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Abstract: Myocardial infarction is the main driver of heart failure due to ischemia and subsequent
cell death, and cell-based strategies have emerged as promising therapeutic methods to replace
dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by
the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability
to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple
requirements before reaching the clinical trial phase, and in vivo models are indispensable for
ensuring the safety of such novel therapies. Specifically, translational studies in large animal models
are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine
the optimal combination of cell types, supplementary factors, and delivery methods to maximize
efficacy; and to stringently assess safety. In the present review, we summarize the main strategies
employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the
most critical differences between using small versus large animal models for cardiovascular studies;
and the strategies that have been pursued regarding implanted cells’ stage of differentiation, origin,
and technical application.

Keywords: induced pluripotent stem cells; cardiovascular disease; myocardial infarction; large
animal models; cardiac regeneration

1. Introduction

Heart failure (HF) is the end-stage clinical syndrome for a variety of cardiovascular
diseases (CVD) and is currently the leading cause of morbi-mortality worldwide [1]. HF
most commonly develops after acute myocardial infarction (MI), when the injured myocar-
dial tissue fails to recover or regenerate [2]. A significant proportion of patients develops
pathological ventricular remodeling and progressive HF despite the use of evidence-based
medical therapies [3,4]. Although cell-based strategies have emerged for myocardial re-
generation after MI, it remains unclear which cell type is optimal for completely restoring
cardiac tissue. From the arduous experimental race to find the ideal cell source, has
emerged the ability to induce lineage dedifferentiation of easily accessible somatic cells into
induced pluripotent stem cells (iPSCs). This has radically opened a promising therapeutic
alternative for CVD, since iPSCs are capable of generating an unlimited range and quantity
of clinically relevant cell types, including cardiac cell populations [5–7].

Like other experimental strategies, stem cell therapy must meet multiple requirements
before reaching the clinical trial phase, and in vivo models are indispensable for ensuring
the safety of such novel therapies. Most cardiovascular pre-clinical studies using iPSCs
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have been conducted in small animal models, the findings support their potential ther-
apeutic benefits to improve cardiac function [8–11]. However, there remains a need for
MI translational studies in large animal models to fully evaluate the therapeutic poten-
tial of this approach, and to empirically determine the optimal combination of cell types,
supplementary factors, and delivery methods to maximize efficacy and stringently assess
safety. In cardiovascular research, such studies are usually performed in swine models,
but can also use sheep, dog, and macaque models [12], with each species being better
suited for specific applications. In this review, we will describe both in vitro and in vivo
state-of-the-art techniques for iPSC cardiac differentiation, as well as the main translational
studies investigating iPSC cardiac therapy.

2. iPSC Generation and Cardiac Differentiation
2.1. Obtaining iPSCs from Large Animals

Pluripotent stem cells are defined as being able to differentiate into any cell type,
regardless of their germ layer, and as being germline transmitted. Such cells could origi-
nally be obtained only by isolating embryonic stem cells (ESCs) from the inner cell mass of
early-stage embryos [13–15]. However, in 2006, Takahashi and Yamanaka reported that the
experimental induction and co-expression of Oct3/4, Klf4, Sox2, and c-Myc could force the
retrograde de-differentiation of adult somatic cells into a pluripotent state [16]. To date,
murine ESCs are the only cell lines proven to be germline transmitted—the most stringent
criteria of pluripotency—and are thus considered true (“naïve”) pluripotent ESCs. Most
other ESC/iPSC lines, including those generated from human and large animal cells, share
more common characteristics with mouse epiblast-derived stem cells, which cannot form
chimeras after blastocyst injection, and are not considered as flexible (“primed”) [17–21].
Indeed, new studies suggest that the molecular mechanisms of the naive state of pluripo-
tency in pre-implantation embryos of other species (including rabbit or primate) may
differ from those identified in rodent embryos. Specifically, not all the transcription factors
that define naive pluripotency in mice are expressed in their epiblasts [22–24], and the
signaling pathways that activate these genes and the timing of their upregulation during
pre-implantation development also differ [25,26].

