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Abstract
Models of adaptive bet-hedging commonly adopt insights from Kelly’s famous work
on optimal gambling strategies and the financial value of information. In particular,
such models seek evolutionary solutions that maximize long-term average growth rate
of lineages, even in the face of highly stochastic growth trajectories. Here, we argue
for extensive departures from the standard approach to better account for evolution-
ary contingencies. Crucially, we incorporate considerations of volatility minimization,
motivated by interim extinction risk in finite populations, within a finite time horizon
approach to growth maximization. We find that a game-theoretic competitive opti-
mality approach best captures these additional constraints and derive the equilibria
solutions under straightforward fitness payoff functions and extinction risks. We show
that for both maximal growth and minimal time relative payoffs, the log-optimal strat-
egy is a unique pure strategy symmetric equilibrium, invariant with evolutionary time
horizon and robust to low extinction risks.
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1 Introduction

‘‘Adversity has the effect of eliciting talents, which in prosperous
circumstances would have lain dormant.’’ -- Horace (65BC-8BC)

Kelly’s work on optimal gambling strategies and the value of side information was
arguably the first convincing attempt at applying concepts from information theory
for analysis in a different field Kelly (1956). This work was the precursor to growth-
optimal portfolio theory which has extended the basic ideas to the realm of capital
markets (Cover and Thomas 2006). There has recently been a resurge of interest in
employing insights from optimal gambling theory in models of adaptive bet-hedging
under fluctuating environments, where close analogies between the economic and
biological setting have been convincingly made apparent (Bergstrom 2014; Rivoire
and Leibler 2011; Donaldson-Matasci et al. 2010).

Biological bet-hedging was originally proposed to explain the observation of un-
germinated seeds of annual plants (Cohen 1966). This strategy involves the variable
phenotypic expression of a single genotype, rather than a result of genetic polymor-
phism, although it is difficult to empirically determine whether observed phenotypic
diversity in a population arises from randomization by identical genomes or from an
underlying polymorphism (Seger and Brockmann 1987). Indeed, evolutionary biol-
ogists have long acknowledged that in a stochastically variable environment, natural
selection is likely to favor a gene that randomizes its phenotypic expression (Bergstrom
2014). Recentwork has revealed a variety of potential instances of bet-hedging popula-
tions: delayed germination in desert winter annual plants that meets postulated criteria
of adaptive bet-hedging in a variable environment (Gremer and Venable 2014), bacte-
rial persistence in the presence of antibiotics that appears to constitute an adaptation
tuned to the distribution of environmental change (Kussell et al. 2005), flowering times
in Lobelia inflata which point to flowering being a conservative bet-hedging strategy
(Simons and Johnston 2003), or even bet-hedging as a behavioral phenotype, such as
the case of nut hoarding in squirrel populations in anticipation of short or long winters
(Bergstrom 2014).

Notwithstanding these empirical findings, identifying actual cases of adaptive bet-
hedging in the wild remains elusive. As Seger and Brockmann (1987) have noted
more than three decades ago, it is in general difficult to determine whether observed
diversity of behavior in a population arises from randomization by genetically identi-
cal individuals or from genetic heterogeneity within co-located individuals optimized
for different environmental conditions. Moreover, phenotypic heterogeneity can arise
within genetically homogenous populations as a form of specialization in a stable envi-
ronment through stochastic gene expression, positive feedback loops, or asymmetrical
cell division, all processes where bet-hedging is not at play (Rubin and Doebeli 2017).
These difficulties provide further impetus for constructing better and more elaborate
models to test against the data.

Of particular note in classic bet-hedging models is the adoption from economic
theory of asymptotic growth rate optimality as the target function for fitness maxi-
mization strategies, where growth in wealth is analogous to growth in lineage size.
Indeed, since evolution proceeds by shifting gene frequencies over generations, with
frequency changes being multiplicative, long-term fitness is commonly measured by
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geometric mean fitness across generations (Hopper 2018). At the same time, it is also
widely acknowledged that long-run growth rate is not a valid measure of fitness under
fluctuating environments, such as in the case of bet-hedging populations (Lande 2007).

The resulting intrinsic unpredictability has led some researchers to formulate a
probabilistic perspective for natural selection that integrates various effects of uncer-
tainty on natural selection (Yoshimura et al. 2009). The applicability of geometric
mean fitness has also come into question under finite-population models, where the
probability of fixation provides additional and sometimes more suitable information
than the geometric mean fitness (Proulx and Day 2001), and in periodically cycling
selection regimes, where evolutionary success depends on the length of the cycle and
the strength of selection (Ram et al. 2018). Moreover, both gambling and bet-hedging
models targeting optimal growth rate implicitly assume an infinite time horizon in
formulating the geometric average, thereby ignoring the finiteness of actual horizons
over which both economic and evolutionary processes ultimately act. The problem is
further amplified when interim extinction risk is taken into account, especially under
finite-population models. Lineage growth trajectories which are highly stochastic are
at risk of large “drawdowns,” which may pull the population below some extinction
threshold, despite possessing a high asymptotic growth rate. Here we aim to incorpo-
rate considerations of finite evolutionary horizons and extinction risk in the search for
adaptive optimality in bet-hedging models.

1.1 Background: The StandardModel

Most adaptive bet-hedgingmodels are largely based on the classic horse race gambling
model associated with Kelly (1956), where the biological counter-part is a lineage
apportioning bets on several possible environments. Assume that k horses run in a
race, and let horse Xi win with probability pi . If horse Xi wins, the odds are oi for
1. A gambler wishes to apportion his bankroll among the horses 0 < fi ≤ 1, such
that

∑
fi = 1 and participate in indefinitely repeated races n → ∞. How to best

apportion the bankroll each time? In this setting, wealth is a discrete-time stochastic
process over n periods,

Wn =
n∏

i=1

Wi (X)

where W (X) = f (X)O(X) is the random factor by which the gambler’s wealth is
multiplied when horse X wins. More explicitly,

Wn( f ) =
k∏

i=1

( fi oi )
Hi , where, H ∼ Multinomial(n, k, [p1, . . . , pk]).

Kelly’s first insight was that choosing to simply maximize expected wealth (for any
time horizon n) gives argmax f E[Wn( f )] = 1, with the implication that one bets
everything on a single horse (the one with the highest pi ) and a consequent chance
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of total ruin once that horse loses a race. Therefore, Kelly proposed maximizing the
asymptotic growth rate [the rigorous justification provided by Breiman (1961)]. By
the law of large numbers random wealth may be expressed as,

Wn( f )
.= 2nE[logW (X)]

where,

E[logW (X)] =
k∑

i=1

pi log fi oi

is the asymptotic exponential growth rate. If the gambler stakes his entire wealth each
time, i.e.,

∑
fi = 1, then

E[logW (X)] =
k∑

i=1

pi log oi − H(p) − D(p|| f )

is maximized (convex nonlinear optimization) at “proportional gambling” f = p
where D(p‖ f ) is minimized, without regard the actual odds provided by the bookie.

Indeed, the notion of proportional gambling, made famous by Kelly’s treatment,
has found its way into classic models of diversified bet-hedging. In such models often
assumed that “appropriate phenotypes are produced in proportion to the likelihood of
each environment” (Hopper 2018) and that consequently “the classical bet-hedging
prediction [is] that the optimum probability for employing a strategy is approximately
equal to the probability that the strategy will be useful” (King and Masel 2007). Here
we follow recent approaches that extend the standardmodel to non-lethal environments
via a full-fitness matrix, such that this notion is no longer directly applicable.

