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Abstract: The inhibition of mitochondrial permeabilization by the anti-apoptotic protein Bcl-xL is
crucial for cell survival and homeostasis. Its inhibitory role requires the partitioning of Bcl-xL to
the mitochondrial outer membrane from an inactive state in the cytosol, leading to its extensive
refolding. The molecular mechanisms behind these events and the resulting conformations in the
bilayer are unclear, and different models have been proposed to explain them. In the most recently
proposed non-canonical model, the active form of Bcl-xL employs its N-terminal BH4 helix to bind
and block its pro-apoptotic target. Here, we used a combination of various spectroscopic techniques
to study the release of the BH4 helix (α1) during the membrane insertion of Bcl-xL. This refolding was
characterized by a gradual increase in helicity due to the lipid-dependent partitioning-coupled folding
and formation of new helix αX (presumably in the originally disordered loop between helices α1 and
α2). Notably, a comparison of various fluorescence and circular dichroism measurements suggested
the presence of multiple Bcl-xL conformations in the bilayer. This conclusion was explicitly confirmed
by single-molecule measurements of Förster Resonance Energy Transfer from Alexa-Fluor-488-labeled
Bcl-xL D189C to a mCherry fluorescent protein attached at the N-terminus. These measurements
clearly indicated that the refolding of Bcl-xL in the bilayer is not a two-state transition and involves
multiple membranous intermediates of variable compactness.

Keywords: Bcl-2 proteins; BH4 domain; apoptotic regulation; conformational switching;
protein-membrane interactions; Fluorescence Spectroscopy; Fluorescence Correlation Spectroscopy
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1. Introduction

The anti-apoptotic protein Bcl-xL is a member of the Bcl-2 family of apoptotic regulators [1,2].
Its role in the cell is to block the mitochondrial outer membrane permeabilization (MOMP) caused by
pro-apoptotic Bcl-2 proteins (i.e., BAX) (Figure 1a, green) [3,4]. The prevailing Embedded Together
model of MOMP regulation postulates that membrane interactions are critical for both pro- and
anti-apoptotic activities of Bcl-2 proteins [5,6]. Bcl-xL is expressed in the cytosol in an inactive
state and must redistribute to the MOM where it refolds to become active. Bcl-xL promotes cell
survival by inhibiting the formation of multimeric BAX pores and forming non-productive Bcl-xL/BAX
heterodimers at the MOM (Figure 1a, purple) [7,8]. Recent evidence suggests that Bcl-xL is also a target
of BH3-only apoptotic triggers [9,10].
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heterodimers at the MOM (Figure 1a, purple) [7,8]. Recent evidence suggests that Bcl-xL is also a 
target of BH3-only apoptotic triggers [9,10]. 

 
Figure 1. Conformational switching of Bcl-xL in membranes, resulting in conversion from canonical 
to non-canonical forms of apoptotic inhibition. (a) The anti-apoptotic protein Bcl-xL (purple) binds to 
the pore former BAX (green) to block the permeabilization of the mitochondrial outer membrane 
(MOM) and prevent apoptosis [3,4]. (b) Several molecular mechanisms, involving both membrane-
anchored and membrane-inserted Bcl-xL, have been proposed to explain this process. The canonical 
mode (left) relies on the interaction of anchored Bcl-xL with the BH3 helix of BAX [7]; while in the 
non-canonical mode (right), BAX binds the N-terminal BH4 helix of refolded and inserted Bcl-xL. 
Lipid composition is hypothesized to modulate the transition between both inhibitory modes by 
facilitating the conformational switch between different conformations of Bcl-xL in the bilayer. (c) Bcl-
xL hydropathy plot is presented for the two cases of either unprotonated (orange) or protonated (blue) 
titratable sidechains (D and E). This analysis was made using a modified version of the MPEx 
(http://blanco.biomol.uci.edu/mpex/) web tool [11], which accounts for both hydrophobic and 
electrostatic interfacial interactions [12]. The calculations were made assuming an approximate 
membrane surface potential (Ψ0) of -100 mV for a 1TOCL:2POPC bilayer, as described in Vasquez-
Montes et al., 2019 [13]. Color-coded horizontal lines above the plot represent the regions of Bcl-xL 
predicted to interact with anionic membranes. The analysis showed a significant increase in the 
regions predicted to partition to the interface of anionic bilayers under protonating conditions with 
the largest effect observed for the unstructured α1-2 loop connecting the N-terminal BH4 (α1) helix 
to the rest of Bcl-xL. (d) Illustration of the lipid modulation of protonation-dependent membrane 
insertion and refolding of Bcl-xL from previously published data [13]. Relative insertion of Bcl-xL 
(grey symbols) is accessed by changes in fluorescence intensity of NBD (7-Nitrobenz-2-Oxa-1,3-
Diazol-4-yl) attached to the N175C mutant. The refolding of Bcl-xL (red symbols) is accessed by 
steady-state FRET measurements of the release of its N-terminal BH4 helix. TOCL: 1,1,2,2-tetraoleoyl-
cardiolipin; POPC: palmitoyl-oleoyl-phosphatidylcholine. 

The high-resolution structure of soluble Bcl-xL (Figure 1a) has been solved by both X-ray 
crystallography and NMR [14], revealing a helical fold typical for many Bcl-2 proteins [15]. In 