The first iPSCs were generated through virus-mediated (mainly lentiviruses and
retroviruses) transduction of transcription factors, leading to direct integration within the
host cell genome, which remains the gold standard of iPSC generation today. However,
methods that circumvent genome modification, also called non-integrating techniques,
are being extensively developed and evaluated [27–29]. Indeed, the dominant trends in
reprogramming technology are designed to prevent insertional mutagenesis (by using
non-integrative approaches) and contamination of donor cells with co-cultured feeder
cells (by using xeno-free conditions and defined extracellular matrix components). The
most widely adopted methodologies include the use of direct non-integrative vectors
(e.g., single-stranded RNA viruses; double-stranded DNA Viruses and episomes) [30–33].
Here, Sendai virus (SV), a single stranded negative-sense RNA virus that replicates in
the cytoplasm, is widely used in a broad range of research experiments mainly due to
its high transduction efficiency, its rapid detectable transgene expression and its auto-
erasable nature as a vector [34–36]. SV replicates independent of cell cycle, unlike other
approaches where the exogenous genes are expressed only as the cell divides, producing
very high copy numbers of the target gene. Notably, SV is particularly useful when
reprogramming derived blood cells, such as CD34 positive cells, T-cells, and PBMCs,
but also work well with fibroblasts, keratinocytes, and other cell-types [37,38]. Other
non-integrative methods include integrating vectors that exhibit subsequent excision (e.g.,
piggyBac transposons) [39–41], or transient expression of small molecules (e.g., mRNA or
proteins) (Figure 1) [42–45].
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Figure 1. iPSC generation. Illustration summarizing the different methods for iPSC generation in-
cluding non-integrative vectors, integrative methods, transient expression of small molecules, and 
integrative vectors that exhibit subsequent excision. The figure was designed and hand-drawn by 
CG-M. 

Diverse combinations of vectors and targeted reprogramming genes have been used 
to generate iPSCs from most farm animals and agriculturally important ungulates [46,47], 
and these studies highlight some rather interesting commonalities among protocols. Skin 
fibroblast isolation through biopsy seems to be the preferred cell source for starting iPSC 
generation, and it appears to be important that cells are obtained from animals that are as 
young as possible (days old instead of weeks or months). This already indicates a low 
robustness of the re-programming protocols, as researchers must utilize less mature cells, 
possibly through epigenetic marks. For instance, many of these iPSC lines exhibit incon-
sistent expression of typical human and murine pluripotency surface markers, such as 
SSEA-1, SSEA-3, SSEA-4, TRA-1-81, and TRA-1-60. Moreover, some of these markers dis-
play confounding effects, as they can also be expressed in the trophectoderm or in more 
differentiated stages [48]. The differences in epiblast development among these species 
could be thwarting reprogramming efforts, leading scientists to generate cells towards 
different developmental points. This could explain why iPSC generation using large ani-
mal models may require different culture conditions and yield varying marker profiles. 

The swine model is emerging as the large animal of choice [49]. Literature mining in 
Pubmed using the search terms: ((“induced pluripotent stem cells”[MeSH Terms] OR 

Figure 1. iPSC generation. Illustration summarizing the different methods for iPSC generation
including non-integrative vectors, integrative methods, transient expression of small molecules,
and integrative vectors that exhibit subsequent excision. The figure was designed and hand-drawn
by CG-M.

Diverse combinations of vectors and targeted reprogramming genes have been used
to generate iPSCs from most farm animals and agriculturally important ungulates [46,47],
and these studies highlight some rather interesting commonalities among protocols. Skin
fibroblast isolation through biopsy seems to be the preferred cell source for starting iPSC
generation, and it appears to be important that cells are obtained from animals that are
as young as possible (days old instead of weeks or months). This already indicates a
low robustness of the re-programming protocols, as researchers must utilize less mature
cells, possibly through epigenetic marks. For instance, many of these iPSC lines exhibit
inconsistent expression of typical human and murine pluripotency surface markers, such
as SSEA-1, SSEA-3, SSEA-4, TRA-1-81, and TRA-1-60. Moreover, some of these markers
display confounding effects, as they can also be expressed in the trophectoderm or in more
differentiated stages [48]. The differences in epiblast development among these species
could be thwarting reprogramming efforts, leading scientists to generate cells towards
different developmental points. This could explain why iPSC generation using large animal
models may require different culture conditions and yield varying marker profiles.