Breiman (1961)was first to show that theKelly solution is optimal in two convincing
ways: [a] that given a Kelly strategy φ∗ and any other “essentially different” strategy
φ (not necessarily a fixed fractional betting strategy),

lim
n→∞

Wn(φ
∗)

Wn(φ)
= ∞ a.s

and [b] that it minimizes the expected time to reach asymptotically large wealth goals.
Moreover, this strategy is myopic in the sense that at each iteration of the race one
only needs to consider the presently given parameters (Hakansson 1971). However,
Kelly strategies may also yield tremendous drawdowns a problem widely recognized
in the gambling community, such that optimal Kelly is often viewed as “too risky”; in
practice gamblers and investors use “fractional Kelly”which deviates from the optimal
solution but reduces the effective variance of the stochastic growth (Fig. 1). In the bio-
logical framework, this can lead to abrupt extinction events in finite (especially small)
populations with highly stochastic lineage growth trajectories. A further complication
is that the underlying probability distributions are merely estimated from past data and
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Fig. 1 The asymptotic exponential growth rate and its (finite-horizon) variance for either the two-horse
racing model or the classic bet-hedging model (two environments). Note that the strategy ( f on the x-axis)
that maximizes the growth rate is far from the locus of minimal variance (Color figure online)

model assumptions, leading often to over-betting and increased risk (MacLean et al.
2011).

In this work, we extend the existing models to incorporate both interim extinc-
tion risk and finite evolutionary time horizons within a bet-hedging framework. This
requires re-conceptualizing geometric mean fitness for such highly stochastic growth
scenarios. We ultimately derive fitness functions that better account for such condi-
tionswhere the fluctuating environment is strongly coupled to both long and short-term
growth and locate optimal stable equilibria.

2 Methods

2.1 The Full-Fitness Matrix Model

We assume environments are i.i.d random events across generations, multinomially
distributed (with some results generalized to non-identically distributed environ-
ments). Individuals within lineages have a static full-fitness matrix [Oi j ] in which
non-lethal environments have low but generally nonzero fitness (Donaldson-Matasci
et al. 2010; Rivoire and Leibler 2011). We adopt a finite-population model where lin-
eages start off with some initial population size W0, implicitly assumed higher than
somebet-hedging evolutionary threshold (King andMasel 2007). Lineages then evolve
strategies to randomize individual phenotypes towardmaximizing growth across finite
horizons in the face of interim extinction threats. More formally, with k environments
and phenotypes,
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[oi j ] :=

t1 · · · tk
⎛

⎝

⎞

⎠

e1 o11 · · · o1k
...

...
. . .

...

ek ok1 · · · okk

(1)

the general model of lineage growth trajectory across n generations under strategy f
is a random process,

Wn =
k∏

i=1

( k∑

j=1

f j oi j
)Hi

(2)

where,

H ∼ Multinomial(n, k, [p1, . . . , pk])

with off-diagonal values reflecting the lower fitness for non-matching environments,

oii > oi j ≥ 0 and oii > 1

and where all individuals in a lineage are bet-hedging,

k∑

i=1

fi = 1.

And finally, using a straightforward formulation of the growth rate,W 1/n
n , a random

variable for any finite horizon.
We first derive the asymptotic growth rate optimal “Kelly” solution for this set-

ting ( f Kelly) with a corresponding bet-hedging region of the environment simplex
(“Appendix A”). Relaxing the assumption of i.i.d environments, we derive the static
Kelly solution for the case of nonstationary environments—where environments are
independent but not identically distributed across generations (“Appendix B”). While
under nonstationary environments an optimal growth rate is reached with a dynamic
myopic strategy, we focus here on a static strategy since adaptations effectively stabi-
lize across time spansmuch higher than single generations, such that fromevolutionary
considerations dynamic strategies are not likely to emerge. Alternative models of fluc-
tuating environments such as Markov chains with underlying switching probabilities
(e.g., Li et al. 2017) are not pursued here and left for future work. Finally, we identify a
“reference” strategy that admits deterministic growth trajectories, namely the “Dutch
book” solution (where the variance of the finite-time growth rate is zero) and charac-
terize the consequent loss of growth incurred by exchanging opportunity for certainty
(Appendix C).
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2.2 Relative Fitness Payoff Function

We now wish to go beyond the standard approach of targeting the optimization of the
asymptotic growth rate as undertaken in the previous section—to incorporate finite
evolutionary horizons and extinction risk considerations. For the sake of simplicity,
we confine our model here to the case of k = 2 environments and phenotypes (so that
the two environments occur with probability p and 1 − p). To motivate the shift to
a finite-horizon framework, we first highlight an important property of our stochastic
growth model, known also in portfolio theory (Markowitz 2006). We prove that for
any two essentially different strategies, the maximal time n0 one lineage “dominates”
the other is finite for every realization of lineage trajectory pair (“Appendix D”). The
exponentially diminishing histogram of last intersection times of given two growth
strategies in Fig. 2b (with a single instance of two trajectories for illustration in Fig. 2a)
demonstrates this phenomenon.

The sustained variance and high skewness of the growth rate distribution under
any finite horizon necessitates a comparative approach in formulating a fitness payoff
function (in fact, the growth rate is asymptotically log-normal as shown in “Appendix
E”). Consider a relative fitness measure for two different lineage strategies f and
g: The probability that a random trajectory of a lineage with strategy f exceeds the
random trajectory of a lineage with strategy g (given time horizon n),

h( f , g) = P(Wn( f ) > Wn(g)) (3)

with an induced relation defined by,

Wn( f ) ≥ Wn(g) : P(Wn( f ) > Wn(g)) ≥ P(Wn( f ) < Wn(g)). (4)

We may interpret this probabilistic relation between two strategies as relative fit-
ness. Note that since realizations ofWn( f ) andWn(g) stem from the same underlying
stochastic environmental sequence, they will generally be highly correlated (with
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Fig. 2 Two perspectives on growth trajectories Wn and their last “intersection” point for two lineages with
different strategies (a log-optimal Kelly and a suboptimal “fractional Kelly”). a The optimal Kelly strategy
eventually departs from a suboptimal strategy without further intersections, “the last intersection.” | b A
histogram demonstrating that the last intersection of the trajectories of any two growth strategies occurs at
some finite time (here, somewhat above 500 generations) (Color figure online)
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Fig. 3 The distributions of log growth rates for two competing strategies here illustrated as histograms (the
x-axis is the log growth rate). In this simple case shown, the strategy generating the higher growth rates
right distribution (blue) is evidently of higher fitness than the one generating the left distribution (green).
For clarity, only the marginal distributions are shown (the complete picture is in the joint distribution, due
to the correlation between any two growth trajectories that share the same fluctuating environment regime)
(Color figure online)

the corresponding logarithmic growth rates in fact perfectly correlated, as shown in
“Appendix F”). Consequently, the probability in Eq. (3) must be derived from their
joint distribution rather than simply frommarginal distributions. Figure 3 depicts real-
izations of the log growth rates of Wn( f ) and Wn(g) as histogram distributions for
some choice of strategies f and g, and some finite evolutionary horizon n. Asymptot-
ically with time horizon n, such distributions approach normality with variance going
to zero (“Appendix E”).

A few properties of the order induced by this relation are worth highlighting. [a] it is
a complete order since any twoWn are comparable under the relation, [b] it is transitive
for any n and consequently a pre-order, and [c] its maximal element is W ∗

n ( f Kelly),
such that both the order induced by E[logWn( f )] and the order induced by the payoff
P(Wn( f ) > Wn(g)) form complete preorders and have the same maximal element
(“Appendix G”). Despite these beneficial properties, given any “vanilla” strategy g
and time horizon n, the strategy that maximizes the payoff function,

argmax f P(Wn( f ) > Wn(g))

will vary as a function of g and n (demonstrated by counterexamples), and in particular
will not necessarily be f Kelly. This implies that a wildtype lineage with strategy g
different from f Kelly will eventually be overtaken by some mutant invasive lineage
with a strategy that maximizes this payoff function, a process that may potentially
remain in recurrent flux, with invasive lineages replacing a wildtype lineage.
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2.3 Competitive Optimality with Risk

To see whether evolutionary stable optima may also emerge, we develop a game-
theoretic approach. Players are lineages with particular bet-hedging strategies and
random initial population size. Lineages interact by competing over a common niche
subject to the same environmental fluctuations. This setup is in some contrast to more
standard evolutionary game theory settings, where agents are organisms rather than
lineages and where the notion of an iterated strategy is prominent, but maintains the
central aspect of interactions formalized in a payoff function (e.g., Stollmeier and
Nagler 2018). A lineage survives the competitive encounter by avoiding extinction
(defined in what follows) while exceeding its opponent in size over a given time hori-
zon. This outcome is determined by a game-theoretic deterministic payoff function,
modified from Eq. (3) to incorporate an extinction threshold and randomized initial
lineage size. Ultimately, we are searching for Nash equilibria.