Figure 1. Conformational switching of Bcl-xL in membranes, resulting in conversion from canonical
to non-canonical forms of apoptotic inhibition. (a) The anti-apoptotic protein Bcl-xL (purple)
binds to the pore former BAX (green) to block the permeabilization of the mitochondrial outer
membrane (MOM) and prevent apoptosis [3,4]. (b) Several molecular mechanisms, involving both
membrane-anchored and membrane-inserted Bcl-xL, have been proposed to explain this process.
The canonical mode (left) relies on the interaction of anchored Bcl-xL with the BH3 helix of BAX [7];
while in the non-canonical mode (right), BAX binds the N-terminal BH4 helix of refolded and
inserted Bcl-xL. Lipid composition is hypothesized to modulate the transition between both inhibitory
modes by facilitating the conformational switch between different conformations of Bcl-xL in the
bilayer. (c) Bcl-xL hydropathy plot is presented for the two cases of either unprotonated (orange)
or protonated (blue) titratable sidechains (D and E). This analysis was made using a modified
version of the MPEx (http://blanco.biomol.uci.edu/mpex/) web tool [11], which accounts for both
hydrophobic and electrostatic interfacial interactions [12]. The calculations were made assuming an
approximate membrane surface potential (Ψ0) of -100 mV for a 1TOCL:2POPC bilayer, as described in
Vasquez-Montes et al., 2019 [13]. Color-coded horizontal lines above the plot represent the regions
of Bcl-xL predicted to interact with anionic membranes. The analysis showed a significant increase
in the regions predicted to partition to the interface of anionic bilayers under protonating conditions
with the largest effect observed for the unstructured α1-2 loop connecting the N-terminal BH4 (α1)
helix to the rest of Bcl-xL. (d) Illustration of the lipid modulation of protonation-dependent membrane
insertion and refolding of Bcl-xL from previously published data [13]. Relative insertion of Bcl-xL (grey
symbols) is accessed by changes in fluorescence intensity of NBD (7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)
attached to the N175C mutant. The refolding of Bcl-xL (red symbols) is accessed by steady-state
FRET measurements of the release of its N-terminal BH4 helix. TOCL: 1,1,2,2-tetraoleoyl-cardiolipin;
POPC: palmitoyl-oleoyl-phosphatidylcholine.

The high-resolution structure of soluble Bcl-xL (Figure 1a) has been solved by both X-ray
crystallography and NMR [14], revealing a helical fold typical for many Bcl-2 proteins [15]. In addition
to this soluble conformation, at least two distinct conformations have been identified in membrane
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environments: “anchored” (Figure 1b, left) and “inserted” (Figure 1b, right). The structure of the
anchored conformation reconstituted into nanodiscs has been solved by NMR, and it consists of
a transmembrane C-terminal α8 helix, anchoring the rest of the protein, which retains its solution
fold [16]. Note that in this study, the unfolded loop, connecting helices α1 and α2, was deleted
from the protein construct. This anchored conformation is believed to be involved in the canonical
mode of apoptotic inhibition in which Bcl-xL binds BAX through the “BH3 binding groove” [7,17–19].
In contrast, no high-resolution structure is available for the membrane-inserted conformation of Bcl-xL.
It is known, however, that the protein is refolded on the membrane interface with helix α6 penetrating
deep into the bilayer, while helix α1 is released from the fold [13,20]. This α1 helix, also known as
the BH4 domain, has been proposed to play the central part in the non-canonical mode of apoptotic
inhibition by engaging the target BAX via an alternative protein-protein interface (Figure 1b, left) [21].
We hypothesized that changes in MOM lipid composition modulate the conformational switching
between the anchored and inserted conformations, allowing for the use of different modes of BAX
inhibition (Figure 1b).

Deciphering the molecular mechanisms of Bcl-xL conformational switching in membrane
environments is critical for understanding its role as an apoptotic gatekeeping protein. Several
studies suggest that the formation of the inserted conformation of Bcl-xL is associated with the
protonation of acidic residues. The role of protonation is also supported by the hydropathy analysis
presented in Figure 1c for the protonated (blue) and unprotonated (orange) forms of Bcl-xL. While
many variables can affect the protonation in the complex milieu inside the cell, the model in vitro
studies traditionally rely on changes in pH to trigger the insertion. Previously, we have demonstrated
that the refolding and release of the Bcl-xL N-terminal BH4 helix is linked to the membrane insertion of
Bcl-xL through processes that are modulated by membrane lipid composition (Figure 1d). In particular,
they are promoted by the presence of the mitochondrial specific lipid cardiolipin [13,20]. In Figure 1d,
this is observed as a shift of the titration curves towards a more neutral pH range as a function of
cardiolipin concentration. These data do not imply that in vivo, the pH must be very acidic for this
transition to occur (in a sense, this is similar to studies of thermal stability of proteins, which utilize high
temperatures to assess the propensity to refold). Under in vitro conditions, however, these effects are
mimicked by modulating the pH of the sample, as one would use temperature to test folding stability.

In order to study conformational switching using fluorescence techniques, we designed the two
Bcl-xL mutants illustrated in Figure 2. The release of the BH4 domain was followed by FRET between an
Alexa Fluor 488 (A488) donor dye, attached at a single Cys in the D189C mutant, and N-terminus-fused
acceptor mCherry fluorescent protein (Figure 2, magenta). The same construct was used in our
previously published conformational ensemble study [13], which was complemented here with
lifetime measurements and single-molecule fluorescence correlation spectroscopy (FCS) measurements.
Membrane interactions of the loop between helices α1 and α2 were studied using the environmentally
sensitive probe NBD located at the G70C position. These measurements complement the studies
of NBD membrane penetration attached along helix α6 [13]. In both constructs, the C-terminal α8
helix was removed for the following reasons. First, the proper anchoring of Bcl-xL is accomplished
by complex targeting machinery in vivo and does not occur with high fidelity in model lipid bilayer
vesicles in vitro. Second, the presence of the hydrophobic N-terminal tail substantially complicates the
reliability of in vitro spectroscopic studies by promoting protein aggregation [20]. Therefore, in this
study, we used a headgroup Bcl-xL construct with a 198–233 a.a. deletion, lacking the C-terminal α8
helix, which is referred from this point on in the text as Bcl-xL (in contrast, the non-truncated protein,
which is referred to as full-length Bcl-xL). Note that membrane insertion of the Bcl-xl does not require
the presence of the α8 helix [13].



