis. Furthermore,
we examined whether the activation of the anabolic program
mediated by mTORC1 complex activation in the fasted state
could suppress the robust catabolic programming and
enhanced PPARα transcriptional response of mice with a liver-
specific defect in mitochondrial long-chain fatty acid oxidation
using carnitine palmitoyltransferase 2 (Cpt2L−/−) mice. We
generated Cpt2L−/−; Tsc1L−/− double-KO mice and showed that
the activation of mTORC1 by deletion of TSC1 could not
suppress the catabolic PPARα-mediated phenotype of Cpt2L−/−

mice. These data demonstrate that the activation of mTORC1
by the deletion of TSC1 is not sufficient to suppress a PPARα
transcriptional program or ketogenesis after fasting.

The mechanistic target of rapamycin (mTOR) signaling
pathway is often referred to as a master regulator of the
cellular metabolism (1). mTOR exists in two independent
complexes, mTorc1 and mTorc2. The activation of mTorc1
signaling by nutrients and/or growth factor signaling promotes
the biosynthesis of macromolecules such as proteins and lipids
required for cellular growth. As such, mTorc1 is a strong
inducer of anabolic metabolism. In mammals, the switch from
the fed state to the fasted state requires the suppression of
mTorc1 signaling mediated by the tuberous sclerosis complex
(TSC) consisting of Tsc1 and Tsc2. The TSC is a negative
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regulator of mTorc1 as it is a GTPase-activating protein
complex for the small GTPase Ras homolog enriched in brain.
Ras homolog enriched in brain directly binds to and activates
mTorc1. Mutations in the TSC cause constitutive mTorc1
activity, anabolic cellular programing, and a rare genetic dis-
ease, resulting in tumor formation in multiple organ systems.
Consequently, the loss of Tsc1 in the liver results in the age-
dependent development of hepatocellular tumors (2). It has
also been reported that the suppression of the mTorc1 com-
plex by Tsc1 is important for the switch from anabolic to
catabolic metabolism in the liver upon fasting. As such, the
loss of Tsc1 and therefore inappropriate activation of the
mTorc1 complex in the fasted state was shown to suppress
peroxisome proliferator-activated receptor alpha (Pparα)
transcriptional activity and therefore prevent hepatic keto-
genesis (3).

Hepatic ketogenesis is an important adaptation during
starvation (4). Upon fasting but after the depletion of hepatic
glycogen, the liver produces glucose de novo. This gluconeo-
genesis is accompanied by the generation of ketone bodies
from acetyl-CoA generated from abundant mitochondrial fatty
acid β-oxidation (5). Ketogenesis serves two main purposes.
First, it is an important mechanism to regenerate coenzyme A
by utilizing acetyl units to generate the ketone bodies (acetone,
acetoacetate, and beta hydroxybutyrate [βHB]). This enables
the continuous oxidation of fatty acids without the need to
fully oxidize acetyl-CoA in the tricarboxylic acid cycle and
therefore sequestering CoA (6). Second, they serve as alter-
native oxidative substrates such that some tissues such as the
brain can become less dependent on glucose oxidation (7, 8).
The transcriptional shift in the liver to facilitate ketogenesis is
largely mediated by Pparα.

Pparα is a nuclear hormone receptor that is activated by
lipid ligands in the liver during fasting. Pparα drives the
expression of genes in ketogenesis and fatty acid oxidation.
The loss of hepatic fatty acid oxidation genes results in an
increased expression of hepatic fatty acid catabolic gene
expression as the mice attempt to compensate for a defect in
the pathway (9, 10). The liver-specific deletion of carnitine
palmitoyltransferase 2 (Cpt2L−/−) mice, an obligate enzyme in
mitochondrial long-chain fatty acid β-oxidation, results in a
robust increase in a procatabolic fasting-induced Pparα tran-
scriptional program (5, 11, 12). This is likely mediated by the
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increased availability of lipids that can ligand and induce
Pparα-dependent transcription. As mTorc1 is an inducer of an
anabolic program and putative master regulator of cellular
metabolism, we asked if the activation of mTorc1 by the
deletion of its negative regulator Tsc1 could suppress the
catabolic programing of Cpt2L−/− mice in the fasted state.

