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The purpose of this study is to evaluate the performance variations in commercial 
deformable image registration (DIR) tools for adaptive radiation therapy and 
further to interpret the differences using clinically available terms. Three clinical 
examples (prostate, head and neck (HN), and cranial spinal irradiation (CSI) with 
L-spine boost) were evaluated in this study. Firstly, computerized deformed CT 
images were generated using simulation QA software with virtual deformations 
of bladder filling (prostate), neck flexion/bite-block repositioning/tumor shrinkage 
(HN), and vertebral body rotation (CSI). The corresponding transformation matrices 
served as a “reference” for the following comparisons. Three commercialized DIR 
algorithms: the free-form deformation from MIMVista 5.5 and the RegRefine from 
MIMMaestro 6.0, the multipass B-spline from VelocityAI v3.0.1, and the adap-
tive demons from OnQ rts 2.1.15, were applied between the initial images and the 
deformed CT sets. The generated adaptive contours and dose distributions were 
compared with the “reference” and among each other. The performance in transfer-
ring contours was comparable among all three tools with an average Dice similarity 
coefficient of 0.81 for all the organs. However, the dose warping accuracy appeared 
to rely on the evaluation end points and methodologies. Point-dose differences 
could show a difference of up to 23.3 Gy inside the PTVs and to overestimate up 
to 13.2 Gy for OARs, which was substantial for a 72 Gy prescription dose. Dose-
volume histogram-based evaluation might not be sensitive enough to illustrate all 
the detailed variations, while isodose assessment on a slice-by-slice basis could 
be tedious. We further explored the possibility of using 3D gamma index analysis 
for warping dose variation assessment, and observed differences in dose warping 
using different DIR tools. Overall, our results demonstrated that evaluation based 
only on the performance of contour transformation could not guarantee the accuracy 
in dose warping, while dose-transferring validation strongly relied on the evalu-
ation endpoint. As dose-transferring errors could cause misinterpretations when 
attempting to accumulate dose for adaptive radiation therapy and more DIR tools 
are available for clinical use, a standard and clinically meaningful quality assurance 
criterion should be established for DIR QA in the near future.
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I.	 INTRODUCTION

It is acknowledged that patient anatomy may change during the course of radiation therapy due 
to factors such as weight loss, tumor and normal tissue growth or shrinkage, and intratreatment 
position variations.(1-4) For example, patients with head and neck cancer tend to lose weight 
during the treatment course; a consecutive shrinkage of the gross tumor volume of up to 3.9% 
per treatment day has been observed.(3) Anatomical changes between the primary treatment and 
the retreatment are another situation that might be even more obvious. Cranial spine irradia-
tion patients might be treated in the prone position and receive an additional spine boost with 
intensity-modulated radiotherapy (IMRT) or stereotactic body radiotherapy (SBRT) in a supine 
position on TomoTherapy or CyberKnife (Accuray Inc., Sunnyvale, CA). The vertebral body 
shape could change and so can the organs around it. Although advanced treatment techniques 
such as IMRT and SBRT can establish conformal dose distribution and a sharp dose gradient, 
accurate information on the spatial distribution of the previously applied dose is essential for 
an effective and safe treatment of the recurrent tumor. Deformable image registration (DIR) 
provides the possibilities for linking the anatomy at one time to that at another time, while 
maintaining the desirable one-to-one geographic mapping. For this reason, there is increasing 
interest in bringing DIR within the context of radiotherapy.