Cells 2020, 9, 539 4 of 15

Cells 2020, 9, 539 4 of 14 

 

 
Figure 2. Bcl-xL constructs used in this study. The structure of Bcl-xL solved by NMR [14] is presented 
as backbone conformation in grey with the following color highlights: hydrophobic helix α6 in blue, 
BH4 helix α1 (BH4 domain) in red, the loop between α1 and α2 helices in green. The NBD-labeling 
site in single-Cys G70C mutant is shown in orange. The FRET donor Alexa-Fluor-488-labeling site in 
the D189C mutant is shown in yellow. The latter construct also had an N-terminally conjugated 
mCherry fluorescence protein (magenta), to be used as an acceptor in FRET measurements (see text 
for details). 

2. Materials and Methods 

Materials: The fluorescent dyes IANBD-amide (N,N'-Dimethyl-N-(Iodoacetyl)-N'-(7-Nitrobenz-
2-Oxa-1,3-Diazol-4-yl)Ethylenediamine) and Alexa Fluor 488-maleimide were obtained from 
Invitrogen (Carlsbad, CA, USA), while the phospholipids, palmitoyl-oleoyl-phosphatidylcholine 
(POPC), and 1,1,2,2-tetraoleoyl-cardiolipin (TOCL) were purchased from Avanti Polar Lipids 
(Alabaster, AL, USA). 

Preparation of large unilamellar vesicles (LUV): Chloroform lipid stocks were dried under a 
nitrogen stream and further dried overnight in high-vacuum. The required volume of 50 mM Na-
phosphate buffer, pH 8, was added to the dried lipid films to resuspend them to a final concentration 
of 20 mM and vortexed. The resuspended samples were extruded using a Mini-Extruder (Avanti 
Polar Lipids, Alabaster, AL, USA) through 0.1 µm nucleopore polycarbonate membranes (Whatman, 
Philadelphia, PA, USA) to form the LUV. The vesicle stocks were stored at 4 °C in 50 mM phosphate 
buffer, pH 8 [22,23]. 

Cloning, expression, and labeling: The Bcl-xL and mCherry-Bcl-xL mutants were cloned, 
expressed, and purified, as previously described [13]. The following mutants were employed for our 
fluorescent studies: 1) Bcl-xL G70C was labeled with NBD for measurements of the α1-2 loop 
membrane partitioning. 2) Cys-less Bcl-xL for circular dichroism measurements. 3) mCherry-Bcl-xL 
D189C labeled with Alexa 488 was used for FRET measurements. An additional “donor only” Bcl-xL 
D189C labeled with Alexa 488 was used for FRET quantification purposes. A molar extinction 
coefficient of 41,000 M−1cm−1 at 280 nm was used for the quantification of Bcl-xL protein concentration, 
while a coefficient of 72,200 M−1cm−1 at 280 nm and 72,000 M−1cm−1 at 587 nm was used for mCherry-
Bcl-xL. Fluorescent labeling with IANBD and Alexa 488 was performed using a standard labeling 
protocol for thiol-reactive dyes [24], and the excess dye was removed by gel-filtration in a Superose 
6 1 × 30 cm column. 

Ensemble fluorescence measurements: Ensemble steady-state fluorescence emission 
measurements were performed in a Fluorolog FL3-22 steady-state fluorescence spectrometer (Jobin 
Yvon, Edison, NJ, USA) equipped with double-grating excitation and emission monochromators. The 
experiments were performed using a 2 × 10 mm cuvette oriented perpendicular to the excitation 
beam. The sample temperature was maintained constant at 25 °C using a Peltier device from 
Quantum Northwest (Spokane, WA, USA). All measurements were collected after at least a 15 min 
equilibration period, after which all spectral measurements were collected with 1 nm steps using a 3 
nm slit on the excitation monochromator and 4 nm on the emission monochromator, averaged over 
3 scans. NBD fluorescence measurements were collected from 490 to 700 nm using an excitation 

Figure 2. Bcl-xL constructs used in this study. The structure of Bcl-xL solved by NMR [14] is presented
as backbone conformation in grey with the following color highlights: hydrophobic helix α6 in blue,
BH4 helix α1 (BH4 domain) in red, the loop between α1 and α2 helices in green. The NBD-labeling site
in single-Cys G70C mutant is shown in orange. The FRET donor Alexa-Fluor-488-labeling site in the
D189C mutant is shown in yellow. The latter construct also had an N-terminally conjugated mCherry
fluorescence protein (magenta), to be used as an acceptor in FRET measurements (see text for details).

2. Materials and Methods

Materials: The fluorescent dyes IANBD-amide (N,N′-Dimethyl-N-(Iodoacetyl)-N′-(7-Nitrobenz-2-
Oxa-1,3-Diazol-4-yl)Ethylenediamine) and Alexa Fluor 488-maleimide were obtained from Invitrogen
(Carlsbad, CA, USA), while the phospholipids, palmitoyl-oleoyl-phosphatidylcholine (POPC), and
1,1,2,2-tetraoleoyl-cardiolipin (TOCL) were purchased from Avanti Polar Lipids (Alabaster, AL, USA).

Preparation of large unilamellar vesicles (LUV): Chloroform lipid stocks were dried under
a nitrogen stream and further dried overnight in high-vacuum. The required volume of 50 mM
Na-phosphate buffer, pH 8, was added to the dried lipid films to resuspend them to a final concentration
of 20 mM and vortexed. The resuspended samples were extruded using a Mini-Extruder (Avanti
Polar Lipids, Alabaster, AL, USA) through 0.1 µm nucleopore polycarbonate membranes (Whatman,
Philadelphia, PA, USA) to form the LUV. The vesicle stocks were stored at 4 ◦C in 50 mM phosphate
buffer, pH 8 [22,23].

Cloning, expression, and labeling: The Bcl-xL and mCherry-Bcl-xL mutants were cloned, expressed,
and purified, as previously described [13]. The following mutants were employed for our fluorescent
studies: 1) Bcl-xL G70C was labeled with NBD for measurements of the α1-2 loop membrane
partitioning. 2) Cys-less Bcl-xL for circular dichroism measurements. 3) mCherry-Bcl-xL D189C labeled
with Alexa 488 was used for FRET measurements. An additional “donor only” Bcl-xL D189C labeled
with Alexa 488 was used for FRET quantification purposes. A molar extinction coefficient of 41,000
M−1cm−1 at 280 nm was used for the quantification of Bcl-xL protein concentration, while a coefficient
of 72,200 M−1cm−1 at 280 nm and 72,000 M−1cm−1 at 587 nm was used for mCherry-Bcl-xL. Fluorescent
labeling with IANBD and Alexa 488 was performed using a standard labeling protocol for thiol-reactive
dyes [24], and the excess dye was removed by gel-filtration in a Superose 6 1 × 30 cm column.