This approach is motivated by the classic work on time-invariant game-theoretic
competitive optimality, within the scope of growth-optimal portfolio theory (Bell and
Cover 1980, 1988). Bell and Cover consider a competitive setting for a stock portfolio
model under any finite number of investment periods and prove that for any relative
wealth payoff E[φ(UW1/VW2)] and portfoliowealthW1 andW2, there are conditions
on the function φ such that the log-optimal Kelly portfolio is a solution to the game,
given initial randomizations U and V (independent and of equal expectation). In
particular, φ(x) = χ[1,∞)(x) results in the payoff P(UW1 ≤ VW2) with the log-
optimal portfolio as a game-theoretic solution, given some initial fair randomizations.
This additional fair randomization reduces the effect of small differences in endwealth,
thus avoiding unwanted cases where the optimal strategy is beat by a small amount
most of the time (Cover and Thomas 2006).

2.4 The Payoff Function in a Game-Theoretic Setting

For any time horizon n and extinction threshold d, we define a (deterministic) payoff
function: The probability that a random trajectory of a lineage with strategy f exceeds
the random trajectory of a lineage with strategy g without first going extinct (given
time horizon n),

Mn( f , g) = P(u0Wn( f ) > v0Wn(g)| extinction level d) :=
P(u0Wn( f ) > v0Wn(g) ∧ Wi , Vi > d, i : 1, . . . , n) +
P(u0Wi ( f ) > d, i : 1, . . . , n ∧ v0Wi (g) ≤ d some i) (5)

with initial population size independent randomizations u0 and v0, independent and
of same mean but possibly of a different distribution class.

This payoff function induces a symmetric discrete-valued non-constant-sum game
setting, although it is conceptually “zero-sum” Mn( f , g)+Mn(g, f ) < 1 (“Appendix
H”). Crucially, our payoff matrix is finite since it reflects the finitely many strategies
possible in a finite-population model—there can only be N different sized partitions
of a population of size N in betting on two environments (under k = 2 environments
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Fig. 4 An example of a (2 × 2 strategies) evolutionary payoff matrix for a game of two lineages, with
primary lineage payoff in bold (Color figure online)

a b c d

Fig. 5 An example of payoff matrix simulations (a and c darker cells represent higher probabilities) and the
resulting Nash equilibria in the maximal element matrices (b and d blue cells for column-maximal primary
player payoffs, red for row-maximal opponent payoffs and yellow for symmetric Nash equilibria). Only
portions of the matrices around the equilibrium are shown. a+b Low-resolution matrices corresponding to
a small population with limited strategies | c+d Higher resolution matrices, which correspond to a larger
population and subsequently higher number of strategies (multiple maxima in some adjacent cells of panel
D is an effect due to a combination of using finite runs in the simulation of the payoff function, such that
computed probabilities are rational values, along with high resolution in the range of strategies). The model
uses a 2 × 2 fitness matrix: [o11 = 3.0; o12 = 0.2; o22 = 1.8; o21 = 0.1] with p = 0.594 and a resulting
log-optimal strategy f = 0.60) (Color figure online)

and phenotypes). A low-resolution toy-model instance of the payoff matrix is depicted
in Fig. 4.

Our goal would be to identify pure strategy Nash equilibria reflecting the evolu-
tionary solutions to competitive bet-hedging. In particular, we would like to explore
the conditions under which a bet-hedging setting admits a symmetric equilibrium and
whether it is unique. In “Appendix I,” we prove that for an infinite-size payoff matrix
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Fig. 6 a The accumulative probability of extinction for log-optimal (Kelly) strategies for different lineage-
size extinction thresholds. |bAn instance of themaximal elementmatrix of a payoffmatrix (a portion around
the solutions) resulting from introducing an extinction threshold: two off-diagonal Nash equilibria (black)
along with a symmetric Nash equilibrium shifted from the log-optimal strategy (yellow). The simulations
use a 2 × 2 fitness matrix: [o11 = 2.5; o12 = 0.2; o22 = 1.4; o21 = 0.1] with p = 0.75, and with n = 60
in the simulation of panel B (Color figure online)

(i.e., continuous strategies) the log-optimal strategy is the solution to this game, invari-
ant with the choice of time horizon. Moreover, any finite matrix representing the N
strategies possible for a lineage of finite size N necessarily also admits a solution,
as illustrated in Fig. 5. This solution is the strategy closest to the log-optimal strat-
egy under the finite resolution framework, such that it converges to it asymptotically
with N (“Appendix L”). Finally, under a nonstationary environment model the log-
optimal strategy again emerges as the equilibrium static strategy—even given short
time horizons (“Appendix M”).

The effect of lineage-size extinction thresholds on actual rates of extinction of
random growth trajectories is illustrated in Fig. 6a. As would be expected, higher
thresholds of extinction correspond to higher probabilities of extinction, with extinc-
tion rates that converge quickly to asymptotic values (“Appendix N”). Numerical
simulations indicate that when incorporating low extinction thresholds that result in
low extinction rates, the symmetric Nash equilibrium remains stable at the log-optimal
strategy. Higher thresholds may result in a number of scenarios: a shift of the sym-
metric equilibrium away from the log-optimal solution, complete lack of equilibrium
solution, or the emergence of multiple symmetric equilibria; in conjunction, multiple
pairs of off-diagonal equilibria may appear (see Fig. 6b for one such scenario).

2.5 MinimumTime to Reach a Population Threshold Size

To gain further perspective on optimal strategies under highly stochastic growth, we
consider evolutionary competition between lineages, where survival is determined by
reaching a certain threshold of lineage size in minimal time [e.g., for K−selected
species, see Reznick et al. (2002)]. In effect, the lineage with growth characteristics
that minimize the time to reach a certain population size threshold “wins,” a setting
with potential relevance in the context of competitively colonizing a limited niche, as in
range expansion scenarios [see Villa Martin et al. (2019) for a bet-hedging population
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threshold, for two strategies | b A simulation of (E[T (g, c)] − E[T ( f ∗, c)]) for several target values c,
under the range of vanilla strategies g corresponding to positive asymptotic growth rates, where f ∗ = 0.8
(Color figure online)

expanding into an unoccupied space]. We follow the classic results of Breiman 1961
on the log-optimal portfolio as the optimal strategy minimizing the expected time to
reach an asymptotic target wealth, but instead of an infinite target we base the fitness
payoff function on finite targets. Initial insight into the effect of strategy choice on
the consequent distributions of minimal time (Fig. 7a) is provided by comparing their
expectation, where the optimality of Kelly is already apparent (Fig. 7b).

Instead of considering expectations of (highly correlated) minimal time distri-
butions, we devise a more informative fitness payoff function based on the joint
distribution. Crucially, this payoff will naturally be amenable to a game-theoretic
approach, in linewith the type of analysis in the previous sectionwith payoffMn( f , g).
As before, we condition the probability on avoiding an extinction threshold. The pay-
off captures the probability that a trajectory following strategy f reaches threshold c
before a trajectory following strategy g, conditioned on avoiding an extinction thresh-
old d. If both trajectories reach c at the same time (since time is in discrete generations),
then the onewhich overshootswith a greatermargin above c ‘wins’. Denote by T ( f , c)
the minimal time distribution given strategy f and target lineage size c,

Mc( f , g) = P(T ( f , c) < T (g, c)| extinction level d).