In general, there are two main avenues using DIR in adaptive radiation therapy: a) to generate 
contours for efficient recontouring purpose or as a quantitative indicator of the need to perform 
replan, and b) to generate dosimetric plans for an adaptive plan summation to evaluate over-/
underdose estimation of the accumulated dose. Previous studies to estimate the inherent accuracy 
of DIR have typically been performed only by comparing locations of anatomic landmarks or 
contours identified by physicians.(5-8) A recent work published by Hoffmann et al.(5) evaluated 
the feasibility of a single commercial tool (Velocity AI, Velocity Medical Solutions, Atlanta, 
GA) in head and neck, thoracic and abdominal cases. A total of 30 to 50 landmarks were placed 
by physicians for a whole 3D volume for each case. The registration error was reported using 
3D Euclidean distances between the corresponding landmarks in each CT pair. This regional 
point-based analysis could be reasonable if evaluating solely the capability in transferring the 
contours. However, in addition to anatomy deformation, the dosimetric effect thereof is another 
important aspect. It is thus necessary to perform voxel-by-voxel analysis, as any unreasonable 
deformation might create erratic and artificial cold/hot spot or under/over dosage of the target 
and critical structures. There are several groups working on validating DIRs based on voxelized 
analysis derived from deformation vector fields (DVFs). Saleh et al.(7) proposed a statistical 
sampling technique (distance discordance metric) to estimate the spatial geometric uncertainty. 
Similarly, Li et al.(9) proposed to use a mechanics-based metric, using unbalanced energy (UE) 
to evaluate DIR errors. Meanwhile, Varadhan et al.(10) proposed several metrics, such as inverse 
consistency error (ICE) and mean squared error (MSE), to test deformation accuracy. Consent 
has been achieved that evaluation should be performed on a voxel-by-voxel basis. However, 
the clinical interpretation of all these proposed mathematical terms is missing and how these 
matrices would aid in making clinical decision needs to be addressed.

Very recently, Veiga et al.(11) evaluated the performance of several in-house implemented 
DIR algorithms for dose warping on five head and neck patients. Their findings concluded 
that in spite of all algorithms resulting in comparable geometric matching, the choice of DIR 
implementation leads to uncertainties in dose warping for head and neck cancer. As several 
commercialized DIR tools are already available for clinical use,(5,12-14) there is an emerging and 
urgent need to investigate the reliability of these clinical tools in multiple applications in daily 
clinical routine. Previously, we have compared deformed vector fields of two DIR algorithms 
on both physical phantoms and virtual patient images.(13) Here, we extend our work to evaluate 
three commercially available DIR solutions for both contour propagation and dose matching/
warping using clinical examples, and further explore the possibilities to interpret the results 
using clinical language.
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II.	 MATERIALS AND METHODS

A. 	 Patient data
Three clinical plans were included: 

Case #1 —	 a prostate cancer patient received 180 cGy for 25 factions (fx) for the first course 
of IMRT treatment. Patient had noticeable bladder filling variations during the 
treatment.

Case #2 — 	a head and neck (H&N) patient who lost nearly 40 lbs (22% of original weight at 
admission) during the course of the treatment, requiring the acquisition of a second 
set of CT images for replanning. The initial IMRT plan included three PTVs with 
prescription dose of 6996, 5940, and 4950 cGy over 33 fractions (PTV70, PTV60, 
and PTV50, respectively).

Case #3 — 	a patient with a cranial spinal irradiation (CSI) treatment in prone position who 
received 180 cGy / fx for 20 fractions, plus a L-spine and posterior-fossa boost in 
supine position. 

For all treatment plans, standard OAR limits were used and dose was minimized to the OARs 
without reducing coverage of the targets. 

B. 	 Reference for comparison
For comparison purposes, computerized synthetic deformed CT images were created from the 
planning CT images for each case. The synthetic deformation was driven by a fiducial-based 
algorithm provided by a commercial QA software tool (ImSimQA, Oncology Systems Limited, 
Shrewsbury, UK). The details of how to generate synthetic deformations and how to validate 
those movements were introduced in Nie et al.(12) To recap briefly, ahead of utilization of this 
QA tool, this computerized deformation algorithm was validated using an in-house-built physical 
pelvic phantom.(15) For the real patient cases used in the study, planning CT sets for the same 
patient at different treatment time points were firstly aligned with each other. For each image 
set, approximately 30 anatomically meaningful landmarks were carefully chosen by a physi-
cian. For the prostate case, the patient with bladder filling could result in an average bladder 
inflation of 6.4 ± 3.7 (standard deviation, (SD)), ranging from 0.0 to 19.5 mm. The significant 
weight loss for the head and neck case could result in anatomical point displacements of up 
to 5.1 ± 3.0 (0, 15.5) mm. The cranial spinal patient was first treated in a prone position and 
three months later in a supine position with a whole brain and lower spine boost. On average, 
the anatomical landmarks at the skull, temporal lobe, and spine had changes up to 34.7 mm 
(with an average of 8.8 ± 4.2 mm) for retreatment. Detailed information can be checked in 
our previous work.(12) Over all, the corresponding displacements of all the paired points were 
recorded to provide the possible extent of movement between the two treatments. To generate 
synthetic deformed images, 20 to 50 control points for each case were selected by an experi-
enced user on the initial planning CT images. The user also identified the moving direction and 
displacement for all the points. After that, the synthetic moved images were generated using 
the software tool with either stiff deformation option (for bony structure) or not (for soft tis-
sue). The initial planning CT images and the synthetic deformed images are shown in Fig. 1. 
Overall, the generated deformations included: 1) bladder filling for the prostate case, 2) head 
rotation along the inferior–superior axis, neck flexion change, weight loss in the neck region, 
and smaller oral cavity for the HN case, and 3) more straightened spine for the supine position 
and soft-tissue movement as in lung and bowel for the CSI case. In addition, Gaussian-type 
noises were added to the deformed CT images to make the initial and deformed CTs be more 
representative of two distinct images. The level and strength of the noises matched with results 
obtained from experiments using size-comparable water phantoms.(12) The resultant deformed 
image sets, contours, dose plans, and the corresponding deformed vector fields were exported 
and served as the “reference”.
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C. 	 Deformable image registration procedure
Three commercial software packages were evaluated, which included (a) the free-form defor-
mation — MIM (both MIMVista v 5.5 and Reg-Refine MIM Maestro v 6.0) (MIM Software 
Inc., Cleveland, OH), (b) the B-spline deformation — Velocity AI (v 2.6.2) (Varian Medical 
Systems/Velocity Medical, Atlanta, GA), and (c) the adaptive Demons —OnQ rts (v 2.1.15) 
(Oncology Systems). 