Ensemble fluorescence measurements: Ensemble steady-state fluorescence emission measurements
were performed in a Fluorolog FL3-22 steady-state fluorescence spectrometer (Jobin Yvon, Edison,
NJ, USA) equipped with double-grating excitation and emission monochromators. The experiments
were performed using a 2 × 10 mm cuvette oriented perpendicular to the excitation beam. The sample
temperature was maintained constant at 25 ◦C using a Peltier device from Quantum Northwest
(Spokane, WA, USA). All measurements were collected after at least a 15 min equilibration period,
after which all spectral measurements were collected with 1 nm steps using a 3 nm slit on the excitation
monochromator and 4 nm on the emission monochromator, averaged over 3 scans. NBD fluorescence
measurements were collected from 490 to 700 nm using an excitation wavelength of 465 nm. FRET
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measurements between Alexa Fluor 488 and mCherry dyes were collected between 490–650 nm with a
470 nm excitation wavelength.

The experiments were performed using 0.3 µM of fluorescently labeled Bcl-xL in 50 mM phosphate
buffer at pH 8 and 1 mM LUV. Sample acidification was achieved by the addition of small aliquots of
2.5 M acetate. The quantification of NBD fluorescence intensity changes in Figure 3b was determined
at 510 nm. The pH-dependency of the α1-2 loop in the Bcl-xL G70C NBD was calculated by fitting the
changes in fluorescence intensity to the following equation [25]:

I =
IN + IL

(
10m(pKa−pH)

)
1 + 10m(pKa−pH)

(1)

where I is the fluorescence intensity measured as a function of pH, IN and IL are the limiting
intensities at high and low pH, m is the transition slope, and pKa is the negative logarithm of the
dissociation constant.
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Our results showed that the α1-2 loop interacted with cardiolipin-containing bilayers under 
conditions expected for the inserted form of Bcl-xL. Similar to the effects observed for α6 [13], the 
interaction of the α1-2 loop was modulated by lipid composition and accentuated in membranes with 
higher anionic content. 

 

Figure 3. Fluorescence measurements of membrane interaction of the α1-2 loop. (a) Acidification of 
Bcl-xL G70C-NBD in the presence of anionic large unilamellar vesicles (LUV) containing 1TOCL 
(cardiolipin):2POPC led to a 6-fold increase in fluorescence intensity (blue) compared to 
measurements at pH 8 (orange), accompanied by a 14 nm blue shift of the NBD emission spectrum 
from 542 to 528 nm. Both effects are characteristic of the transition of NBD to hydrophobic 
environments and indicate the protonation-induced membrane association of the α1-2 loop. (b) The 
bilayer interaction of the α1-2 loop was measured as a function of pH in membranes with increasing 
cardiolipin content. The presence of higher molar ratios of cardiolipin led to more neutral pKa values, 
indicative of more favorable membrane interactions. The data is presented as the increase in 
fluorescence intensity associated with the membrane partitioning of G70-NBD measured at 510 nm. 

3.2. Secondary Structure Changes of Membrane-inserted Bcl-xL 

Circular dichroism (CD) spectroscopy was used to measure the changes in Bcl-xL secondary 
structure in the presence of membranes under conditions conducive for its insertion. In the presence 
of 1TOCL:2POPC LUV at pH 8, the CD spectrum of Bcl-xL showed a double minimum at 209 and 
222 nm, indicating an α-helical conformation (Figure 4a, yellow), consistent with the X-ray and NMR 
structures of Bcl-xL in solution [14]. This spectrum was unchanged from the one collected in the 
absence of membranes. The lack of spectroscopic changes after the addition of LUV was attributed to 
the previously reported lack of Bcl-xL membrane interactions at this pH [13,20]. 

The pH-dependent membrane insertion of Bcl-xL (Figure 1d) and the partitioning of its α1-2 
loop (Figure 3b) were induced by the progressive acidification of the sample in the presence of LUV. 
This led to significant increases in ellipticity at 209 and 222 nm (Figure 4a), indicating a larger α-
helical content. A total helicity of 40% was calculated in the presence of LUV at pH 8 (Equation 5) 
using the determined ellipticity at 222 nm (an α-helical content indicator) of 15,225 × 10−3 deg dmol−1 
cm2. This was consistent with the overall helical value of 42% for the NMR structure of Bcl-xL in 
solution (PDB ID: 1LXL) [14]. A maximal gain in helical content of 4%, corresponding to ~ 10 a.a., was 
measured at pH 5 (using a total ellipticity of 16,260 × 10−3 deg dmol−1 cm2 at 222 nm). The relative 
changes in ellipticity at 222 nm are presented in Figure 4b, color-coded to their respective CD spectra 
in Figure 4a. This data was compared to the relative membrane insertion of Bcl-xL (Figure 4b, black) 
from Figure 1d, and black and partitioning of the α1-2 loop (Figure 4b, blue) from Figure 3a, red. The 
discrepancy between these data sets indicated different propensities for each of the respective 
transitions and a complex multi-step refolding process. Furthermore, it suggested the possibility of 
multiple stable intermediates in the bilayer. 

