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Abstract

Effective conservation management strategies require accurate information on the move-

ment patterns and behaviour of wild animals. To collect these data, researchers are increas-

ingly turning to remote sensing technology such as radio-frequency identification (RFID).

RFID technology is a powerful tool that has been widely implemented in ecological research

to identify and monitor unique individuals, but it bears a substantial price tag, restricting this

technology to generously-funded disciplines and projects. To overcome this price hurdle,

we provide detailed step-by-step instructions to source the components for, and construct

portable RFID loggers in house, at a fraction of the cost (~5%) of commercial RFID units.

Here, we assess the performance of these RFID loggers in the field and describe their appli-

cation in two studies of Australian mammal species; monitoring nest-box use in the Northern

quolls (Dasyurus hallucatus) and observing the foraging habits of quenda (Isoodon fusci-

venter) at feeding stations. The RFID loggers performed well, identifying quenda in >80% of

visits, and facilitating the collection of individual-level behavioural data including common

metrics such as emergence time, latency to approach, and foraging effort. While the tech-

nology itself is not novel, by lowering the cost per unit, our loggers enabled greater sample

sizes, increasing statistical power from 0.09 to 0.75 in the quoll study. Further, we outline

and provide solutions to the limitations of this design. Our RFID loggers proved an innova-

tive method for collecting accurate behavioural and movement data. With their ability to suc-

cessfully identify individuals, the RFID loggers described here can act as an alternative or

complementary tool to camera traps. These RFID loggers can also be applied in a wide vari-

ety of projects which range from monitoring animal welfare or demographic traits to studies

of anti-predator responses and animal personality, making them a valuable addition to the

modern ecologists’ toolkit.

Introduction

Effective conservation management strategies require accurate information on the movement

patterns and behaviour of wild animals [1–4]. Collection of these data is made difficult by the

wide-ranging movements of many species, the hostile habitats in which they can live, and the
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potential for human presence to alter or confound the natural behaviour of individuals [5, 6].

To overcome these challenges, researchers are increasingly turning to remote sensing technol-

ogy that removes the need for a human observer, for example, camera traps, accelerometers,

and radio tagging [7, 8]. One such technology, is radio-frequency identification (RFID), which

has long been utilised to uniquely identify individuals across many disciplines [9].

RFID technology uses electromagnetic fields to detect unique radio tags, which can be

inserted into animals in the form of tiny passive integrated transponder (PIT) tags, also known

as microchips [10]. PIT tags are a good alternative to other marking techniques, such as ear

tags, as they are retained better, and can be used to permanently tag animals from all taxa

including mammals [11], birds [12], fish [13], reptiles [10] and amphibians [14]. As a result,

numerous studies of wildlife have adapted RFID technology to individually identify animals

and monitor their movements [15]. For example, through the implementation of RFID tech-

nology, Boarman and colleagues determined the frequency of highway underpass use by desert

tortoises [16], Skov and colleagues monitored seasonal dispersal in fish [17], and Bandivadekar

and colleagues evaluated feeder visits in hummingbirds [18]. Despite its extensive use, the

major limitation of RFID technology is that it is expensive [10, 19], making it inaccessible to

areas of study with limited funds, such as conservation [20], and restricting projects to small

sample sizes [21].

In this study, we provide detailed instructions to build short-range RFID loggers from indi-

vidual components, substantially reducing the costs per unit compared to commercial alterna-

tives by up to 96%. A commercial RFID logger capable of reading and storing individual

identities costs between $1800 and $3000 (AUD) (e.g. Microchips Australia: LID650 reader &

ANTSQR300 antenna quoted between $1800–2000 AUD), and we purchased the components

for our loggers for $130 (AUD), a mere 4–7% of this price. These data-logging stations record

each individuals’ unique identity and a timestamp, making them capable of measuring popular

behavioural metrics (such as emergence time, latency to approach, and foraging effort) and

completely removing the need for a human observer. Such metrics, and others made possible

by our RFID loggers, can give insights into demography, perceived predation risk and animal

personality [22, 23], however, the feasibility of collecting such metrics and the performance of

the RFID loggers themselves requires field-testing.