The free-form deformation from MIM, v 5.5, is a fully automatic intensity-based deforma-
tion with a multiresolution approach.(16) The most updated version, v 6.0, introduces a new 
feature, RegRefine, to allow certain level of freedom for users to repeatedly lock and correct 
the registration. The number of lock points can be varied in addition to varying their locations 
and the size of the window used for local box-based alignment. For practical purposes, three to 
five constraint points were selected for each case by an experienced operator to assure deforma-
tion accuracy using visual assessment. VelocityAI uses a modified B-spline based calculation 
combined with the Mattes formulation of the mutual information metric.(17) For the multipass 
option, the grid resolution spacing starts at the coarsest and goes down to the finest in multiple 
steps, which helps to speed up the convergence and avoid local minima. As recommended by the 
vendor, the registration type “rigid and deformable multipass” was chosen. The OnQ rts is the 
product from the same company as ImSimQA, yet it uses a stand-alone deformable algorithm 
as adaptive Demons. The registration process is a fully automatic process, which starts with 
rigid alignment and then follows with deformable registration. For all the commercial software 
tools, information on the details of the parameter used in the software is not provided by the 
vendor nor can the user change parameter settings for deformation, thus the default registration 
settings were used throughout the study. 

In a clinical dose escalation situation, the total plan is typically generated as the summation 
of the initial treatment plan delivered to the initial CT and boost plan delivered to the second 
CT. If the two image sets have noticeable variations, DIR may be requested to prepare for the 
adaptive plan sum. As such, in this study, all available DIR tools were used to deform initial 
planning CT images (moving images) to match the synthetic deformed CT images (target 
images) created by ImSimQA. A region of interest (ROI) was defined in the primary volume 
to exclude any external positioning and fixation devices in order to avoid their influence on the 

Fig. 1.  The virtual deformed images for the three clinical cases. Each of the images represents only one slice of axial, 
sagittal, and coronal view of a 3D CT data set. For CSI case, only the sagittal view is shown. The original and simulated 
deformation images are fused together to show the difference in deformation (highlighted in the yellow box): (a) prostate 
case with bladder filling, (b) head and neck case with significant weight loss, deformation includes head twisted by a 
small angle, relative smaller oral cavity closure even with a bite-block, and noticeable narrower neck region; (c) cranial 
spinal irradiation case at prone position first then with lower spine IMRT boost at supine position with less curved spine.
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registration process. Attention was given to ensure all defined relevant anatomical structures 
were included. The resulting deformed contours, dosimetric deformed plans, and all calculated 
vector fields were exported and compared against each other with respect to the “reference” 
using an in-house MATLAB program (MathWorks, Natick, MA). 

D. 	 Evaluation procedure
Both the contour propagation and dose transformation capabilities were evaluated. 

1. 	The contour transferring accuracy was assessed using Dice similarity coefficient index over 
the entire 3D contoured volume. The index is defined as twice the intersection divided by 
the union sum of two volumes. A perfect match gives a Dice index of one and an absolute 
mismatch results in a zero. In this study, for all the PTVs and OAR structures, Dice coef-
ficient indices were calculated between the “reference” contour and that transferred, via 
different DIR tools, from the moving images to the target images. 