More precisely, we denote new trajectories {WE
k }nk=1 by

WE
0 ∈ U [a, b],

and for all k = 0, . . . , n − 1

WE
k+1 =

{
WE

k o1( f )xk+1o2( f )1−xk+1, if WE
k ≥ E

0, if WE
k < E .
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We denote also by

T ( f , c) := min{n : WE
n ( f ) ≥ c}

the first time when the trajectory {WE
k }nk=0 cut the threshold c. T ( f ,C) = ∞ if and

only if this trajectory does not cut the threshold.
Then the payoff matrix Mc( f , g) is defined by

Mc( f , g) := P(T ( f ,C) < T (g,C)|given that at least one of them is finite)

+P(T ( f ,C) = T (g,C),WE
T ( f ,C) > V E

T (g,C)|
given that at least one of them is finite). (6)

We then identify pure strategy Nash equilibria reflecting the evolutionary solutions
with the new relative payoff Mc( f , g). In “Appendix J,” we prove that again Kelly is
the solution to the game, invariant to the evolutionary “choice” of target population
size c and that under a nonstationary environment regime Kelly emerges as the static
equilibrium strategy. Finally, we highlight a deep mathematical link of this probabilis-
tic perspective for minimal time optimality to the competitive optimality setting with
payoff Mn( f , g). Formally, Mc( f , g) can be rewritten as a convex linear combina-
tion of Mn( f , g): Mc( f , g) = ∑∞

n=0 P(W0Wn( f ) > V0Wn(g), T ( f , c) = n) (see
“Appendix J” for more details).

3 Discussion

In this work, we provide further support for the robustness of the expected log crite-
rion as an optimality solution for biological bet-hedging.We develop a game-theoretic
framework inherently invariant to the span of evolutionary horizons while incorpo-
rating considerations of interim extinction risk and use multiple optimality criteria to
strengthen our results. This approach goes beyond standard models of bet-hedging,
which focus on indefinite “long-term” growth rates and that ignore accounting for
interim risk. Previous work generally upholds that “phenotypes with the greatest long-
term average growth rate will dominate the entire population” as “the basic principle”
used in optimization (Yoshimura and Jansen 1996), or that a proxy for the likely out-
come of evolution is “to think of organisms as maximizing the long-term growth rate
of their lineage” (Donaldson-Matasci et al. 2010).

Nevertheless, some authors have recently acknowledged the importance of account-
ing for finite time horizons. For instance, Rivoire and Leibler (2011) note in passing
that in their model “the growth rate emerges as a unique measure of fitness when
considering the long-term limit T → ∞, but, if considering a finite ‘horizon’ there
may be a different strategy that outperforms [it].” Indeed, as some evolutionists have
argued, short-term fitness measures are also needed to achieve a full understanding of
how evolution works in variable environments, as geometric mean fitness concerns the
long-run evolutionary outcome (Okasha 2018). Moreover, long-term fitness metrics
are typically formulated without regard to transient short-term population dynamics,
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in which lineages might come close to extinction. Under more inclusive models with
extinction, selection in a fluctuating environment can also favor bet-hedging strate-
gies that ultimately increase the risk of extinction (Libby and Ratcliff 2019). Given
such considerations, the benefit of explicitly incorporating extinction considerations
in stochastic growth models is clearly evident.

We have opted to focus on symmetricNash equilibria rather than evolutionary stable
strategies (ESS), which are strategies that cannot be beaten if the fraction of the rival
invading mutants in the population is sufficiently small and are generally invoked in
settings with iterative match-ups between individuals rather than lineages (Smith and
Price 1973). Since the payoff in our game-theoretic setting pits one lineage against
another (two different strategies), there is no explicit sense of invading mutants [but
see Olofsson et al. (2009) for an ESS approach to bet-hedging]. Moreover, some of
the classic aspects of Nash’s theorem do not directly apply within our setting. The
theorem states that for every two-person zero-sum game with finitely many strategies,
there exists a mixed strategy that solves the game (Nash 1951). While our framework
is indeed “two-person”, it is not zero-sum and has finitely many strategies. Crucially,
since an implicit goal of theoretical work such as ours may be toward predicting
which strategies are likely to evolve, we focus on pure strategies rather than mixed
ones,where the uniqueness of the equilibrium solution emerges as especially beneficial
(echoing the classic approach of growth rate log-optimality where there is always a
unique solution due to convexity).

We are not the first to attempt to model the expected minimal time to reach a finite
asymptotic target, an extension of the seminal result of Breiman (1961) on properties
of the log-optimal portfolio. Aucamp (1977) derived the first such analysis, given some
basic assumptions that concern reaching a wealth target exactly vs. “overshooting” it.
More recently, Kardaras and Platen (2010) find that in a continuous time or asset price
model where a finite target can be exactly reached with no overshooting, the Kelly
solution is still optimal; in a discrete time model Kelly is only approximately optimal,
but if “time rebates” are introduced (to compensate overshooting the goal in the last
investment period) it becomes exactly optimal. While these results on the expectation
of the time distribution are in line with our analysis of stochastic lineage growth
optimality, we obtain an even stronger result: Given finite population size targets, the
log-optimal strategy emerges as a Nash equilibrium under a payoff function based on
the joint distribution of minimal time trajectories.

Interestingly, Kelly (1956) has anticipated the application of his ideas in biological
bet-hedging, writing “Although the model adopted here is drawn from the real-life
situation of gambling, it is possible that it could apply to certain other economic situ-
ations…the essential requirements for the validity of the theory are the possibility of
reinvestment of profits and the ability to control or vary the amount of money invested
or bet in different categories.” It does not require a leap of the imagination to notice
analogies of “economic situations” to evolutionary strategies, of “reinvestment of prof-
its” to biological reproduction and growth, and of the “control” of invested money to
evolved adaptive optimality. Of course, it is best appreciated with Shannon’s famous
“bandwagon” warning in mind, cautioning over hasty attempts to apply insights from
information theory to other fields (Shannon 1956).
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3.1 Other Approaches to Optimization Under Finite Horizon and Risk

A seemingly straightforward way of introducing finite (albeit still arbitrary) horizons
into optimization settings is by considering the expectation of a finite-horizon growth
rate. This is the approach adopted in some recent stock portfolio models for finite
horizons (Vince and Zhu 2013; Morgan 2015). Within our formalism from Eq. (2),
this amounts to finding,

argmax f E
[
Wn( f )

1
n

]
= argmax f

( k∑

i=1

( k∑

j=1

f j oi j
) 1

n
pi

)n

.

However, this implicitly assumes some arbitrary utility function, in this case the n-th
root, themaximization of which requiring some justification. In contrast, Kelly’s focus
on argmax f E[logWn] while implicitly assumes logarithmic utility, is equivalent the
limit of the above expression, and leads to desired optimality properties as famously
laid out by Breiman (1961).

A more convincing approach to maximizing wealth with risk management over
finite horizonswas proposed inRujeerapaiboon et al. (2015) for portfolio construction.
The authors consider the optimization of a minimum bound for finite-horizon growth,

argmax f

{
argmaxc P

(1

n
logWn ≥ c

)
≥ 1 − ε

}

with a degree of freedom corresponding roughly to a risk aversion or a choice of
certainty parameter.

The expression above allows deriving the portfolio giving the highest minimum
bound for wealth for any level of certainty ε.While choosing a particular horizon n and
a risk aversion parameter is perfectly sensible in an investment setting, the translation
to the biological framework is problematic: what would be evolution’s risk aversion
in this setting? Or the appropriate time horizon for optimization? Any choice of these
two parameters would inescapably be arbitrary in nature. In an alternative approach
Rujeerapaiboon et al. (2018) reformulate the Kelly gambling setting in terms of the
Conservative Expected Value (CEV), a risk-averse expectation for highly skewed
distributions. This amounts essentially to devising a systematic way of constructing
fractional Kelly strategies such that it is strongly coupled with the infimum of the
finite-horizon growth rate. Here again, there is an implicit arbitrariness in the choice
of horizon length if applied in the context of an evolutionary framework, which we
seek to avoid.

Other authors have focused on incorporating risk to the standard Kelly gambling
setting with an infinite time horizon. For instance, Busseti et al. (2016) develop
a systematic way to trade-off growth rate and drawdown risk by formulating a
risk-constrained Kelly gambling problem within the standard setting of growth rate
maximization under asymptotic horizons. The additional risk constraint limits the
probability of a drawdown to a specified level. Nevertheless, for our purposes, per-
centage drawdown is arguably not a natural metric for representing lineage extinction
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risks, as compared with explicit extinction thresholds, especially in scenarios of com-
peting finite-size populations (Ashby et al. 2017). Still other approaches may seek to
target risk minimization as a primary criterion. In an approach akin to our Dutch book
analysis, Wolf et al. (2005) minimize the growth rate variance and consequently the
probability of extinction due to “unlucky” environmental trajectories. However, this
is at the inevitable expense of achieving high stochastic growth rates, a vital aspect of
evolutionary fitness.