Here, we examined if the activation of the mTorc1 complex
by the deletion of Tsc1 in the liver was sufficient to suppress
Pparα signaling and therefore ketogenesis in the fasted state.
We found that although the activation of mTorc1 in the fasted
state had a modest impact on Pparα-responsive genes, it was
not sufficient to suppress ketogenesis. Furthermore, we
examined if the activation of the anabolic program mediated
by the activation of the mTorc1 complex in the fasted state
could suppress the robust catabolic programing and enhanced
Pparα transcriptional response of Cpt2L−/− mice. Therefore,
we generated liver-specific Cpt2L−/−; Tsc1L−/− double-KO
(DKO) mice and show that the activation of mTorc1 by the
deletion of Tsc1 could not suppress the catabolic phenotype of
Cpt2L−/− mice. These data demonstrate that the activation of
mTorc1 by the deletion of Tsc1 is not sufficient to suppress a
Pparα transcriptional program or ketogenesis after a fast.
Results

Generation of mice with a combined liver-specific loss of fatty
acid oxidation and activation of mTorc1

Previously, we showed that the loss of hepatic fatty acid
oxidation in the Cpt2L−/− mice resulted in a robust increase in
a procatabolic fasting-induced Pparα-dependent transcrip-
tional program (5, 11, 12). Alternatively, it has been previously
reported that activating mTorc1 signaling in the liver by
removing its negative regulator Tsc1 (Tsc1L−/− mice) was
required for fasting-induced Pparα signaling and ketogenesis
(3). Therefore, we examined whether activating mTorc1 and
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clamping the fasted liver in an mTorc1-dependent anabolic
state could inhibit the dramatic Pparα transcriptional response
seen in mice with defective hepatic fatty acid oxidation
(Cpt2L−/− mice). To accomplish this, we generated mice with
liver-specific KOs of Cpt2, Tsc1 and Cpt2;Tsc1 DKO mice.
First, we confirmed the loss of Cpt2 and Tsc1 in their
respective models by Western blotting (Fig. 1A). Surprisingly,
the loss of Tsc1 was associated with a marked increase in Cpt2
protein, further suggesting an interaction between the two
pathways. To investigate the activation of the mTorc1 pathway
by the loss of Tsc1, we examined the phosphorylation of ca-
nonical mTorc1 targets such as RPS6 and 4EBP-1. These
targets are phosphorylated in fed livers by the mTorc1 com-
plex and dephosphorylated in fasted livers. The loss of Tsc1
removes the negative regulation on mTorc1 and maintains
RPS6 and 4EBP-1 phosphorylation even within the fasted state,
as seen in both Tsc1L−/− and DKO livers (Fig. 1A). In addition,
asparagine synthetase, a target of mTorc1-mediated activation
of ATF4, is induced in the livers of Tsc1L−/− and DKO mice.

The loss of Cpt2 and Tsc1 has seemingly opposite effects on
hepatic triglyceride content. The loss of Cpt2 and therefore
fatty acid oxidation results in an increase in fasting-induced
hepatic triglyceride accumulation (5). The loss of Tsc1 results
in livers with a decrease in hepatic triglyceride accumulation
(13, 14). Consistent with these known roles, fasting resulted in
pale lipid-laden livers in Cpt2L−/− mice and dark red lipid-poor
livers in Tsc1L−/− mice. However, DKO livers were pale and
lipid laden, suggesting that the loss of Tsc1 was not able to
suppress triglyceride accumulation in Cpt2L−/− mice (Fig. 1B).
Quantification of liver triglycerides (TGs) showed the same
pattern of suppression of TGs in Tsc1L−/− and increases in
Cpt2L−/− and DKO mice (Fig. 1C). We also measured the
concentration of fasting liver βHB by LC/MS, and contrary to
previous reports (3, 15), Tsc1L−/− liver had an equal concen-
trations of βHB to control livers, whereas Cpt2L−/− and DKO
HSC70
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liver exhibited a marked reduction (Fig. 1C). In addition, we
performed Western blotting for Plin2, a lipid droplet protein
that is stabilized by association with lipid droplets. Consistent
with the liver histology and TG concentration, Plin2 was sup-
pressed in Tsc1L−/− mice and induced in Cpt2L−/− and DKO
mice (Fig. 1D). These results are consistent with the known
roles of Tsc1 and Cpt2 in the fasted liver and demonstrate the
generation of a novel mouse model of activated hepatic
mTorc1 signaling in the setting of impaired hepatic fatty acid
catabolism.
Activating mTorc1 is not sufficient to suppress fasting-induced
ketogenesis