2. 	The adaptive plan was made by applying the deformed vector fields to the original dose for 
the whole course. The dosimetric impact was evaluated following the steps that physicians 
typically use to evaluate plans. Firstly, the dose-volume histograms (DVHs) for all the 
structures generated using different DIR tools were compared against each other. Secondly, 
two-dimensional (2D) dose distribution was qualitatively assessed by comparing with the 
reference plan and against each other on a slice-by-slice basis. Thirdly, point-dose differ-
ences inside PTVs and all OARs were compared to check whether unreasonable point doses 
were created. All point doses were calculated requiring a minimum volume of 0.5 cc. In 
addition to all these evaluations as used in clinical assessment, quantitative analysis using 
three-dimensional (3D) gamma index comparison was investigated. The 3D gamma index 
was calculated following the method presented by Wendling et al.,(18) and the passing rates 
were calculated with various testing criteria.

 
III.	 RESULTS 

A. 	 Contour warping evaluation
Because very minimal differences were observed from different versions of MIM software in the 
selected three cases, only results from the fully automatic method (MIM v 5.5) were presented 
here and compared to others. Table 1 summarizes the Dice coefficients of all structures. All 
three algorithms showed reasonably comparable results in warping contours but performances 
varied in selected examples. For instance, Dice coefficients for all PTVs / OARs transferred by 
Tool#1 and Tool#3 ranged from 0.76 to 0.98, with an average of 0.87 for prostate and HN case. 
However, Tool #3 showed issues with prone-supine deformation and slice thickness beyond 
0.5 cm as in the CSI case, with the lowest Dice index of 0.55.

Table 1.  Dice coefficients of all adaptively transferred contours vs. references, showing with mean ± SD (minimum, 
maximum).

	 Prostate	 HN	 CSI	
		  Target	 OARs	 Target	 OARs	 Target	 OARs

	Tool#1	 0.94±0.02	 0.97±0.01	 0.94±0.02	 0.90±0.05	 0.89±0.03	 0.92±0.07
		  (0.92,0.96)	 (0.96,0.98)	 (0.91,0.95)	 (0.78,0.96)	 (0.88,0.91)	 (0.75,0.97)
						    

	Tool#2	 0.79±0.18	 0.87±0.05	 0.79±0.13	 0.73±0.14	 0.83±0.07	 0.89±0.05
		  (0.78,0.92)	 (0.83,0.92)	 (0.70,0.88)	 (0.42,0.89)	 (0.78,0.87)	 (0.77,0.98)
						    

	Tool#3	 0.85±0.10	 0.89±0.05	 0.92±0.03	 0.88±0.06	 0.58±0.04	 0.70±0.18
		  (0.79,0.96)	 (0.84,0.94)	 (0.89,0.94)	 (0.76,0.92)	 (0.56,0.61)	 (0.55,0.92)
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Tool#2 showed an overall good agreement with the “reference” for prostate and CSI cases. 
But noticeable differences were observed in the HN case. Figure 2 gives the composite defor-
mation vector field (DVF) of one axial slice showing the left anterior side with larger displace-
ment compared to the right posterior region. The low matching numbers of contour warping 
were more inclined to show on the side with larger displacement (e.g., cochlea left vs. right 
(0.42 vs. 0.61), and temporomandibular joints (TMJ) left vs. right (0.62 vs. 0.85) and eye left 
vs. right (0.60 vs. 0.75)). 

Fig. 2.  The composite deformation vector field (DVF) field from synthetic H&N phantom, with outlined contours of PTV 
and organs at risk (OARs) as eye (left/right), optical nerve (left/right), and chiasm. Color represents the magnitude of the 
deformations, with red meaning more deformation and blue, less deformation.
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B. 	 Dose transferring evaluation

B.1  Volume-based analysis — DVH comparison
The coverage of the PTV by 100% of prescribed dose line (prostate/seminal vesicle/nodes for 
prostate case, PTV 70/PTV 60/PTV 54 for HN case, and boosted L-spine/brain for CSI) showed 
no difference across the three applied DIR algorithms, as shown in Fig. 3. Results also showed 
very close DVH lines for all the tested OARs. Exceptions were only noticed for Tool#2 results 
on the HN case. Even though Tool#3 showed low matching numbers of Dice indices for the CSI 
case, the DVHs did not reveal much variation compared to others. Barely visible differences 
could be seen for deformation on images with or without (w/o) adding Gaussian-type noises.