We validated the design for our RFID loggers in two studies of Australian mammals; moni-

toring nest-box use by Northern quolls (Dasyurus hallucatus) in captivity and observing the

foraging habits of quenda (South western brown bandicoots; Isoodon fusciventer) at feeding

stations in an urban reserve. Using self-built loggers reduced the cost of RFID equipment from

$40,000 to $2,600 and $10,000 to $650 in the quoll and quenda studies respectively. Here we

evaluated the performance (% of PIT-tagged individuals successfully identified by the RFID

loggers) and tested the battery life of our RFID loggers. Furthermore, we established the feasi-

bility of collection of four common behavioural measurements; nest-box emergence time,

nest-box activity, latency to approach feeding station, and foraging effort at feeding station.

Finally, we discuss the limitations of this methodology, provide suggestions for future develop-

ments, and identify additional uses for this technology within ecological research.

Materials, methods and application

Building RFID loggers

RFID loggers require three main components; the PIT tags/microchips for each animal, the

RFID logger, and the antenna. We used the RFIDlog by Priority 1 Designs (Melbourne, Aus-

tralia), with a 16cm antenna. This particular logger exclusively records PIT tags that operate at

a frequency of 134.2khz (conforming to the ISO 11784 and ISO 11785 standards in Australia;
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[24]). For use in small mammals, these PIT tags are inserted between the shoulder blades, on

the back of the animal [25]. The RFID logger requires an external power source, for which we

used battery packs, capable of housing 6x AA batteries, which are soldered directly to the

printed circuit board of the RFID logger (Fig 1(E) and 1(F)). When scanning, the logger draws

80mAh per hour and one can therefore calculate how much external battery power is needed,

for example, using 6x rechargeable NiMH AA batteries (2550mAh) should power the logger

for 31 hours continuously (2550/80 = 31.8). The antenna is connected to the RFID logger (at

Fig 1(D)) using header crimp pins, allowing it to be easily removed. For a detailed guide to

constructing the RFID loggers from components, please see S1 Table. Aside from the RFID

logger and antenna components, our field housing designs (see Fig 2) benefit from the use of

simple and readily available (local hardware or hobby store) tools and parts. A full list of these

can be found in the supplementary materials (S1 File), along with price estimates relevant to

the time of publication.

Application in field studies

Northern quoll nestbox activity. The first application of our RFID loggers was part of

various research projects investigating methods to mitigate the impact of toxic cane toads on

Northern quolls [25, 26], particularly exploring the personalities of different individuals to

investigate links between toad and predator response and boldness. Northern quolls (a carniv-

orous marsupial) were collected from Astell island, Northern Territory (-11.885743,

136.424008) in February 2018 and brought to the Territory Wildlife Park. Here, 20 RFID log-

gers were deployed on these new arrival’s nest boxes (Fig 2) over 3 nights to record latency to

emerge from the nestbox (time until first read), as well as the number of movements the quoll

made in and out of the nestbox over the first night in captivity (count of reads) from 45 indi-

viduals. The University of Melbourne Animal Ethics Committee gave their permission to

carry out this experiment (ID number 1413369.2).

Fig 1. RFID logger (Priority 1 Designs; Melbourne, Australia). Components include battery casing for a CR2032 3V

lithium that powers the units internal clock (a), SD card for storing RFID reads (b), serial port DBC computer

connection (c), external antenna port (d), and an external battery pack for a power source to support unit (f), soldered

directly to the power input (e).

https://doi.org/10.1371/journal.pone.0276388.g001
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Quenda study. The second application of our RFID loggers was on a wild population of

quenda, a small omnivorous marsupial, residing in Craigie Bushland in Perth, Western Aus-

tralia (-31.792772, 115.778711). Here, the RFID loggers were used to record the time of

approach, foraging effort and individual identity of bandicoots at each feeding station. For this

study, the antenna of the RFID logger was fixed around the entrance to a feeding station (a 90˚

PVC storm pipe elbow or straight length of PVC, with a food reward buried at the bottom)

(Fig 3), which encourages the animal to pass through the antenna, giving the best probability

of detection. Each RFID logger was monitored by a camera trap to validate the data captured

by the RFID loggers. Camera traps alone were not sufficient for this study as quenda cannot be

individually identified from images. We deployed 5 RFID loggers over 4 nights. From these

data, we determined the latency to approach (time of first entry), foraging effort (length of

time between first and last entry read) and percentage of quenda successfully identified (vali-

dated with camera-trap images). Within individual repeatability of latency to approach and

foraging effort was calculated using a linear mixed model repeatability estimate with a

restricted maximum likelihood function in the program R [27] using the package rptR [28].