To understand the effect of activating hepatic mTorc1 in a
model of enhanced Pparα signaling, we phenotyped control,
Cpt2L−/−, Tsc1L−/−, and DKO mice in the fed and 24-h-fasted
state. The loss of Cpt2, Tsc1, or both did not have an effect on
the body weights of 9-week-old male mice (Fig. 2A). Although
the loss of these genes had no effect on fasting blood glucose
concentrations, DKO mice exhibited increased circulating
NEFA and TGs as expected (Fig. 2C). It has been previously
reported that mice with a liver-specific loss of Tsc1 exhibit
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suppressed ketone body production using the identical KO
strategy used here (3). Therefore, we were surprised to see that
the loss of Tsc1 had no effect on the generation of serum βHB
in the fed or the fasted state in comparison with control mice.
Cpt2L−/− and DKO exhibited a marked suppression of serum
βHB because of their inability to oxidize fatty acids in the liver
(Fig. 2C). Liver weight increased in the KO mice as expected
with fasted DKO mice having enlarged livers without effecting
adiposity (Fig. 2D). To further understand the role of Tsc1 in
the generation of ketone bodies, we directly profiled the livers
of control, Cpt2L−/−, Tsc1L−/−, and DKO mice in the fasted
state by 1H-NMR metabolomics. Again, the Tsc1L−/− livers
exhibited no change in the βHB concentration, whereas
Cpt2L−/− and DKO mice had a marked suppression of βHB
(Fig. 3A). Other metabolites profiled were not consistently
altered by the absence of Tsc1 save the amino acid lysine
which was significantly suppressed in the DKO (Fig. 3B). These
data show that the activation of mTorc1 is not sufficient to
suppress hepatic ketogenesis.

To expand upon the metabolites profiled in by 1H-NMR, we
used unbiased discovery-based metabolomics to profile the
liver metabolome of control, Cpt2L−/−, Tsc1L−/−, and DKO
mice in the fasted state. Principal component analysis (PCA)
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mTOR and ketogenesis
demonstrated that Tsc1L−/− and control mice clustered and
Cpt2L−/− and DKO mice clustered (Fig. 4A). Again, utilizing
a fourth independent measure, Tsc1L−/− livers did not exhibit a
suppression in βHB, whereas Cpt2L−/− and DKO mice had a
marked suppression in liver βHB (Fig. 4B). Consistent with the
PCA, loss of Cpt2 dominated the metabolic changes in DKO
mice (Fig. 4, B–D). The 1H-NMR analysis of DKO livers
demonstrated a Tsc1-dependent suppression of lysine in
Cpt2L−/− mice. Consistent with these data, unbiased metab-
olomics demonstrated a suppression in lysine catabolic
products such as 2-oxoadipate, glutarylcarnitine, and 2-
aminoadipate in the DKO liver (Fig. 4D). These data confirm
that Tsc1L−/− mice do not have an inherent defect in keto-
genesis and have limited ability to suppress the catabolic
phenotype of Cpt2L−/− mice.

Activating mTorc1 is not sufficient to suppress fasting-induced
Pparα signaling

Previously, it had been suggested that Tsc1L−/− mice
exhibited defective ketogenesis because of suppression of Pparα
signaling by the activated mTorc1 complex (3). To understand
the effect of activating hepatic mTorc1 in a model of enhanced
Pparα signaling, we performed RNA-seq on control, Cpt2L−/−,
Tsc1L−/−, and DKO mice after a 24-h fast. Similar to the
analysis of the metabolomic data, PCA demonstrated that
Tsc1L−/− and control mice clustered more closely together and
4 J. Biol. Chem. (2021) 297(1) 100884
Cpt2L−/− and DKO mice clustered more closely together
(Fig. 5A). Pathway analysis demonstrated that Cpt2L−/− mice
exhibited enhanced Pparα signaling, whereas Tsc1L−/− mice
exhibited suppressed Pparα signaling by the Kyoto Encyclo-
pedia of Genes and Genome pathway analysis (Fig. 5B). How-
ever, the loss of Tsc1 on the Cpt2L−/− background was not
sufficient to suppress Pparα signaling. DKO mice do not exhibit
a suppression in Pparα, suggesting that the deletion of Tsc1 is
not sufficient to suppress fasting-induced Pparα in Cpt2L−/−

liver, a physiological model of enhanced Pparα signaling.
We next validated the RNA-seq data by qPCR by selecting

known Pparα-dependent genes. Consistent with the RNA-seq
analysis, the loss of Cpt2 resulted in a robust induction of
canonical Pparα target genes such as Elovl7, Fgf21, Acot1, and
so forth. However, we could not demonstrate the suppression
of these targets in Tsc1L−/− mice. In addition, these Pparα-
dependent genes could not be suppressed by the activation of
mTorc1 in DKO livers as DKO livers exhibited a similar in-
duction of these genes as Cpt2L−/− livers (Fig. 6). There are
several notable exceptions such as Plin5, which was suppressed
in Tsc1L−/− livers. These data show that the activation of
mTorc1 by the deletion of Tsc1 is not sufficient to suppress
the activation of Pparα transcriptional program even in mice
with a physiologically elevated Pparα response.