3.2 Game-Theoretic Competitive Optimality of Bell and Cover

The results presented here can also be seen as both a special case and an extension
of the classic results of Bell and Cover (1980, 1988). There are several important
distinctions: [a] their setting is formulated for continuous random variables whereas
our environments are discrete events, [b] their payoff implies a zero-sumgamewhereas
our game is nonzero-sum (more accurately, non-constant-sum) due to the effect of
extinctions, and [c] their payoff function is a straightforward probability while our
payoff is effectively a conditional probability (includes considerations of extinction
risk).Moreover, implicit in Bell andCover’s setting is an infinitely sized payoffmatrix,
whereas our payoff matrix is finite since it reflects a finite number of strategies possible
in a finite population. These distinctions have enabled us to show that, at least given
the particular payoff function and discrete framework, the emerging symmetric Nash
equilibrium is in fact a strict and unique one.

Some authors have generalized or utilized other aspects of the classic competitive
optimality results.Most recently, Garivaltis (2019) has shown that discrete-time results
of Bell and Cover (1988) hold equally well for continuous-time rebalanced portfolios
in a competitive setting between two investors, each aiming to maximize the expected
ratio of one’s ownwealth to the other. In an original use of evolutionary ideas in finance,
Lo et al. (2017) and Orr (2017) consider a payoff function capturing relative wealth of
two competing investors each with some set initial wealth, focusing on finite-period
analysis. They analyze optimal strategies of a primary player against a given “vanilla”
strategy, a framework consistent with our initial relative payoff non-game-theoretic
setting. They find that the particular vanilla strategy chosen plays an important role in
the optimal allocation, in conjunction with initial wealth of both players.

Finally, our game-theoretic analysis may hint at a solution to a “coincidence”
pointed out in Bell and Cover (1980). They were left perplexed as to why competitive
optimality for a finite horizon turned out, by “coincidence,” to have the same solution
(namely, Kelly) as in the growth-optimal portfolio: “Finally, it is tantalizing that b∗
arises as the solution to such dissimilar problems […] The underlying for this coinci-
dence will be investigated.” Their follow-up 1988 paper suggests a “possible reason
for the robustness of log-optimal portfolios” or why “log-optimal portfolios behave
well in the competitive investment game”: namely that the wealth generated from any
portfolio is always within “fair reach” of the wealth from the log-optimal portfolio.
Indeed, the Kuhn–Tucker conditions and the consequent bound on the wealth ratio
(Cover and Thomas 2006, Theorem 16.2.2) already imply that game-theoretic opti-
mality is the driving force behind the asymptotic dominance. Fair randomization of
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initial wealth then leads to the game-theoretic solution for any increasing function
of the wealth ratio. Our investigation of the payoff matrix suggests another perspec-
tive to this “coincidence.” Asymptotically with horizon n, the payoff matrix becomes
maximally “contrasted,” with off-diagonal cells converging to probabilities of 0 or 1
(except those on “fault lines”), such that the Nash equilibrium emerges naturally. In
effect, the “saddle-point” equilibrium, which has been established as invariant with n,
asymptotically attains maximum curvature (“Appendix K”).

4 Conclusion

In this work, we have argued that under fluctuating environments and trait randomiza-
tion geometricmeanfitness should also encompass considerations of stochastic growth
and extinction risk under finite evolutionary horizons. We show that for both the rel-
ative maximal growth payoff and the relative minimal time payoff there is a unique
pure strategy symmetric equilibrium,which is invariantwith evolutionary time horizon
and robust to low extinction risk. Coinciding with the classic bet-hedging modeling
approach, this is the Kelly log-optimal strategy. With higher thresholds of extinction,
the equilibrium may shift away from Kelly and possibly branch out to multiple equi-
libria. Future work will be required to generalize the model to competitive optimality
payoffs beyond pairwise lineages, Markovian environmental sequential transitions,
random fitness matrices, and to more precisely capture the effect of high extinction
thresholds on the optimal evolutionary solutions.
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Appendix A: The Kelly Solution to the Full-Fitness Matrix Model

In this section, we derive the Kelly (log-optimal) solution for the full-fitness matrix
model.

The case k = 2: We have

Wn( f ) = (o11 f + o12(1 − f ))H (o21 f + o22(1 − f ))n−H
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where H ∼ Binomial(n, p). The Kelly solution is then defined by

f Kelly := argmax f ∈[0,1] G( f )

where G( f ) := limn→∞ W
1
n
n ( f ).

By denoting o1( f ) := o11 f + o12(1 − f ), o2( f ) := o21 f + o22(1 − f ), we have

lim
n→∞

1

n
logWn( f ) = lim

n→∞

(
H

n
log o1( f ) +

(

1 − H

n

)

log o2( f )

)

= p log o1( f ) + (1 − p) log o2( f ).

Therefore, by directed calculations, we obtain the Kelly solution which is dependent
on p

f Kelly(p) =

⎧
⎪⎨

⎪⎩

0, if p ∈ [0, p−]
(1−p)o12
o12−o11

+ po22
o22−o21

, if p ∈ [p−, p+]
1, if p ∈ [p+, 1],

where p− = o12(o22−o21)
�

and p+ = o11(o22−o21)
�

, and the corresponding optimal value
is

G( f Kelly) =

⎧
⎪⎪⎨

⎪⎪⎩

op12o
1−p
22 , if p ∈ [0, p−]

(
p(o11o22−o12o21)

o22−o21

)p(
(1−p)(o11o22−o12o21)

o11−o12

)1−p
, if p ∈ [p−, p+]

op11o
1−p
21 , if p ∈ [p+, 1].

The case general k: By directed calculations, we obtain

G(f) =
k∏

i=1

oi (f)pi

where oi (f) := ∑k
j=1 oi j f j . This implies that for each p ∈ �k−1 := {(x1, . . . , xk) ∈

[0, 1]k such that x1 + · · · + xk = 1}, G(f) is a continuous strict convex function in
the compact convex domain �k−1. Therefore there will always exist a unique Kelly
solution f Kelly ∈ �k−1 which is dependent on p.

Remark:

(i) If thefitnessmatrix is diagonal, i.e., (oi j ) = diag{o1, . . . , ok}, then ( f Kelly)i = pi ;
(ii) f Kelly solves the system

k∑

i=1

pioi j
oi (f)

= 1, ∀ j = 1, . . . , k.
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Appendix B: The Solution to Nonstationary Environments

We model the environment probabilities on a parameterized Beta distribution, such
that p ∼ B(α, β), and prove that the Kelly solution (a static f that maximizes the
asymptotic growth rate) in the asymptotic framework corresponds to the solution of
the i.i.d. environment case with a probability equaling the expectation of the Beta
distribution.
For sake of simplicity, we consider only k = 2.We haveWn( f ) = o1( f )Ho2( f )n−H ,
where H ∼ GB

(
n, {p1, . . . , pn} ∼ Beta(α, β)

)
, i.e., H = ε1 + · · · + εn with

εr ∼ Bernoulli(pr ) and pr ∼ Beta(α, β). Using the law of large numbers, we have

G( f ) = lim
n→∞

(∑n
i=1 εi

n
log o1( f ) +

(
1 −

∑n
i=1 εi

n

)
log o2( f )

)

= lim
n→∞

(∑n
i=1 Eεi

n
log o1( f ) +

(
1 −

∑n
i=1 Eεi

n

)
log o2( f )

)

= lim
n→∞

((1

n

n∑

r=1

pr
)
log o1( f ) +

(
1 − 1

n

n∑

r=1

pr
)
log o2( f )

)

= p log o1( f ) + (1 − p) log o2( f ) a.s.

where p = limn→∞ 1
n

∑n
r=1 pr = α

α+β
is the expectation of the Beta distribution.

Thus, the Kelly solution in this case is the same as the previous case.