Fig 2. RFID logger (inside weather-proof housing) attached to a nestbox for Northern quolls with the RFID

antenna placed around the entrance.

https://doi.org/10.1371/journal.pone.0276388.g002
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The University of Western Australia’s Animal Ethics Committee gave their permission to

carry out this study (2021_ET000428_v2).

System performance and results

Northern quoll nocturnal activity

The RFID loggers were successful in logging time to emergence and overnight activity of the

northern quolls during their first night in captivity. Of the 45 quolls measured, 89% emerged

from their nestbox on the first night in captivity. Of these, the average time to emergence (±
SEM) was 182.2 ± 35.8 minutes. The quolls that emerged made on average 38.3 ± 13.7 move-

ments in or out of the nestbox, however, we were unable to distinguish between movements to

enter or exit the nestbox. There was one record which had 558 reads–a strong outlier com-

pared to the rest of the records. Looking at the raw data, we found that for a period during the

experiment the logger was recording multiple records in a minute–potentially as the quoll sat

at the entrance to the nestbox. In an attempt to remove this bias, we filtered the data to remove

multiple records from the same minute, and computed number of movements again. This cor-

rected the outlier and resulted in much more conservative measures generally, with an average

of 4.9 ± 0.84 movements. There was no significance difference in emergence time between the

sexes (ANOVA: F = 0.81, p = 0.37; S1 Fig in S4 File). There was also no significant difference

between the sexes in the amount of activity recorded entering or exiting the nestbox (ANOVA:

F = 0.06, p = 0.82; S2 Fig in S4 File). All RFID loggers functioned for 24 hours as expected.

Quenda foraging habits

The RFID loggers were successful in identifying individuals, logging the latency to approach

feeding stations, and recording data from which foraging effort could be calculated. From 148

total reads, camera traps revealed that the RFID loggers received 31 visits from quendas, and

individuals were correctly identified during 25 of these (80% of visits to feeding stations; not

all visits resulted in an animal entering the station). The average latency to approach (in min-

utes after sunset ± SEM) was 121.63 ± 15.51 across individuals. Foraging effort (difference in

Fig 3. Quenda entering feeding stations (PVC pipes) through an RFID logger antenna allowing them to be

uniquely identified.

https://doi.org/10.1371/journal.pone.0276388.g003
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time between first and last entry read) ranged from 0.03 minutes to 5.92 minutes, with an aver-

age of 1.72 ± 0.35. All animals detected were female so we were unable to test for sex differ-

ences. Neither latency to approach feeding stations, nor foraging effort at feeding stations were

repeatable within individuals (R = 0 ± 0.09 and R = 0 ± 0.08 respectively), though repeat mea-

sures were only available from four individuals. All RFID loggers functioned for 24 hours as

expected.

Discussion

Understanding animal behaviours at the individual level is crucial for the implementation of

effective conservation management strategies [3, 8], however, the collection of these data can

be hindered by cost. We overcome this price hurdle by providing an affordable (5% of tradi-

tional commercial models) design assembled from easily accessible components which suc-

cessfully identified PIT-tagged quolls and quendas and provided data from which useful

behavioural metrics could be calculated, including nest-box emergence time, nest-box activity,

latency to approach feeding station, and foraging effort at feeding station.

The RFID loggers described here promote reliable and accurate research in ecology. The

reduction in cost per unit encourages more robust experimental designs by enabling larger

sample sizes and increased replicates through space and time. For example, in the quoll study

where nest boxes were simultaneously monitored over three evenings, the price of two com-

mercial units ($3,600 AUD) could alternatively be used to purchase the components for 27

self-built loggers, increasing the sample size from 6 (2 readers over 3 nights) to 81 (27 readers

over 3 nights), and improving the power of detecting a subtle difference in emergence time

between two groups from 0.09 to 0.75 [29] (S2 File). Further, by recording individual identity,

the loggers facilitate the investigation of the repeatability of behaviours within individuals and

populations across contexts–fundamental to gaining an understanding of animal personalities

but also crucial when validating behavioural measures. Our finding that neither latency to

approach, nor foraging effort were repeatable within individual quenda suggests that allocation

of time to foraging in quenda is context dependent (e.g. hunger), rather than attributable to

personality traits. Our sample size for this analysis, however, was small (n = 4) so we recom-

mend this be tested with more replicates.