These measurements showed that protonation in the presence of membranes induced the helical 
folding of Bcl-xL unstructured loops. Since protonation also induced the membrane insertion of Bcl-

Figure 3. Fluorescence measurements of membrane interaction of the α1-2 loop. (a) Acidification
of Bcl-xL G70C-NBD in the presence of anionic large unilamellar vesicles (LUV) containing 1TOCL
(cardiolipin):2POPC led to a 6-fold increase in fluorescence intensity (blue) compared to measurements
at pH 8 (orange), accompanied by a 14 nm blue shift of the NBD emission spectrum from 542 to 528 nm.
Both effects are characteristic of the transition of NBD to hydrophobic environments and indicate the
protonation-induced membrane association of the α1-2 loop. (b) The bilayer interaction of the α1-2 loop
was measured as a function of pH in membranes with increasing cardiolipin content. The presence
of higher molar ratios of cardiolipin led to more neutral pKa values, indicative of more favorable
membrane interactions. The data is presented as the increase in fluorescence intensity associated with
the membrane partitioning of G70-NBD measured at 510 nm.

The fluorescence decays of Alexa-Fluor-488/mCherry FRET samples were measured with a
FluoTime 200 (PicoQuant, Berlin, Germany) time-resolved fluorescence spectrometer using a standard
time-correlated single-photon counting scheme [26]. Samples were excited at 440 nm using a
10 MHz repetition rate subnanosecond pulsed diode laser, LDH 440 (PicoQuant, Berlin, Germany).
Fluorescence emission was detected at 520 nm using a PMA-182 photomultiplier (PicoQuant, Berlin,
Germany). The emission wavelength was selected using a Sciencetech Model 9030 monochromator.
Measurements were performed using 0.3 µM of mCherry-Bcl-xL D189C-Alexa-Fluor-488 or Bcl-xL
D189C-Alexa-Fluor-488 in the presence of 1 mM LUV. The fluorescence intensity decay was analyzed
using the FluoFit iterative-fitting software (PicoQuant, Berlin, Germany) by subjecting the data to
a standard deconvolution procedure. The fitting assumed three exponential components with the
shortest lifetime fixed at 0.1 ns. The results were presented as the lifetime, τα, calculated as the
amplitude-weighted average lifetime of the two longest components.



Cells 2020, 9, 539 6 of 15

FRET analysis: The FRET efficiencies of ensemble steady-state and lifetimes measurements were
calculated from changes in fluorescence and lifetime of the donor (Alexa-Fluor 488) in the presence of
the acceptor mCherry. The following formulas were employed for the calculations [27]:

E = 1−
FDA
FD

(2)

E = 1−
τDA
τD

(3)

where FDA and FD denote to the fluorescence intensity of the donor Alexa-Fluor-488 in the presence
or absence of the acceptor mCherry. While τDA and τD are the corresponding lifetimes of the donor
Alexa-Fluor-488 in the presence or absence of a mCherry acceptor. Donor only Bcl-xL D189C samples
labeled with Alexa-Fluor-488 dye lacking mCherry were prepared for the donor only measurements.

Single-molecule fluorescence correlation spectroscopy (FCS): FCS FRET measurements were
performed, as previously described [28]. Single-molecule fluorescence measurements for FRET
experiments were performed with a MicroTime 200 confocal microscope (PicoQuant, Berlin, Germany).
The donor Alexa Fluor 488 dye was excited with a pulsed picosecond diode laser LDH-P-C-470
operated at 40 MHz. The resulting fluorescence was split through a 50/50 beam splitter cube onto two
Single Photon Avalanche Diodes, SPADs (SPCM—AQR—14, Perkin Elmer Inc., Vaudreuil, Québec,
Canada). The fluorescence signal was further split through a set of two filters to separate the signals
from the donor (Alexa-Fluor-488) and acceptor (mCherry). An emission band filter (AHF/Chroma:
HQ 520/40) was used to detect the Alexa-Fluor-488 donor signal, and a 550 nm long-pass band filter
(AHF/Chroma: HQ 550LP) was used for the acceptor mCherry acceptor signal. The high numerical
aperture apochromatic water immersion objective (60×, NA 1.2, Olympus), together with the 50 µm
confocal pinhole, resulted in a confocal detection volume of 1 fL. The fluorescence signal was detected
by applying time-correlated single-photon counting (TCSPC) with a TimeHarp 200 board, and the
data was stored in the time-tagged time-resolved mode (TTTR). This allowed the recording of every
detected photon with its individual timing and detection channel information. The samples contained
0.1 µM Alexa-Fluor-488 labeled Bcl-xL D189C and 1 mM LUV in 10 mM HEPES buffer + 20 mM
NaCl, pH 8. Acidification was achieved by the addition of the appropriate volumes of 0.5 M acetate,
and measurements collected after 15 min incubation.

The single-molecule FRET efficiency (smFRET) was calculated from the number of photons
detected in the donor (ID) and acceptor (IA) channels. The smFRET efficiency (E) was calculated from
the following formula [29]:

E =
IA

IA + γ·ID
(4)

where γ is a correction factor that takes into account the detection efficiency differences between the
two photomultipliers used for the in donor and acceptor channels. The following γ parameters were
calculated from the integral of the emission spectra of each sample: γpH 8 = 3.37, γpH 7 = 3.58, and γpH 6

= 3.89, respectively.
Circular Dichroism: CD measurements were performed using an upgraded Jasco-720

spectropolarimeter (Japan Spectroscopic Company, Tokyo, Japan). On average, 50 scans were recorded
using a 1 mm optical path cuvette. The percent helical folding was estimated assuming the ellipticity at
222 nm corresponds only to α-helical content, following the methodology proposed by Chen et al. [30]:

% helical content =
[θ]222

[θ]Max
222

(
1− k

n

) , in deg·cm2
·dmol−1 (5)

where [θ]222 is the observed ellipticity at 222 nm, [θ]222
Max is the theoretical mean residue ellipticity

for an infinitely long helical peptide (−39,500 deg cm2 dmol−1), n is the number of residues (217 in
Bcl-xL), and k is a wavelength-dependent constant (2.57 at 222 nm) [30].
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3. Results