The swine model is emerging as the large animal of choice [49]. Literature min-
ing in Pubmed using the search terms: ((“induced pluripotent stem cells”[MeSH Terms]
OR (“induced”[All Fields] AND “pluripotent”[All Fields] AND “stem”[All Fields] AND
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“cells”[All Fields]) OR “induced pluripotent stem cells”[All Fields] OR “ipsc”[All Fields])
AND (“swine”[MeSH Terms] OR “swine”[All Fields] OR “swines”[All Fields])) AND
((journalarticle[Filter]) AND (english[Filter]) AND (2006:2021[pdat])), including only orig-
inal articles in English language from January 2006 until October 2021, revealed over
300 studies using iPSCs and swine models, of which 103 describe the generation, main-
tenance, or differentiation of porcine-derived iPSCs (piPSCs), reflecting the clear clinical
transfer intention [50–65]. In contrast, there were only 18 original articles involving iPSCs
derived from horse [60,66–73], 15 from cattle [74–80], 15 from dog [81–86], and 14 from
sheep/goat [87–94]. In most of these iPSC lines, pluripotency heavily depends on fibrob-
last growth factor and Activin/Nodal signaling (NANOG and LIN28) [80,95]. In some
cases, these factors can replace KLF4 and c-Myc, which have reportedly carried oncogenic
potential. Such “primed” colonies are characterized by flattened morphology and can be
difficult to passage as single cells. However, by applying selective growth procedures
immediately following reprogramming, it is possible to generate LIF/STAT3-dependent
iPSCs (which more closely resemble naïve status) from swine cells [96].

Several reports show that additional strategies to enhance pluripotency yield and
capabilities can drastically improve iPSC generation and maintenance. Wu et al. recently
reported that m6A modification (the most prevalent modification in eukaryotic mRNAs)
modulates the SOCS3/JAK2/STAT3 pathway, and thereby plays an important role in regu-
lating the pluripotency of porcine-derived iPSCs [97]. Therefore, de-methylation protocols
(such as those employing 5′-AZA-2′deoxycytidine) performed prior to de-differentiation
efforts can have significant impacts on the success of iPSC generation [98]. Other strategies
include the use of iPSC lines established from murine origin to extract nuclear and cytoplas-
mic factors that can be later transfected into host cells. In such methods, researchers aim to
blindly add varying cellular contents that, although largely unknown, could hypothetically
play a role in reprogramming, and thus could improve the de-differentiation process (a form
of shotgun approach). Notably, the transcriptomic profiling of pluripotent cells highlights
that pluripotency and cell expansion could be increased by the addition of specific small
molecules to culture media, or the use of more refined media [99]. Bingbo et al. recently
described that IRF-1 expression in the inner cell mass of a porcine early blastocyst enhances
the pluripotency of piPSCs, partly through promotion of the JAK-STAT pathway [100]. The
authors performed ChIP-Seq analysis, which revealed that IRF-1 activates genes related to
the JAK-STAT pathway, and expression of IL7 and STAT3. Inhibition of STAT3 phosphory-
lation reverted the expression of primed genes in IRF-1-overexpressing cells, while addition
of IL7 in culture medium resulted in no apparent changes in the cell morphology, anato-
mopathological staining results, or expression of pluripotency-related genes. Additionally,
IRF-1 knockdown during reprogramming appeared to reduce reprogramming efficiency,
whereas IRF-1 overexpression yielded the opposite effect. Such studies are uncovering a
plethora of transcription factors that play key roles in optimizing pluripotency.

Most importantly, these studies show that species-specific, human, and mouse tran-
scription factors, as well as combinations of transcription factors from different species, can
be used to reprogram other animal cells.