Despite their successful implementation, our RFID loggers are not without their limita-

tions. The system presented here is unidirectional, meaning the logger cannot determine the

direction of the movement (i.e. entering or exiting of the nestbox). This system can, however,

be adjusted to allow directional readings with the addition of an auxiliary RFID logger and

antenna (S3 File). The two antennas can then be set up on either side of a tunnel to record (via

time differences between antennae) which direction the animal is travelling. In terms of bat-

tery life, the RFID loggers lasted 24 hours as expected across both studies. While this was more

than enough for these applications (where sites were checked daily), other studies may wish to

deploy these loggers for longer and will require longer battery life. In these instances, we sug-

gest using alternate power sources such as SLA batteries or small solar panels. Our results have

also shown the importance of testing the accuracy of the RFID readers, which can sometimes

fail to read a visit. Although camera trap data was not able to be collected for the quoll study to

ground-truth the results, camera trap footage from the Quenda study showed an 80% accuracy

rate.

Using the feeding station setup described in the quenda study, the RFID loggers could cap-

ture additional behavioural metrics at the individual level such as giving-up-densities (GUDs:

a density threshold of foods at which animals cease foraging; [30]), proportion of time allo-

cated to various behaviours (e.g. foraging and vigilance; [31]), or choice experiments (e.g.
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predator and control cues at each feeding station [32]). Such metrics can provide valuable

insights into animal personalities, perceived risk and anti-predator responses [33, 34], aspects

of conservation behaviour that are crucial to implementing effective management strategies

[1]. The aforementioned behavioural measures can also be used to evaluate animal welfare,

particularly in a captive setting [35, 36].

RFID technology can be instrumental in monitoring populations for demographic studies,

giving crucial information on individual survival and dispersal [37]. In the quoll study, we

found no sex differences in latency to emerge, nor in quoll activity whilst in captivity. In the

wild, however, we may expect to see such sex differences in movement and activity, as males

traverse across large home ranges (84 ± 16 ha) in pursuit of females [38]. While camera traps

are useful for capture-mark recapture studies where individuals can be uniquely identified

visually (e.g. numbats [39]), not all species possess distinct markings that allow them to be rec-

ognized. Additional problems can also arise from poor image quality and the misidentification

of individuals [40, 41]. RFID loggers are a promising alternative or complement (as in the

quenda study) to camera traps. Our RFID loggers performed equally, or better than camera

traps in identifying individuals: we were able to successfully identify individuals at 80% of visits

compared to camera trap picture detection rates which vary depending on species (e.g. 5.3% of

photos of an indistinct deer [42]; 59–80% probability of matching photos of cheetahs [43];

identifications from 73% of detection events of perentie [44]). Further, the RFID loggers

described here are cheaper per unit ($130 AUD), compared to camera traps which cost

between $300-$1050 AUD (Outdoor Cameras, Australia: Swift Enduro and Reconyx XR6

Ultrafire models respectively).

Our RFID loggers remove the need for a human observer in the field, however, they still

require some human effort to collect data (downloaded manually using the Priority 1 Soft-

ware). Given the rapid development of sensor technology and the modular nature of these

RFID loggers, it may be possible to connect these sensors to a mobile network, where data can

be received straight into the cloud (the concept of Internet Of Things; IOT [9]). Though this

was outside the scope of this particular study, we recommend futures studies considering our

RFID loggers take the time to investigate the potential of IOT to increase efficiency in data col-

lection through automation. Such an advancement also opens up many avenues for further

application, such as remote trapping of targeted individuals, or access-limited nest boxes based

on individual identity.

Conclusion

The technology we present here is not novel, however, by reducing the cost per unit, our

design makes this technology more accessible and facilitates more robust sample designs

(larger sample sizes, increased replicates and improved statistical power). The successful

implementation of our RFID loggers in the field allowed us to capture common behavioural

metrics, and the loggers have the potential to be utilised in pursuit of a broad range of beha-

vioural and demographic questions, making them a valuable tool for use in ecological studies.

Supporting information

S1 Table. List of components with source and approximate price for constructing a single

unit (as of December 2021 in Australia).

(DOCX)

S1 File. Instructions for building RFID readers and housing.

(PDF)

PLOS ONE Affordable RFID loggers.

PLOS ONE | https://doi.org/10.1371/journal.pone.0276388 October 27, 2022 7 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276388.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276388.s002
https://doi.org/10.1371/journal.pone.0276388


S2 File. Power analysis for RFID loggers.

(PDF)

S3 File. RFIDLOG: Dual animal tag data logger with external antenna and SD card storage.

(PDF)

S4 File. Northern quoll figures.

(DOCX)
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