3.1. Membrane Interactions of the Loop between α1 and α2 Helices

In our previous studies, we used the fluorescence of the environmentally sensitive probe NBD
selectively attached to single-Cys residues at various positions along the Bcl-xL sequence to study its
membrane partitioning and insertion [13,20]. Here, we used the NBD-labeled G70C Bcl-xL mutant
to study the partitioning of the loop between helices α1 and α2 to lipid bilayers (Figure 3). In the
absence of membranes, the emission spectrum of Bcl-xL G70C-NBD presented a maximum at 542 nm
(Figure 3a, black). The addition of large unilamellar vesicles (LUV) composed of the anionic lipid
cardiolipin (TOCL) and the zwitterionic lipid phosphatidylcholine (POPC) at a 1:2 molar ratio had
no effect at pH 8 (Figure 3b, orange). This lipid composition represents the maximal cardiolipin
content in mitochondria [31,32]. The absence of spectroscopic changes was, therefore, attributed to
the lack of Bcl-xL membrane interaction at this pH. Acidification of the sample to pH 5, however,
led to a 6-fold increase in fluorescence intensity and a 14 nm blue shift of the band maximum to
528 nm (Figure 3a, blue). These spectroscopic effects were characteristic of the transition of NBD to
hydrophobic environments and indicated that the protonation-dependent transition of Bcl-xL to lipid
bilayers led to the membrane partitioning of the α1-2 loop.

The membrane insertion of the hydrophobic α6 helix, a characteristic feature of the inserted form
of Bcl-xL, is promoted by the mitochondrial specific lipid cardiolipin [13]. For this reason, we tested
the effect of cardiolipin on the membrane partitioning of the α1-2 loop by performing pH-titrations in
LUV with increasing cardiolipin content. No changes in NBD intensity were observed in zwitterionic
bilayers composed solely of POPC lipids (Figure 3b, black). This was consistent with the previously
observed requirement of anionic lipids on the membrane insertion and refolding of Bcl-xL [13,20].
Measurements in the presence of cardiolipin containing LUV presented sigmoidal transitions with
increasingly more favorable membrane interactions observed in the presence of the higher cardiolipin
content. This led to a 1 pH unit difference in the calculated pKa between membranes with the lowest
(1TOCL:6POPC, pKa = 5.4 ± 0.1) and highest (3TOCL:2POPC, pKa = 6.4 ± 0.1) cardiolipin content.

Our results showed that the α1-2 loop interacted with cardiolipin-containing bilayers under
conditions expected for the inserted form of Bcl-xL. Similar to the effects observed for α6 [13],
the interaction of the α1-2 loop was modulated by lipid composition and accentuated in membranes
with higher anionic content.

3.2. Secondary Structure Changes of Membrane-inserted Bcl-xL

Circular dichroism (CD) spectroscopy was used to measure the changes in Bcl-xL secondary
structure in the presence of membranes under conditions conducive for its insertion. In the presence
of 1TOCL:2POPC LUV at pH 8, the CD spectrum of Bcl-xL showed a double minimum at 209 and
222 nm, indicating an α-helical conformation (Figure 4a, yellow), consistent with the X-ray and NMR
structures of Bcl-xL in solution [14]. This spectrum was unchanged from the one collected in the
absence of membranes. The lack of spectroscopic changes after the addition of LUV was attributed to
the previously reported lack of Bcl-xL membrane interactions at this pH [13,20].

The pH-dependent membrane insertion of Bcl-xL (Figure 1d) and the partitioning of its α1-2
loop (Figure 3b) were induced by the progressive acidification of the sample in the presence of LUV.
This led to significant increases in ellipticity at 209 and 222 nm (Figure 4a), indicating a larger α-helical
content. A total helicity of 40% was calculated in the presence of LUV at pH 8 (Equation (5)) using the
determined ellipticity at 222 nm (an α-helical content indicator) of 15,225 × 10−3 deg dmol−1 cm2. This
was consistent with the overall helical value of 42% for the NMR structure of Bcl-xL in solution (PDB
ID: 1LXL) [14]. A maximal gain in helical content of 4%, corresponding to ~ 10 a.a., was measured
at pH 5 (using a total ellipticity of 16,260 × 10−3 deg dmol−1 cm2 at 222 nm). The relative changes in
ellipticity at 222 nm are presented in Figure 4b, color-coded to their respective CD spectra in Figure 4a.
This data was compared to the relative membrane insertion of Bcl-xL (Figure 4b, black) from Figure 1d,
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and black and partitioning of the α1-2 loop (Figure 4b, blue) from Figure 3a, red. The discrepancy
between these data sets indicated different propensities for each of the respective transitions and a
complex multi-step refolding process. Furthermore, it suggested the possibility of multiple stable
intermediates in the bilayer.
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Figure 4. CD measurements of secondary structure changes of Bcl-xL in cardiolipin-containing bilayers.
(a) The secondary structure of Bcl-xL was measured by circular dichroism in the presence of anionic
1TOCL:2POPC LUV. Under all conditions, the CD spectrum of Bcl-xL presented a double minimum at
~ 209 and 222 nm, characteristic of α-helical conformations. This was consistent with its high X-ray
and NMR structures, showing an all α-helical conformation [14]. Inducing the membrane insertion of
Bcl-xL through protonation led to a progressive increase in ellipticity at 209 and 222 nm, indicative
of a larger α-helical content. (b) The relative change in ellipticity at 222 nm, an indicator of α-helical
content, at each condition was compared to the protonation-dependent insertion of the α6 helix in blue
(Figure 1d, black) and partitioning of the α1-2 loop in black (Figure 3b, red). The helical form of the
α1-2 loop in the bilayer is hereby referred to as helix αX. The difference in pH dependence between the
insertion and folding data suggested that the bilayer interactions of Bcl-xL did not follow a simple
two-state pathway (see also Figure 6).

These measurements showed that protonation in the presence of membranes induced the helical
folding of Bcl-xL unstructured loops. Since protonation also induced the membrane insertion of Bcl-xL
(Figure 1d), the gain in the secondary structure was likely caused by the partitioning-coupled folding
of the α1-2 loop (hereby called helix αX in its folded state) during Bcl-xL membrane insertion.