B.2  Slice-based analysis — Two-dimensional (2D) dose plane comparison
We further scrolled through all two-dimensional dose planes slice-by-slice. One representative 
slice for each case is shown in Figs. 4 to 6 with all the contours colors matched with Fig. 3. The 
absolute dose distributions are shown on top row, with or without (w/o) adding Gaussian-type 
noises and the respective dose differences to the “reference” are displayed on the second row. 
In general, Tool#1 gives the closest adaptive dose plan to the reference for the three selected 
cases. Although the DVH lines show small differences between Tool#3/Tool#2 and Tool#1 
for the bladder (contour in black) in the prostate case, the slice-by-slice regional analysis for 
Tool#2/Tool#3 show up to 6 Gy differences compared to Tool#1, which can be substantial if 
considering the 45 Gy prescription dose. 

For the HN case shown in Fig. 5, Tool#1 and Tool#3 present comparable performance. 
However, Tool#2 shows up to 10 Gy differences in multiple OAR regions, as high as 14% of 
the prescribed 70 Gy. The differences were laid mostly on large displacement regions, such as 
on the left side and the oral cavity region. The results for the CSI case are presented in Fig. 6. 
Tool#1 and Tool#2 give similar deformations, but not with Tool#3. Regarding the noise effect, 
only Tool#1 exhibited visible variations between the results deformed to images with and 
without Gaussian-type noise. Those differences were more likely to show in the low-dose and 
low-gradient areas such as in the lower abdominal regions for the CSI case. However, these 
might not have clinical impact if regions were far away from clinically relevant organs exposed 
to high doses.

Fig. 3.  DVH analysis for three cases: prostate, HN, and CSI, respectively. The “reference” is displayed in bold solid line. 
The result for Tool#1 is shown in line with +; Tool#2 shown in line with ○, while Tool#3 result is shown in line with Δ.
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Fig. 4.  One axial slice view showing the prostate case among all three algorithms without (w/o) or with adding Gaussian-
type noise. All contour colors match with corresponding DVHs in Fig. 3. The absolute dose distribution is shown on the 
top row, while dose difference in Gy compared to the “reference” is shown on second row with a zoomed view of the 
prostate (PTV) region on the bottom.

Fig. 5.  One axial slice view showing the warped absolute dose HN case among all three algorithms.

Fig. 6.  One sagittal slice view showing the warped absolute dose and dose difference in Gy for cranial spinal irradiation 
(CSI case) compared to the “reference” for all three algorithms with all contour colors matching with corresponding 
DVHs in Fig. 3.
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B.3  Point-dose analysis 
Figure 7 shows the point-dose differences relative to the “reference” of all three algorithms. 
It can be seen that Tool #2 has the largest point-dose differences compared to the “reference,” 
as expected. Interestingly, even Tool#1, the algorithm showing the highest Dice coefficient, 
exhibited point-dose differences up to 7.7 Gy inside the PTVs for prostate case. It also over
estimated up to 13.5 Gy and underestimated by up to 17.7 Gy in OARs for CSI cases. 

B.4  Quantitative three-dimensional (3D) analysis — 3D gamma index comparison
The equivalency between the tested algorithms and the “reference” was further verified using 
a quantitative 3D gamma index test. Table 2 summarizes the results using 3 mm/3% (distance-
to-agreement / dose difference) or 5 mm/5% criteria. Although no plans exhibited significant 
differences in DVH comparison, not all of them had over 90% voxels passing the 3%/3 mm 
criteria. For the HN case, Tool#2 had only 72.7% of the voxels meet the criteria. For the CSI 
case, Tool#3 showed an 86.1% passing rate. An example of a gamma index map of an axial 
plane for the HN case is given in Fig. 8. If using 5 mm/5% as the criteria, all algorithms passed 
with less than 10% of the voxels exceeding the criteria.

 

Fig. 7.  A range of point-dose differences compared between the transformed dose via different DIR tools and the refer-
ence dose.

Table 2.  Three-dimensional (3D) gamma analysis for different DIR algorithms.