Appendix C: The Dutch Book Solution and the Corresponding Loss of
Growth

In this section, we derive the Dutch book solution for our model. By definition, the
Dutch book solution f D satisfies o1( f ) = o2( f ) = · · · = ok( f ) with the positive
growth, i.e., o1( f ) > 1.

The case k = 2: The Dutch book solution satisfies

o11 f + o12(1 − f ) = o21 f + o22(1 − f ) > 1.

Therefore, if � := o11o22 − o12o21 > o11 + o22 − o12 − o21 then we always have a
unique Dutch book solution f D

f D = o22 − o12
o22 − o12 + o11 − o21

and

G( f D) = �

o22 − o12 + o11 − o21
> 1 (which does not depend on p).
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The general case k: We give out here some criteria to have a unique Dutch book
solution in the general case k.

Lemma 1 Given a fitness matrix O = (oi, j )ki, j=1. Denote by αi, j = oi, j − ok, j for

all j = 1, . . . , k and i = 1, . . . , k − 1. Denote by � = (�i, j )
k
i, j=1 such that

⎛

⎜
⎜
⎜
⎝

α1,1 · · · α1,k−1 α1,k
...

. . .
...

...

αk−1,1 · · · αk−1,k−1 αk−1,k
1 · · · 1 1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

�1,1 · · · �1,k
...

. . .
...

�k,1 · · · �k,k

⎞

⎟
⎠ = Ik .

If this fitness matrix O satisfies

(i) oii > o ji ≥ 0 for all i, j = 1, . . . , k
(ii) �i,k > 0 for all i = 1, . . . , k

(iii)
k∑

j=1
oi, j� j,k > 1 for all i = 1, . . . , k − 1

then there exists a Dutch book solution defined by f Dj = � j,k, j = 1, . . . , k and
the corresponding deterministic wealth is

G(fD) =
k∏

i=1

( k∑

j=1

oi, j f
D
j

)pi =
k∑

j=1

oi, j� j,k .

Proof We have from Condition (i i i)

o1(fD) =
k∑

j=1

o1, j f
D
j =

k∑

j=1

o1, j� j,k > 1;

Moreover from the definition of α and �, we have oi (fD) = o j (fD) for all i �= j =
1 . . . , k. 
�
Corollary 1 In the case of a diagonal matrix, i.e., oi, j = diag{o1, . . . , ok}, by direct
calculation, we obtain �i,k = o−1

i
k∑

j=1
o−1
j

.

Conditions (i) and (ii) hold true iff oi > 0 and condition (iii) holds true iff
k∑

j=1
o−1
j < 1.

Corollary 2 For a finite n and assumingmin{oii }ki=1 � max{oi j }i �= j ≥ 0, there exists
a Dutch book solution fD.

Proof The conclusion directly follows from the above Corollary 1 (for a diagonal
fitness matrix). 
�
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Appendix D: Finite Last Intersection

In this section, we show that for a given pair of strategies ( f , g) with G( f ) > G(g),
there is a T ( f , g) < ∞ such that Wn( f , x) > Wn(g, x) for all n ≥ T ( f , g) and for
all x ∈ {0, 1}∞. This means that the last intersection between two random trajectories
{Wn( f , x)}n and {Wn(g, x)}n

τ(x) := sup{n : Wn( f , x) ≤ Wn(g, x)}

is bounded above by T ( f , g) (a finite number depending only on f and g).

Proof We first define the excess growth rate

En(x) := 1

n
logWn( f , x) − 1

n
logWn(g, x).

We note that for all x

lim
n→∞ En(x) = logG( f ) − logG(g) > 0. (7)

To this end, we need to prove that there is a T ( f , g) < ∞ such that

inf
x

En(x) > 0 ∀n ≥ T ( f , g).

Otherwise, for each k there exist nk ≥ k and xk ∈ {0, 1}∞ such that Enk (xk) ≤ 0.
Now, there exists a subsequence of {xk} which is convergent to some x ∈ {0, 1}∞.
Therefore as k → ∞ we have nk → ∞ and limnk→∞ Enk (x) ≤ 0, in contradiction
to (7). 
�

Appendix E: Asymptotic Log-Normality of the Growth Rate

In this section, we show that in our discrete model, the growth rate approaches log-
normality with zero variance.

Proof We rewrite 1
n logWn( f ) = 1

n

∑n
i=1 yi , where yi = xi log o1( f ) + (1 −

xi ) log o2( f ) are independent discrete random variables with values: log o1( f ),
log o2( f ) and probabilities: p, 1 − p correspondingly. Thus we have a sequence
of i.i.d. random variables {yi }i with expectation μ = E(yi ) = G( f ) and variance
σ 2 = var(yi ) = p(1− p)(log o1( f ) − log o2( f ))2. By using the CLT, we have for a
large n: 1/

√
n

∑n
i=1(yi − μ) ∼ N (0, σ 2) which is equivalent to

1

n

n∑

i=1

yi ∼ N

(

μ,
σ 2

n

)

.


�

123



50 Page 22 of 32 O. Tal,T.D. Tran

Appendix F: Fully Correlated Log Growth Rates for the Case k = 2:

In this section, we show that for all f , g �= f D

Cor[logWn( f ), logWn(g)] = ±1.

Proof Denote by

Wn( f , x) = o1( f )
|x|o2( f )n−|x|,

where x = (x1, . . . , xn) is a realization and |x | = x1 + · · · + xn . Because f , g �= f D

we have o1( f ) �= o2( f ) and o1(g) �= o2(g), therefore we can define

λ = log o1( f )
o2( f )

log o1(g)
o2(g)

∈ R\{0}.

We first prove that for any given m realizations x(1), . . . , x(m), we have

logWn( f , x(i)) − 1

m

m∑

k=1

logWn( f , x(k))

= λ

(

logWn(g, x(i)) − 1

m

m∑

k=1

logWn(g, x(k))

)

. (8)

Indeed, we note that

logWn( f , x(i)) − logWn( f , x( j)) = log
o1( f )|x

(i)|o2( f )n−|x(i)|

o1( f )|x( j)|o2( f )n−|x( j)|

= (|x(i)| − |x( j)|) log o1( f )

o2( f )
,

and similarly for g. This implies (8). Therefore

Cor[logWn( f ), logWn(g)]
= Cov[logWn( f ), logWn(g)]

√
Var[logWn( f )]

√
Var[logWn(g)]

=
1
m

m∑

i=1
(logWn( f , x(i)) − E[logWn( f )])(logWn(g, x(i)) − E[logWn(g)])

√

1
m

m∑

i=1

(

logWn( f , x(i)) − E[logWn( f )]
)2

√

1
m

m∑

i=1

(

logWn(g, x(i)) − E[logWn(g)])
)2

= λ

|λ| = ±1.
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Remark 1 Whether the correlation is ±1 depends on λ > 0 or λ < 0. For f = f Kelly

the growth factor with environment “1” > the growth factor with environment “0”
implying log o1( f )

o2( f )
> 0. Similarly for g it implies log o1(g)

o2(g)
> 0, therefore λ > 0. At

f D , log o1( f D)

o2( f D)
= 0, therefore it acts as a threshold. In most cases, the correlation will

be +1 since both f and g induce a positive growth rate.

Appendix G: Kelly is the Maximal Element in the Fitness Payoff Rela-
tion

Here we assume lineage size initial randomization, i.e., Wn( f ) � Wn(g) iff

Mn( f , g) := P(W0Wn( f ) > V0Wn(g)) ≥ P(V0Wn(g) > W0Wn( f ))

whereW0 and V0 are random, and show that the Kelly strategy is the maximal element
in this relation.

Proof As a direct consequence of Proposition 1 and Eq. (11), we have

Mn( f
Kelly, f ) ≥ 1/2 ≥ Mn( f , f Kelly) ∀ f ∈ [0, 1],

and equality if and only if f = f Kelly. 
�

Appendix H: Non-Constant-SumGame, But Conceptually Zero-Sum

In this section, we show that

Proposition 1 (i) For d = 0, Mn( f , g) + Mn(g, f ) = 1 for all f , g.
(ii) For d > 0, Mn( f , g) + Mn(g, f ) < 1 for all f , g.

Moreover, the game is conceptually zero-sum, but not formally.