3.3. Ensemble and Single-Molecule FRET Measurements of the BH4 Domain Release in
Membrane-Inserted Bcl-xL

Recently, we have demonstrated that the membrane insertion of Bcl-xL leads to the release of its
N-terminal BH4 helix [13]. The refolding of membranous Bcl-xL was monitored by measuring the loss
of FRET in a chimeric protein, where the fluorescent protein mCherry was conjugated at the N-terminus
of a Bcl-xL construct labeled with an Alexa-Fluor-488 (A488) dye at position D189C (Figure 2). This
event was characterized by a protonation-dependent increase in donor (A488) fluorescence (Figure 5a)
at 518 nm and a concomitant decrease in acceptor mCherry intensity at 605 nm (Figure 5a, inset),
consistent with previous results [13]. Here, we expanded on this work by performing complimentary
lifetime measurements and characterizing this process at the single-molecule level by fluorescence
correlation spectroscopy (FCS).

The fluorescence lifetime of a donor-acceptor sample in the presence of 1TOCL:2POPC LUV at
pH 8 (non-inserted Bcl-xL) presented an amplitude-averaged lifetime τα = 2.15 ns (Figure 5b, black).
The protonation-induced membrane insertion of Bcl-xL led to the progressively longer lifetimes until
they approached the lifetime of a donor-only sample (Figure 5b, green τα = 3.42 ns). This increase in
an averaged lifetime was consistent with our steady-state measurements and caused by the loss of
FRET between the donor and acceptor dyes due to the release of the N-terminal BH4 helix.
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Figure 5. Ensemble FRET measurements of the release of the N-terminal BH4 domain (α1 helix).
The release of the BH4 helix was measured by loss of FRET between an N-terminally conjugated
mCherry fluorescent protein and the fluorophore Alexa-Fluor-488 (A488) introduced at position D189C
in Bcl-xL (Figure 2). (a) Steady-state measurements in the presence of 1TOCL:2POPC LUV showed a
progressive increase in donor A488 intensity at 518 nm as a function of pH. This was accompanied by a
decrease in the acceptor mCherry intensity at 605 nm (insert). These spectral changes were indicative
of a loss of FRET between both fluorophores and indicated the increase in distance between donor and
acceptor, attributed to the release of the N-terminal BH4 helix. Insert shows a re-scale of the acceptor
band. (b) Lifetime measurements showed an increase in the fluorescence lifetime of the donor-acceptor
samples at increasingly acidic conditions. This was indicative of lower FRET due to a decrease in
the interactions between the donor-acceptor pair, consistent with the increase in distance between
both fluorophores due to the release of the BH4 helix. The following amplitude average lifetimes
were calculated for the donor-acceptor pair in the presence of 1TOCL:2POPC LUV: pH 8 τα = 2.15 ns
(black), pH 7 τα = 2.76 ns (red), pH 6 τα = 3.03 ns (blue). The lifetime τα = 3.42 ns was determined
for a donor-only sample in the presence of LUV (green). The internal response function (IRF) of the
instrument is indicated in grey.

Single-molecule FCS measurements were performed on these samples to identify the underlying
mechanism behind the release of the BH4 helix. Representative traces measured at pH 8, 7, and 6 are
shown in Figure 6a–c. A positive FRET event in these measurements was indicated by the simultaneous
detection of photons in both the donor (green) and acceptor (magenta) channels while only exciting
the donor A488 band. The number of these simultaneous signal spikes was reduced with increasingly
acidic conditions due to the loss of FRET, consistent with our steady-state (Figure 5a) and lifetime
(Figure 5b) measurements.

The distribution of FRET efficiencies in each single-molecule experiment was calculated using
Equation (4) and analyzed with a Gaussian distribution. The observed release of the BH4 helix was not
a two-state transition between a globular and a refolded Bcl-xL conformation. Instead, each condition
measured produced a distinctive distribution, characterized by a different average FRET efficiency
(Figure 6d). This indicated a gradual refolding process with multiple stable intermediates.

The FRET efficiencies calculated from the FCS single-molecule measurements were compared to
those determined from steady-state (Equation (2)) and lifetime (Equation (3)) experiments. All FRET
measurements agreed with each other. The starting average FRET efficiency of 0.33 at pH 8 (Figure 6e)
was consistent with the expected distance between the donor and acceptor fluorophores in the folded
construct (Figure 2). All calculated FRET efficiencies decreased as a function of pH and saturated at
0.05 FRET regardless of the technique employed, indicating the unfolding of Bcl-xL and release of BH4.
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Figure 6. Single-molecule FRET measurements of Bcl-xL refolding. The release of the N-terminal BH4
(α1) helix was inspected at the single-molecule level by fluorescence correlation spectroscopy (FCS) in
the presence of 1TOCL:2POPC LUV. Measurements were performed using the same Bcl-xL construct
used in Figure 5 between an N-terminally conjugated mCherry fluorescent protein (donor) and acceptor
Alexa-Fluor-488 fluorophore introduced at D189C (Figure 2). (a–c) Representative snapshots of FCS
measurements showed individual fluorescence signals detected for each A488 donor (green) or mCherry
acceptor (magenta) fluorophore detected. The presence of a spike appearing simultaneously in both
acceptor and donor channels indicated positive FRET events between both fluorophores. The number
of FRET events decreased proportionally with the pH of the sample. (d) The single-molecule FRET
efficiency (smFRET) in the sample was calculated using Equation (4) from the number of FRET events
detected and fitted to a Gaussian distribution. The loss of FRET was characterized by a progressive
shift of the distributions to lower FRET efficiencies as a function of pH. This suggested the presence of
multiple stable intermediate conformations during the refolding/membrane insertion of Bcl-xL, each
with characteristic FRET distances between the BH4 helix and the rest of Bcl-xL. (e) The FRET efficiencies
determined by steady-state (Figure 5a), lifetime (Figure 5b), and FCS (Figure 6d) were plotted against
experimental pH. (f) Schematic of the experimental set-up, indicating the presence of FRET when the
acceptor mCherry was close to the donor A488 and the lack of FRET in the refolded/inserted form of
Bcl-xL due to the increase in distance between the donor-acceptor pair. The smFRET data indicated that
the release of the BH4 helix was not a two-state transition and involved several Bcl-xL intermediates of
various compactness.
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4. Discussion