	 3 mm/3%	 5 mm/5%
		  Prostate	 HN	 CSI	 Prostate	 HN	 CSI

	Tool#1	 97.7%	 96.1%	 93.4%	 99.4%	 98.9%	 95.7%
	Tool#2	 93.1%	 77.2%	 94.1%	 94.8%	 90.7%	 94.5%
	Tool#3	 93.4%	 94.7%	 82.4%	 96.3%	 97.4%	 93.1%
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IV.	 DISCUSSION

In this study, we evaluated the performance variations of three commercially available DIR 
tools for three different clinical cases. These three algorithms produced comparable results 
transforming contours based on Dice coefficient analysis, and have similar results in dose warp-
ing when assessed by volume-averaged DVH analysis. However, dose-warping performance 
exhibited noticeable differences if the dose map was reviewed slice-by-slice or analyzed with 
3D gamma-index comparison. In addition, there is no consistency in performance for the DIR 
algorithms since the performance varied with clinical scenarios. Some tools might excel in 
certain situations but not in another. Therefore, our study showed that validation of DIR tools 
should be performed patient-specifically and a standard acceptance term and criterion should 
be established for the evaluation.

Previous literature has highlighted the need for validation of the DIR tools, including large-
scale, multi-institutional studies.(19,20) Yet there are still remaining questions to be answered, 
specifically on how to evaluate and how to interpret the results.

DIR is generally used for time-efficient recontouring or adaptive dose-accumulation to 
optimize therapeutic efficiency. As such, for the first question of “how to evaluate,” assessment 
of both capacities, contour propagating and dose tracking, should be included. The current 
techniques for DIR evaluation generally fell into three categories: contour comparison,(21-25) 
landmark tracking,(5,23) and voxel-based analysis.(7-10,12-13) Both the contour- and landmark-based 
analyses can yield a skewed view of the overall registration accuracy, as they only test spatial 
accuracy in limited regions. We believe voxel-based analysis should be utilized as it provides 
information that is more comprehensive. Yet, “how to interpret” this massive 3D information is 
another issue. Publications in the literature proposed several scientific terms, such as Jacobian 
matrices,(26) inverse consistence error,(10) and unbalanced energy,(9) to test deformation accu-
racy. Those terms may illustrate the physical properties of the deformation, but they still yield 
certain levels of difficulties for clinical understanding. Here the possibilities to use clinically 
oriented terms is explored, following the steps physicians usually take to evaluate the plans, as 
contour propagation, then dose coverage of PTVs, dose sparing for OARs, slice-by-slice review, 
and DVH comparisons. As illustrated in this study, different observation points/methodologies 
might give different results. 

Firstly, point-based analysis might present oversensitive skewed information as even the most 
accurate algorithm in transferring contours or dose would show nontrivial point-dose differences 
inside of all structures. On the contrary, volume-based analysis such as DVH comparison might 

Fig. 8.  Selected series of slices showing the gamma index map on the axial view for the head and neck case using 
3 mm/3% criteria.
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not be a sensitive enough measurement to reveal differences. For example, visible dose variations 
could be located inside the bladder region for the prostate case and for lower abdominal areas 
for the CSI case, but DVH differences were very subtle. DVH analysis might only capture the 
difference when it was distinctive enough, as in the HN case. Furthermore, 2D slice-by-slice 
review could help in revealing the extent of difference in details. Still, it was a time-consuming 
process and provided only a qualitative assessment.

So for our analysis, we explored the possibility using the well-established gamma index 
concept for quality assurance adapted for the DIR evaluation. The results showed if using 3 
mm/3% as the acceptance level, all three algorithms presented reasonable levels of equivalency. 
Only Tool#2 had over 10% of the voxels not meeting this criterion for the HN case and Tool#3 
failed for CSI case. Further studies on whether we could adopt this concept for DIR QA, how 
to use it either in traditional planar 2D or 3D analysis, and how to setup a standard acceptance 
level such as 3 mm/3% or use another criterion warrants more investigation.