Proof (i) We have from Eq. (9)

Mn( f , g) + Mn(g, f ) =
n∑

s=0

(
P(Wn( f , s)W0 > Wn(g, s)V0)

+P(Wn( f , s)W0<Wn(g, s)V0)
)
P(s)=

n∑

s=0

P(s)=1.

(ii) On the other hand, we have from Eq. (5) for all f �= g

Mn( f , g) + Mn(g, f ) = P(CAB) + P(ABc) + P(CcAB) + P(BAc)

= P(AB) + P(ABc) + P(BAc) = P(A ∪ B) < 1.

where C = {W0Wn( f ) > V0Wn(g)}, A = {W0Wi ( f ) > d ∀i = 1, . . . , n},
B = {V0Wi (g) > d ∀i = 1, . . . , n}.
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For f = g we also have

Mn( f , f ) = P(W0 > V0, A1, A2) < P(W0 > V0) = 1
2 .

where A1 = {W0Wi ( f ) > d ∀i = 1, . . . , n}, A2 = {V0Wi ( f ) > d ∀i =
1, . . . , n}.
Finally, numeric simulations demonstrate that if M(W , V ) > M(U , V ) then
M(V ,W ) < M(V ,U ) for all W , V ,U , i.e., changing to a strategy with a gain
for one player always incurs a loss for the other player. 
�

Appendix I: The Symmetric Nash Equilibrium Solution to Payoff
Mn(f ,g)

Proposition 2 We always have

E

(
Wn( f )

Wn( f Kelly)

)

≤ 1

and the equality happens if and only if p− < p < p+.

Proof For given f , g, we denote by α1 = o1( f )
o1(g)

, α2 = o2( f )
o2(g)

. We have

E

(
Wn( f )

Wn(g)

)

=
∑

x

Wn( f , x)
Wn(g, x)

P(x)

=
n∑

s=0

Wn( f , s)

Wn(g, s)
P(s)

=
n∑

s=0

αs
1α

n−s
2

(
n

s

)

ps(1 − p)n−s = (pα1 + (1 − p)α2)
n .

On theother hand, from the formula f Kelly =

⎧
⎪⎨

⎪⎩

0, if p ∈ [0, p−]
(1−p)o12
o12−o11

+ po22
o22−o21

, if p ∈ [p−, p+]
1, if p ∈ [p+, 1],

we have for any pair ( f , f Kelly), pα1 + (1 − p)α2 = 1 if p ∈ [p−, p+] and pα1 +
(1 − p)α2 < 1 if p /∈ [p−, p+]. 
�
Proposition 3 We consider a game with payoff without extinction

Mn( f , g) := P(Wn( f )W0 > Wn(g)V0),

where W0, V0 have the same distribution. Then, in this game, ( f Kelly, f Kelly) is a strict
Nash equilibrium.
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Proof First, we note that

Mn( f , g) =
n∑

s=0

P(Wn( f , s)W0 > Wn(g, s)V0)P(s)

=
n∑

s=0

P(αs
1α

n−s
2 W0 > V0)P(s)

=
∑

s∈A1

P(s)
1

2
αs
1α

n−s
2 +

∑

s∈A2

P(s)

(

1 − 1

2
α−s
1 α−n+s

2

)

, (9)

where A1 = {s ∈ {0, . . . , n} : αs
1α

n−s
2 < 1} and A2 = {0, . . . , n} − A1. Therefore,

for f = g we have α1 = α2 = 1, which implies A1 = ∅, A2 = {0, . . . , n} and

Mn( f , f ) =
n∑

s=0

P(s)

(

1 − 1

2

)

= 1/2. (10)

For any f �= f Kelly, by using the Cauchy inequality for the second term, we have

Mn( f , f Kelly) <
∑

s∈A1

P(s)
1

2
αs
1α

n−s
2 +

∑

s∈A2

P(s)
1

2
αs
1α

n−s
2

= 1

2
(pα1 + (1 − p)α2)

n .

From Proposition 2, we have

Mn( f , f Kelly) < 1/2 = Mn( f
Kelly, f Kelly), ∀ f �= f Kelly. (11)

Therefore ( f Kelly, f Kelly) is a strict Nash equilibrium. 
�
Proposition 4 The above Nash equilibrium is the unique one in the game.

Proof Assume that ( f0, g0) �= ( f Kelly, f Kelly) is another Nash equilibrium. Without
loss of generality, we assume that g0 �= f Kelly. By definition of a Nash equilibrium,
we have Mn( f0, g0) ≥ Mn( f , g0) for all f and Mn(g0, f0) ≥ Mn(g, f0) for all
g. By choosing f = g = f Kelly and using Proposition 1 we have Mn( f0, g0) ≥
Mn( f Kelly, g0) > 1

2 and Mn(g0, f0) ≥ Mn( f Kelly, f0) ≥ 1
2 . This implies that

Mn( f0, g0) + Mn(g0, f0) > 1 which is a contradiction to Proposition 1. Therefore
( f Kelly, f Kelly) is the unique Nash equilibrium (see Fig. 8 where the equilibrium lies
at the saddle-point of the payoff landscape.) 
�
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Fig. 8 A 3D graphical representation of a probability payoff matrix [Eq.(5)] with primary (blue) and
opponent (orange) lineage payoffs as intersecting saddle-point surfaces, highlighting the equilibrium locus
(Color figure online)

Appendix J: The Symmetric Nash Equilibrium Solution to Payoff
Mc(f ,g)

Proposition 5 We consider a game with payoff defined as (6) without extinction

Mc( f , g) := P(T ( f , c) < T (g, c)) + P(T ( f , c)

= T (g, c),W0WT ( f ,c)( f ) > V0WT (g,c)(g)).

Then, in this game, ( f Kelly, f Kelly) is a strict Nash equilibrium.

Proof First we note that

Mc( f , g) =
∞∑

n=1

P(T (g, c) > n, T ( f , c) = n)

+P(T (g, c) = n,W0Wn( f ) > V0Wn(g), T ( f , c) = n)

=
∞∑

n=1

P(V0Wn(g) < c, T ( f , c) = n)

+P(V0Wn(g) ≥ c,W0Wn( f ) > V0Wn(g), T ( f , c) = n)

=
∞∑

n=1

P(W0Wn( f ) > V0Wn(g), T ( f , c) = n).

Then, from Proposition 3 we have

Mc( f , f ) =
∞∑

n=1

P(W0 > V0, T ( f , c) = n) = P(W0 > V0) = 1

2
∀ f
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and

Mc( f , f Kelly) <
1

2

∞∑

n=1

P(T ( f , c) = n) = 1

2
∀ f .

Therefore ( f Kelly, f Kelly) is a strict Nash equilibrium. 
�
Proposition 6 ( f Kelly, f Kelly) is the unique Nash equilibrium.

Proof We first note that for all f , g

Mc( f , g) + Mc(g, f ) =
∞∑

n=1

P(T ( f , c) = n) = 1.

The remaining part of the proof is similar to the proof in Propposition 4. 
�
It isworthwhile here to highlight a link between this payoff andMn( f , g). Formally,

Mc( f , g) can be rewritten as a convex linear combination of Mn( f , g):

Mc( f , g) =
∞∑

n=0

P(W0Wn( f ) > V0Wn(g), T ( f , c) = n).

This has a straightforward interpretation: for each event (T ( f , c) = n), [a] the event
(T ( f , c) < T (g, c)) is equivalent to the event (T (g, c) > n) or (V0Wn(g) < c ≤
W0Wn( f )), and [b] the event (T ( f , c) = T (g, c),W0WT ( f ,c) > V0WT (g,c)(g)) is
equivalent to the event (c ≤ V0Wn(g) < W0Wn( f )). Consequently the combina-
tion of the two events (T ( f , c) < T (g, c)) and (T ( f , c) = T (g, c),W0WT ( f ,c) >

V0WT (g,c)(g)) is equivalent to the event (W0Wn( f ) > V0Wn(g)).

Appendix K: The Probability Payoff Matrix Converges with Horizon n
to the Expected LogMatrix

Proposition 7 For any pair ( f , g) with G( f ) �= G(g), we have

M∞( f , g) := lim
n→∞ Mn( f , g) =

{
1, if G( f ) > G(g)

0, if G( f ) < G(g).