2.2. Cardiac Lineage iPSC Differentiation in Large Animal Models

Direct iPSC delivery through transplantation or injection has become the most studied
approach in regenerative medicine [101–107]. However, iPSC translational efforts have been
dampened by concerns regarding the teratogenic potential of undifferentiated cells, as well
as the lack of timely stimuli to carefully guide the in situ differentiation of these cells [108].
Therefore, increasing research attention has been focused on the in vitro differentiation of
iPSCs in the laboratory setting, to obtain the desired cell type, which can then be applied to
the patient. Notably, the differentiation of murine and human iPSCs into cardiomyocytes
(iPSC-CMs) has been extensively described and is now standard practice in laboratories
worldwide [109–119].
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In vivo, it is thought that cardiac progenitor cells initially originate from the mesoderm
following activation of the tumor growth factor-β (TGF-β) signaling cascades, and subse-
quent inhibition of the Wnt/β-catenin pathway (Figure 2). Most cardiac differentiation
protocols attempt to replicate distinct stages of this developmental process and fall into two
categories: small molecule-based or based on WNT signaling pathway inhibition. Briefly,
both protocols usually involve growing purified iPSC monolayers in Matrigel (Corning
Life Sciences, Glendale, CA, USA) up to 90% confluence before starting the reprogramming
procedures. Next, the small molecule-based protocols usually entail the activation of Ac-
tivin A and BMP4 (and sometimes the use of specific cytokines, such as VEGF and DKK1)
in a timed sequence. On the other hand, WNT signaling pathway inhibition involves the
use of CHIR-99021 (2 mg) and IWR-1 endo (10 mg) (Figure 2) [120–128]. Moreover, insulin
is required to observe functional beating, but is counter-productive during initial stages,
as it inhibits differentiation. Thus, almost all protocols start with insulin-free media, and
involve insulin addition only after reprogramming has been established [129–134].
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Certain vitamins and cytokines also reportedly help in cardiac differentiation and
influence the efficiency and specificity of the resulting cells. For instance, ascorbic acid
(vitamin C) promotes cardiac differentiation of pluripotent cells, and retinoic acid (vitamin
A) promotes atrial-specific gene expression [129,135–138]. A signaling pathway involving
neuroregulin-1 (NRG-1; an important regulator of cardiac development and function) and
the receptor tyrosine kinases ErbB2, ErbB3, and ErbB4 orientates cells towards a nodal
phenotype [139]. Additionally, endothelin, a paracrine factor secreted by endothelial cells
in the arterial walls, is apparently involved in Purkinje/nodal cell differentiation [140].

While some studies show that these cells can efficiently couple to the injured my-
ocardium and restore cardiac function, many have also reported arrhythmogenic issues. To
explain this, several studies demonstrate that iPSC-CM cultures can be highly heteroge-
neous, comprising both ventricular- and nodal-like CMs. Nonetheless, prominent works
have demonstrated regenerative capacities when non-human primates are transplanted
with allogenic iPSC-CMs in a post-MI setting. In 2016, Shiba and colleagues reported
that injected iPSC-CMs electrically coupled with host CMs resulted in improved cardiac
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contractile function at 4 and 12 weeks after transplantation [114]. However, these cells
clearly elicited transient episodes of ventricular tachycardia, and the study only included
five subjects transplanted with a single iPSC line. Moreover, the authors noted that the
12-week observation period after cell transplantation does not allow a definitive conclusion
regarding graft survival without chronic rejection.

Unfortunately, few studies have examined the use of autologous or allogeneic iPSC-
CMs in large animal models. As the end-goal in biomedicine is the clinical applicability
of such therapies, human iPSC-CMs are the cell type of choice in the vast majority of
investigations. Together with the ease of obtaining iPSC lines of human origin compared
to from other large animal models, this has led to predominant use of human iPSCs to
test stem cell therapy in other species [141,142]. In such experiments, animals must be
immunosuppressed to maintain the cells after transplant. Although such practices are
faster and easier to implement, the result cannot be considered to faithfully reproduce
most of the diseases under investigation. Most cardiac differentiation protocols currently
employed in large animal models are directly extrapolated from those effective in human
and murine cells. However, as the murine protocols do not work well with human cells
and vice versa, there is little scientific basis to think that either of these would optimally
translate to other animal species (with the exception of human protocols that reportedly
work well in other primates). Yet, few efforts have been directed towards developing better
more specific protocols for use in other large animals, which impedes the development of
more reliable pre-clinical models.