Discussion

The liver has a large dynamic range for fatty acid β-oxida-
tion as it vacillates between the de novo synthesis of fatty acids
during the carbohydrate-fed state and the oxidation of
adipose-derived fatty acids during fasting or low-carbohydrate
feeding. Fatty acid β-oxidation plays several important roles
during fasting as it provides mitochondrial acetyl-CoA for
ketogenesis and along with the abundant reducing equivalents
(e.g., NADH) the redirection of carbon skeletons toward
gluconeogenesis (16). Given the important roles of hepatic
fatty acid β-oxidation, we were surprised that mice with a loss
of hepatic Cpt2 could maintain normal blood glucose but a
loss of ketone body production after a 24-h fast (5, 11, 12).
This is possible due to both cell autonomous and non–cell
autonomous compensatory processes to remarkably maintain
systemic homeostasis such as the upregulation of gluconeo-
genesis in the kidney (5, 17). Cpt2L−/− livers sense and respond
to a loss in fatty acid β-oxidation by inducing catabolic genes
in the liver and peripheral tissues. This is done, at least in part,
by inducing Pparα-responsive genes involved in the metabolic
response to fasting and is shared with other models of
impaired fatty acid oxidation (9, 10).

The robust procatabolic response of Cpt2L−/− mice to fast-
ing lies in stark contrast to Tsc1L−/− mice that maintain an
anabolic phenotype even after a 24-h fast because of the
inability of these mice to suppress the mTorc1 complex (3).
Tsc1L−/− mice were reported to exhibit suppressed Pparα
signaling during a 24-h fast, which resulted in a suppression in
ketogenesis. Although we have also observed that Tsc1L−/−

mice have a small suppression in the Pparα transcriptional
response after a pathway analysis of significantly changed
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Figure 5. RNAseq analysis reveals differential transcriptional regulation by activated mTorc1 and suppressed fatty acid oxidation. A, principal
component analysis of liver RNASeq data (n = 4). B, pairwise Kyoto Encyclopedia of Genes and Genome analysis showed significantly altered pathways and
processes in Cpt2- and/or Tsc1-deficient livers. Cpt2, carnitine palmitoyltransferase 2; mTorc1, mechanistic target of rapamycin complex 1; PC, principal
component; Tsc1, tuberous sclerosis complex 1.

mTOR and ketogenesis
genes in our RNA-seq data, we were unable to observe any
defect in ketogenesis. Similarly, others have failed to observe a
defect in ketogenesis after the deletion of Tsc1 in adult mice
(18). The complete loss of Pparα results in suppressed fasting
ketogenesis. However, Pparα KO mice still generate abundant
ketone bodies in contrast to Cpt2L−/− mice (12). Although the
loss of Tsc1 can suppress a small subset of Pparα response
genes, it is not sufficient to elicit a biologically meaningful
effect on ketone body synthesis.

Sengupta et al. suggested that there is a significant inter-
action of mTorc1 and Pparα in an age-dependent suppression
of ketogenesis (3). However, this is difficult to interpret, given
that Tsc1L−/− mice exhibit spontaneous hepatic tumors at 9 to
10 months, which could independently effect ketogenesis (2).
A whole-body KO of the mTorc1 effector S6k1 results in
increased energy expenditure (19) and S6k2 whole-body KO
6 J. Biol. Chem. (2021) 297(1) 100884
results in increased fasting-induced ketogenesis (20). Given the
role of mTOR in other tissues such as adipocytes, it is unclear
if this represents a role of mTOR specifically in hepatocytes.
Some have reported that Tsc1L−/− mice have an increase in
Cpt1a, the rate-limiting step in mitochondrial fatty acid
oxidation and therefore would be expected to increase rather
than decrease ketogenesis (21). In addition, Tsc1L−/− mice have
been reported to exhibit an induction of Fgf21 via Pgc1α (22).
Hepatic Fgf21 is a gene exquisitely Pparα sensitive (23, 24).
This would be inconsistent with a suppressive role of mTorc1
in Pparα signaling although we were unable to observe an
increase in hepatic Fgf21 in Tsc1L−/− mice upon fasting.