Apoptosis is crucial for the proper development and function of cell populations in tissues, and its
dysregulation impacts many diseases [33–35]. Hyperactive apoptosis contributes to neurodegeneration
and immunodeficiency, while insufficient apoptosis leads to autoimmunity and cancer, and the ability
of cancer cells to avoid apoptosis significantly complicates treatment [36]. The critical step in triggering
apoptosis is the permeabilization of the mitochondrial outer membrane (MOMP), which releases
apoptotic factors into the cytosol that lead to cell death [37,38]. MOMP is controlled and executed by
the numerous proteins of the Bcl-2 family, which include three types: pro-apoptotic pore formers (e.g.,
BAX, Bak), anti-apoptotic pore inhibitors (e.g., Bcl-xL, BCL-2), and BH3-only regulators (e.g., Bid) [1,2].
These proteins directly interact within the mitochondrial outer membrane (MOM) either to promote or
prevent protein conformational changes that lead to the formation of an oligomeric pore [2,9,10,39,40].
Alterations to the lipid composition are also involved in the regulation of apoptosis [41–45].

In spite of the recent advances in solving the structures of the soluble conformations, the exact
mechanism of Bcl-2 proteins remains unresolved, primarily because the functionally-important
conformations are induced by interactions with the membrane [2,6,40]. A major knowledge gap is
the lack of accurate molecular pictures of “protein-protein and protein-lipid interactions that mediate
MOMP” [5,9,10]. In this publication, we continued the line of studies [13,20], aiming at bridging this
knowledge gap for Bcl-xL.

The apoptotic inhibitor Bcl-xL prevents BAX from forming high-order oligomers on the
membrane [8], presumably by making a heterodimeric complex. Two non-exclusive models of inhibition
have been developed from co-crystallization of regulatory domains with soluble conformations of
partner proteins: (1) a canonical mode in which the anti-apoptotic protein captures the BH3 domain
of BAX to prevent its homodimerization [19] and (2) a novel, non-canonical mode, in which the BH4
domain of anti-apoptotic protein engages BAX to prevent its activation [21]. The only structural
features known of the membrane inserted form of Bcl-xL are the deep interfacial topology of the central
hydrophobic α6 helix and the release of the N-terminal BH4 helix [13]. Our results, summarized
in Figure 7, show that these processes were accompanied by a gain in helical content (Figure 4),
presumably due to the folding of the loop between helixes α1 and α2 (Figure 3).

From our CD measurements (Figure 4), we estimated that upon membrane insertion, the helical
content of Bcl-xL increased by the equivalent of a 10-residue segment, which we referred to as
helix αX. The only place in the sequence where this could occur was in the extended loop, which
we also demonstrated to interact with the membrane (Figure 3). This was consistent with the
general thermodynamic principles of partitioning-folding coupling that govern interfacial membrane
interactions of proteins and peptides [46]. Notably, upon acidification, the gain in helicity appeared to
be happening earlier (i.e., at more neutral pH) than the insertion (Figure 4b). This difference between
pH dependencies of the folding and insertion events provided the initial evidence that the insertion
process was not a simple two-state transition.

Our single-molecule FRET data on the release of the BH4 domain clearly demonstrated the
existence of intermediates of various compactness (Figure 6). The FRET efficiency histogram at pH
8 was centered at 0.3, which was consistent with the structural model presented in Figure 2. In the
case of a two-state transition between a folded and completely unfolded state, the histogram for the
partial transition would contain a strong component of the folded state, which was not observed at pH
7 or 6. Instead, the entire profile gradually shifted towards low efficiencies, indicating the presence
of intermediate states along the insertion/unfolding pathway of Bcl-xL. Note that acidification in the
absence of membranes did not lead to changes in FRET and that lipid composition was a factor in this
membrane-controlled refolding.

We summarized the results reported here and those from the literature in Figure 7, depicting
the conformational changes along the pathway between the anchored (top panel) and inserted
conformations of Bcl-xL (bottom panel). We proposed that lipids played a central role in the
conformational switching of Bcl-xL, which, in turn, was related to changes in the mode of apoptotic
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inhibition (Figure 1b). The physiological advantages of the switching between canonic and non-canonic
BH4-dependent inhibition of MOMP were not immediately obvious. One could speculate, however,
that the reason might be related to the need to counter the cardiolipin-dependent recruitment of
BAX to MOM. The release of the BH4 helix would increase the radius of action of Bcl-xL inhibition,
while membrane targeting of the loop might direct this action toward membrane-bound BAX. Thus,
further studies are needed to establish the structural, thermodynamic, and functional aspects of
membrane-modulated conformational switching in Bcl-xL and its role in apoptotic regulation.
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Figure 7. Schematic representation of the conformational switching pathway between
membrane-anchored and inserted Bcl-xL. After the initial targeting to the MOM via a yet to be
fully understood mechanism, Bcl-xL resides in the conformation closely resembling its solution fold,
anchored by a single transmembrane helix α8 [16] (top panel). This anchored conformation is distinctly
different from the membrane-inserted one (lower panel), characterized by the refolded secondary and
tertiary structure, bilayer penetration of various segments (e.g., α6 helix resides about 15 Å from bilayer
center [13], and the release of the regulatory BH4 domain (α1 helix) [13]. In this study, we demonstrated
that the originally disordered loop between helices α1 and α2 gained helical structure (helix αX) and
interacted with the membrane (Figures 3 and 4). Our single-molecule FRET measurements indicated that
the insertion transition contained several intermediate states of different compactness (Figure 6). Lipid
composition (notably the presence of cardiolipin and other anionic lipids) modulates the propensity of
Bcl-xL to undergo protonation-dependent insertion. We hypothesized that conformational switching
between the anchored and the inserted conformations of Bcl-xL results in functional switching between
canonical and non-canonical (BH4-dependent) modes of apoptotic inhibition (Figure 1b).
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