Additionally, the DIR performance varies with different situations. Tool#3 presented similar 
performance to the other two tools in the prostate and HN case, but it revealed some issues in 
transferring prone/supine position as in CSI case. The vendor has been informed of this and a 
newer version is being released to correct this issue. Further evaluation is needed for this par-
ticular situation. Tool#2 exhibited equivalent results compared to others, but not for the tested 
HN case. The low matching numbers were more likely to be shown in the regions with large 
displacement, such as along the left side and oral cavity. There are usually two items regulat-
ing the deformation: image similarity and deformation smoothness. The first term controls the 
similarity based on pure mathematic considerations of either or combined information from 
intensity, gradient, and many other high-ordered functions. On the other hand, the deformation 
smoothness controls the realism of the deformation and avoids extreme and unreasonable physi-
cal deformations. For the tested HN case, Tool #2 might emphasize the deformation smooth-
ness more over the similarity, thus the variations were shown on the large displacement side. A 
research version with the capability of adjusting the weightings of these two regulation terms 
for various scenarios is under investigation. In addition, although we have tried to generate 
synthetic deformations covering most of the clinical scenarios for each site, such as bladder 
filling for the prostate case; head twist neck flexion, and other changes due to weight loss for 
the head and neck case; and less curved spine due to the change from prone to supine position, 
we still cannot cover every aspect for each location. We only want to exhibit the performance 
variations of commercially available DIR tools using three clinical examples and further to 
discuss the importance of evaluation criterion in assessing those differences. Nevertheless, 
comparison or validation of those DIR tools should be performed for different scenarios, and 
in challenge cases, a patient-specific test might also be needed.

It has to be pointed out that the purpose of this study is not to identify the most accurate 
algorithm, due to the absence of ground-truth deformations. The ground-truth deformations 
are typically derived from either physical image/dosimeter phantoms(15,27-30) or synthetic 
computerized data.(5,26) Of note, it is unrealistic to design physical phantoms to simulate every 
clinical scenario. Synthetic virtual phantoms derived from actual patient image data may 
provide a complementary work. However, virtual deformation is still driven by computerized 
algorithms. Nonbiomechanical algorithms, which do not consider the elastic properties of tis-
sues, may produce synthetic deformations in nonphysical ways. Biomechanical algorithms, 
potentially more accurate, are also likely to have errors due to uncertainties in Young’s modulus 
and Poisson’s ratio inputs. Overall, cross-calibration of the virtual phantom with a physical 
phantom or patient-similar tissue is needed before wide utilization for validation process; but 
this is beyond the scope of the current study. In this study, a commercial QA software tool was 
used to generate synthetic deformations that derived directly from patient-planning CT images. 
This approach gave the possibility of evaluating various clinical scenarios for different sites. In 
our previous work, the QA software that generated virtual deformations was partially validated 
using a physical pelvic phantom.(13) Although the physical phantom was created from real 
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patient CT images with three heterogeneous soft tissue types as well as bone, this 2D phantom 
did not contain three-dimensional information or materials to mimic air HU to simulate gas 
filling. It also should be noted that the pelvic phantom was designed only for bladder-filling 
simulation. As it is not feasible to have various kinds of physical phantoms to represent every 
possible deformation, we did not extend our work to validate virtual deformations nor validate 
the accuracy of the DIR tools. We did not rely on the virtual deformations as ground-truth to 
check the DIR accuracy, but only used them as a third-party “reference” to explore the perfor-
mance variations among each other.

It is understood that the clinical application of dose-warping technique is a contentious topic 
as reflected by, for instance, a point-counter point article and correspondences published by 
Medical Physics.(31-33) Although the answer is not likely to be without complexity, a number 
of published studies have shown the applicability of dose-warping technique. Yeo et al.(29) 
demonstrated an experimental validation of the dose-warping technique and showed it could be 
justified for those not involving significant density changes. The related discussion is beyond 
the scope of this paper. As DIR tools are being utilized to facilitate the calculation of cumula-
tive doses over different states of deformation and the commercially available DIR tools have 
emerged rapidly in the field, we need to know how many differences those tools will present for 
various clinical situations, and at what level we can rely on them for clinical decision-making.

 
V.	 CONCLUSIONS

In summary, performance among three commercially available DIR tools in multiple clinical 
sites, using real patient images were compared. Their variations were evaluated in both capabili-
ties, as contour transferring and dose tracking, and the results were interpreted using clinical 
language. The performance of these algorithms varied and is related to factors including tissue 
deformation magnitudes, dose gradient across the regions of interest, and also the evaluation 
standards. Nevertheless, as more DIR tools are available for clinical use, the performance could 
vary at certain degrees; a standard quality assurance criterion with clinical meaning should be 
established for DIR QA, similar to the gamma index concept, in the near future.
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