Cpt2L−/− and Tsc1L−/− mice exhibit opposing liver pheno-
types, highly catabolic and anabolic, respectively. While the
mTOR pathway is often described as a master regulator of
cellular metabolism, the genetic activation of the mTorc1
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Figure 6. Activating mTorc1 is not sufficient to suppress fasting-
induced Pparα signaling. A, higher fold changes of selected Pparα
target gene expression of 24-h-fasted liver (n = 6). B, mid-range fold
changes of selected Pparα target gene expression of 24-h-fasted liver (n =
6). C, lower fold changes of selected Pparα target gene expression of 24-h-
fasted liver (n = 6). One-way ANOVA followed by Tukey’s multiple com-
parison test was performed where appropriate to detect significance be-
tween genotypes. The single letter denotes p < 0.05, and double letters
denotes p < 0.01. Letters w (for control), t (for Tsc1), c (for Cpt2), and d (for
DKO) represent significance between the genotypes. Data are represented
as the mean ± SEM. Cpt2, carnitine palmitoyltransferase 2; DKO, double-KO;
mTorc1, mechanistic target of rapamycin complex 1; PPARα, peroxisome
proliferator-activated receptor alpha; Tsc1, tuberous sclerosis complex 1.

mTOR and ketogenesis
pathway by the deletion of Tsc1 did not reverse the robust
catabolic phenotype of Cpt2L−/− mice. In fact, DKO mice
closely resemble the cellular, molecular, and metabolic
phenotype of Cpt2L−/− mice. That is, the loss of hepatic fatty
acid oxidation largely drives the phenotype in fasting mice.
This occurs in spite of mTorc1 playing an important role in
regulating hepatic lipid metabolism. These results underscore
the importance and predominance of hepatic fatty acid β-
oxidation during fasting and starvation.

Experimental procedures

Animals

Control Cpt2 lox/lox and Cpt2L−/− mice generated and
maintained on a C57BL6 background were previously
described (5). Mice were housed in ventilated racks with a
14-h/10-h light/dark cycle and fed a standard chow diet
(2018SX, Teklad Global) with a room temperature of 21 �C,
50% humidity, and water provided ad libitum. To generate
Tsc1;Cpt2 double liver-specific KO mice, we bred Tsc1 f/f
mice backcrossed nine generations onto a C57BL6 background
(JAX# 5680 (25)) to Cpt2 f/f mice. Albumin-Cre mice back-
crossed nine generations onto a C57BL6 background were
obtained from Jackson Laboratory (JAX# 3574). Control mice
were Tsc1 f/f; Cpt2 f/f littermates. For fasting experiments, 9-
week-old mice were food-deprived for 24 h (3 PM–3 PM). For
fed studies, mice were food-deprived for 4 h (11 AM–3 PM).
All procedures were performed in accordance with the NIH’s
Guide for the Care and Use of Laboratory Animals and under
the approval of the Johns Hopkins Medical School Animal
Care and Use Committee.

Quantitative real-time PCR

RNA was isolated from liver tissue using TRIzol reagent and
was further purified using RNeasy Mini Kit (QIAGEN), as
recommended by the manufacturer. The MultiScribe High-
Capacity cDNA reverse transcription kit (Applied Bio-
systems) was used to synthesize cDNA from 1 μg/μl RNA
input. Two nanograms per microliter cDNA was amplified
with SsoAdvanced SYBR Green Master Mix (Bio-Rad) in the
presence of selected primers. 18S and cycloA were used as
housekeeping genes. Expression of genes were normalized to
the average of 18S and cycloA. Data are expressed as 2

ˇ−(dCt).
Primers were previously published (26).