Proof If G( f ) − G(g) = ε > 0, then by a similar argumentation as Appendix D,
there exists n0 < ∞ such that for all n ≥ n0 and all x

0 <
1

n
logW0 <

ε

4
, 0 <

1

n
log V0 <

ε

4
,

1

n
logWn( f , x) > G( f ) − ε

4
,

1

n
logWn(g, x) < G(g) + ε

4
.
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a b

Fig. 9 The convergence of the probability payoff matrix to the expected log matrix. a: a probability payoff
matrix (primary lineage) with a very large time horizon n, where payoffs are highly contrasted such that
off-diagonal cells are near 0 or 1 (excepting those corresponding to strategies that result in very similar
asymptotic growth rates). | b: a payoff matrix with entries based on pairwise differences in E[logW ]

Therefore, for all n ≥ n0 and all x

1

n
logW0 + 1

n
logWn( f , x) − 1

n
log V0 − 1

n
logWn(g, x) >

ε

4
> 0.

This implies that

Mn( f , g)

= P

(
1

n
logW0 + 1

n
logWn( f ) >

1

n
log V0 + 1

n
logWn(g)

)

= 1 for all n ≥ n0.

Therefore, M∞( f , g) = 1. Similarly we obtain M∞( f , g) = 0 if G( f ) < G(g). 
�
Remark 2 For the case G( f ) = G(g) there are only two cases, g = f or g = f̂ . If
g = f we have M∞( f , f ) = 1

2 . If g = f̂ we do not know the value of M∞( f , f̂ ).

See Fig. 9 for a graphical illustration of the convergence.

Appendix L: Nash Equilibrium in Population Size N

In this section, we show that the Nash solution in population size N , denoted by f ∗
N ,

will be the strategy closest to Kelly under the finite resolution regime, and such that
it converges asymptotically with N to the Kelly strategy. Denote by f ∗

N the closest
element to f Kelly in IN := {0, 1

N , . . . , 1}, i.e., f ∗
N = argmin f ∈IN | f − f Kelly|. We

show that ( f ∗
N , f ∗

N ) is the Nash solution for the game with strategies defined only on
IN . Due to the definition of f ∗

N , we see that | f ∗
N− f Kelly| ≤ 1

N → 0 as N → ∞. To this
end, we show that Mn( f ∗

N , f ∗
N ) ≥ Mn( f , f ∗

N ) for all f ∈ IN . Indeed, we have already
from (10) thatMn( f ∗

N , f ∗
N ) = 1

2 .Moreover,we have p log o1( f )+(1−p) log o2( f ) <
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p log o1( f ∗
N ) + (1− p) log o2( f ∗

N ) for all f ∈ IN\{ f ∗
N }. Therefore there exists ε > 0

such that

p log
o1( f )

o1( f ∗
N )

+ (1 − p) log
o2( f )

o2( f ∗
N )

< −ε ∀ f ∈ IN\{ f ∗
N }.

Thus, for every f ∈ IN\{ f ∗
N } we have

∑n
s=0 α(s)P(s) < −nε where α(s) :=

s log o1( f )
o1( f ∗

N )
+ (n− s) log o2( f )

o2( f ∗
N )
. We assume that logW0 and log V0 have the same dis-

tributionwith supp logW0 ⊃ {(0), . . . , (n)} and |supp logW0| = |supp logV0| = r >

2n". Denote by A1 = {s : α(s) < 0}, A2 = {s : α(s) ≥ 0} and δ = 1
2− nε

r
3
4− nε

r
∈ (0, 1

2 ).

We have

Mn( f , f ∗
N ) =

n∑

s=0

P(α(s) + logW0 > log V0)P(s) =
∑

s∈A1

1
2 (r + α(s))2

r2
P(s)

+
∑

s∈A2

(

1 −
1
2 (r − α(s))2

r2

)

P(s)

= 1

2
+

∑

s∈A1

α(s)

r

(
1 + α(s)

2r

)
P(s) +

∑

s∈A2

α(s)

r

(
1 − α(s)

2r

)
P(s)

= 1

2
+

∑

s∈A1

α(s)

r

(
δ + α(s)

2r

)
P(s) +

∑

s∈A2

α(s)

r

(
δ − α(s)

2r

)
P(s)

+ (1 − δ)

n∑

s=0

α(s)

r
P(s).

Note that α(s)
r ∈ [−1, 0] for s ∈ A1 and α(s)

r ∈ [0, 1] for s ∈ A2. Moreover x(δ +
x/2) ≤ 1

2 − δ < 1
2 − 3

4δ for x ∈ [−1, 0]; x(δ − x/2) ≤ δ2

2 < 1
2 − 3

4δ for x ∈ [−1, 0].
Therefore, for every f ∈ IN\{ f ∗

N } we have

Mn( f , f ∗
N ) <

1

2
+

(1

2
− 3

4
δ
) n∑

s=0

P(s) + (1 − δ)

n∑

s=0

α(s)

r
P(s)

<
1

2
+

(1

2
− 3

4
δ
)

+ (1 − δ)
−nε

r
= 1

2
.

Appendix M: Nash Equilibrium in Nonstationary Environments

Proposition 8 We consider also a game with payoff of players are

Mn( f , g) := P(Wn( f )W0 > Wn(g)V0),
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where W0, V0 have the same distribution. Then, in this game, ( f Kelly, f Kelly) is the
unique strict Nash equilibrium.

Proof We note that in the nonstationary case we have

Mn( f , g) =
n∑

H=0

P(αH
1 αn−H

2 W0 > V0)P(H),

where H ∼ GB
(
n, {p1, . . . , pn} ∼ Beta(α, β)

)
is a generalized binomial distri-

bution. Therefore the proof is similar to the proof in Proposition 3 and is omitted.

�

Appendix N: Limit of the Extinction Rate

Proposition 9 Denote by

Qn,d( f ) := P(W0W1( f ) > d, . . . ,W0Wn( f ) > d).

the probability that the extinction does not occur until time n and Pn,d( f ) = 1 −
Qn,d( f ) the probability of extinction until time n (also see Fig. 6). We prove that

lim
n→∞ Pn,d( f ) =

⎧
⎪⎨

⎪⎩

0, if o1( f ), o2( f ) > 1

1, if o1( f ), o2( f ) < 1

cd( f ) ∈ [0, 1], else.

Proof For the sake of simplicity, we denote by

βn,d(x1, . . . , xn) := d

o1( f )x1o2( f )1−x1
∨ · · · ∨ d

o1( f )x1+···+xn o2( f )n−x1−···−xn
.

Then we rewrite the formula

Qn,d( f ) = ∑
x1,...,xn P(x1, . . . , xn)P

(
W0 > βn,d(x1, . . . , xn)

)
.

(i) If o1( f ), o2( f ) > 1: we have βn,d(x1, . . . , xn−1, 1) = βn,d(x1, . . . , xn−1, 0) =
βn−1,d(x1, . . . , xn−1), therefore Qn,d( f ) = Qn−1,d( f ) = · · · = Q0,d =
P(W0 > d) = 1 for all n. Therefore limn→∞ Pn,d( f ) = 0.

(ii) If o1( f ), o2( f ) < 1: we have βn,d(x1, . . . , xn) = d
o1( f )x1+···+xn o2( f )n−x1−···−xn

which approaches infinity with n. Therefore for n large enough, Qn,d = 0. This
implies limn→∞ Pn,d( f ) = 1.

(iii) If o1( f ) > 1 > o2( f ): we have βn,d(x1, . . . , xn−1, 1) = βn−1,d(x1, . . . , xn−1).
Note that Qn,d is decreasing and bounded below by 0, therefore there exists the
limit of Qn,d( f ) which implies the limit of Pn,d( f ). 
�

Remark 3 cd( f ) is increasing with d (see Fig. 6).
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Proof If d1 > d2 then βn,d1(x1, . . . , xn) > βn,d2(x1, . . . , xn) therefore Qn,d1( f ) <

Qn,d2( f ) which implies that cd1( f ) ≥ cd2( f ). 
�
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