Western blot

Frozen liver tissue pieces homogenized in RIPA buffer
(50 mM Tris HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 0.25% deoxycholate) with PhosSTOP phospha-
tase inhibitor (Roche) and protease inhibitor cocktail (Roche).
Homogenates were centrifuged at 4 �C for 10 min at 13,000g.
Supernatants were transferred to a new tube, and total protein
concentrations were quantified by the BCA assay (Thermo
Scientific). Thirty microgram of lysate was separated by Tris-
Glycine SDS-PAGE (10% and 12% polyacrylamide), followed
by a transfer to PVDF membranes (immobilon). Membranes
were block with 5% nonfat milk in Tris-buffered saline with
Tween 20 for an hour and were incubated with primary an-
tibodies at 1:1000 (primary antibodies: Cpt2, Thermo Pierce,
PAS-122117; asparagine synthetase (Asns) Santa Cruz
Biotechnology SC-365809, Tuberous Sclerosis 1 (Tsc1), Cell
Signaling, #4906; mTOR substrate antibody sampler Kit, Cell
signaling #9862; total S6 Ribosomal Protein (RPS6) Cell
signaling, #2217, total eukaryotic translation initiation factor
4E-binding protein (4EBP-1), Cell signaling, #9452; Perilipin2
(Plin2), Sigma-Aldrich, HPA016607) overnight. Heat shock
chaperone 70 (Hsc70, Santa Cruz, 7298) was used at 1:1000 as
the loading control. Horse radish peroxidase (HRP)-conju-
gated anti-rabbit (GE Healthcare NA934V) or florescence-
based (Cy3-conjugated anti-mouse or Cy5-conjugated anti-
rabbit, Invitrogen) secondaries were used at 1:1000 where
J. Biol. Chem. (2021) 297(1) 100884 7
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appropriate. Proteins were visualized with Amersham Prime
enhanced chemiluminescent substrate (GE Healthcare) or
epifluorescence on Alpha Innotech MultiImage III instrument.

Histology

For liver histology, tissue was fixed in 10% neutral buffered
formalin, embedded in paraffin, sectioned, and stained with
hematoxylin and eosin or processed for trichrome staining
(AML Laboratories Inc).

Serum and tissue metabolites

Enzymatic and colorimetric assays were used to measure
serum levels of βHB (Stanbio BHB LiquiColor Assay, EKF
Diagnostics), nonesterified fatty acids, NEFA (NEFA-HR(2),
Wako Diagnostics), and TG (TR0100, Sigma-Aldrich). Tissue
TG levels were measured as reported previously (12). Lipid
peroxidation in liver tissue was measured with Thiobarbituric
Acid Reactive Substances assay (TBARS, Cayman Chemical) as
directed by the manufacturer. Untargeted metabolomics from
flash-frozen liver samples was performed by Metabolon Inc.
Tissue 3-HB measured by LC-MS. Liver samples were ho-
mogenized in 80% methanol-water mixture, vortexed for 30 s,
and centrifuged at 13,000g for 10 min at 4 �C. The supernatant
was transferred to a new tube and placed into speed-vac
overnight. The pellet was resuspended in 0.5 M sodium hy-
droxide overnight, and the supernatant was used to quantify
the proteins for data normalization purposes. Dried samples
were reconstituted in 200 μl water just before the LC-MS/MS
run. Kinetex Core-shell C18 column (2.6 μm, 50 mm, 2.1 mm,
Phenomenex) was used to acquire data. Mobile phases are A:
water + 0.2% formic acid and B: can + 0.2% formic acid. Data
were collected on Shimadzu Nexera UHPLC (Shimadzu),
coupled to 4500 Triple quadruple (Ab Sciex) instrument. Total
run time is 5 min, with a flow rate of 0.2 ml/min. The gradient
is applied as follows; 0% B at 0 min, 5% B at 0 to 4 min, 0% B at
4.1 to 5 min. Injection volume is 2 μl. Retention time was
observed at 1.64, mass spectroscopy method for βHB was set
for detecting 102.9/58.8 (m/z). MultiQuant (Ab Sciex) was
used to quantify the peaks against 6-point standard curve.
Micromolar concentrations were normalized to the protein
content.

RNA seq

Total RNA was extracted from frozen liver tissue from 8- to
10-week-old, chow-fed, 24-h-fasted male control, Tsc1L−/−,
Cpt2L−/−, and Tsc1Cpt2L−/− mice using TRIzol reagent, further
purified with RNeasy Mini Kit (QIAGEN) as directed by the
manufacturer. RNA quality was assessed, and RNA samples were
subjected to downstream analysis as described previously (12).

Statistical analysis

Data were analyzed with Prism. Heatmap and PCA were
generated by MetaboAnalyst (https://www.metaboanalyst.ca).
Significance was determined using one-way ANOVA or
two-way ANOVA with Tukey’s post hoc correction for mul-
tiple variable experiments.
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Data availability

RNA-seq data have been deposited in Gene Expression
Omnibus GSE165701.
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