3. Large Animal Models for Translational Cardiovascular Studies
3.1. The Importance of Large Animal Models in Cardiac Stem Cell Therapies

When approaching the development of new treatment, to justify the huge time and
economic efforts required, it is critical to carefully select what animal models should be
used to determine the likelihood that a therapeutic approach will be clinically success-
ful [143–146]. Although no animal model can ever completely substitute for human studies,
large animal models have supplied critically important information about how humans
might respond to specific therapeutic strategies. Most importantly, when an intervention
improves the main outcomes in a well-designed trial using any experimental model, this
proof of concept is a valuable piece of evidence guiding further studies. Compared to
data from small species, well-designed large animal studies can better predict human trial
outcomes [147–149].

3.2. Critical Differences between Large and Small Animal Models in Pre-Clinical Studies

From the practical standpoint, small animal species have tremendous advantages for
pre-clinical research [150–152]. The high availability of reagents to test molecular pathways,
and the relatively low cost of studying a large number of subjects, facilitate the derivation
of mechanistic insights relating to the therapeutic being studied. Specifically, mice have
been a species of choice for studies of stem cell biology in mammals, due to their reduced
cost, high offspring generation, and ease of genetic manipulation.

Nevertheless, positive results in small animal models (mostly murine) have frequently
been followed by clinical trials failing to confirm efficacy, justifying skepticism regarding
the reliability of findings obtained in studies of small species [153–155]. These negative
outcomes may be explained by the lack of disease complexity in the animal model used;
and by the differences between rodents and humans in terms of size, life span, heart rate,
and the innate and adaptive immune response systems. Moreover, different pathologies
that can be more easily induced in small models (such as hypertension, diabetes mellitus,
or hypoxia) are used as proxy to imitate some of the cellular and physiological changes in
human diseases, which limits the capacity to extrapolate findings in the animal models.
Many of these models fail to precisely recapitulate particular human disease phenotypes,
especially in stem cell research, which has compelled investigators to examine animal
species that may be more predictive of humans.
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Compared to mice, large animals are often better models of human disease pheno-
types [156–160], due their physiological factors are close to humans. Moreover, large
animals also have similarities in terms of number and types of stem cells that can be
reproducibly extracted and handled in sufficient amount for analysis and for different
applications. Key drivers of translational applicability include advances in experimental
surgery, and the ability to use equipment and techniques developed for human applications
for cell delivery and animal monitoring. These features let researchers to study the safety
of applications, dosages of biologics, and a delivery method that can be easily translated to
humans. This is the case of the development of different approaches and techniques, such
as surgical options and imaging technologies. Large animal models allow to test survival,
activation and differentiation of the implanted cell by non-invasive monitoring. Clearly,
it is undesirable to interpret the results of highly interventional therapies by performing
experiments solely in small animal models and extrapolating the conclusions to human
trials [161,162].

This is not to imply that large animal models do not also have intrinsic limitations.
The most important limitation is the high cost of animal maintenance. Research in large
animal species involve larger and specialized housing and surgical facilities, including
higher costs associated to feed, veterinary care, and surgical costs. Additionally, their
longer reproductive cycles and slow growth rates make that pre-clinical trials are slower
and less economical. More specifically relevant to cell therapy, research in large animals is
complicated by the relative absence of stable and well-characterized stem cell lines and
protocols for their maintenance, differentiation, and cell status monitoring; and the limited
availability of species-specific antibodies, expression microarrays, and other research
reagents. Finally, complex diseases are difficult to fully capture with any model and when
considering all previous points, studies involving large animal models can end up being
poorly designed and insufficiently powered. In these studies, costs have a big impact in
the design, which many times constrain the budget and forces to include too few animals
in each study arm, so that false-positive outcomes can often occur by chance alone.

Nevertheless, since large animal models provide a setting that is closer to the human
situation than those found in rodent models, large species studies are essential to justify
the risks and costs of clinical trials [147].

3.3. Pre-Clinical Stem Cell Research for Cardiovascular Diseases

Among larger animal species, dogs, pigs, sheep, and non-human primates are suitable
models for CVD-related studies. These animals have physiological parameters similar to
humans (Table 1), and their size allows the use of echocardiography and cardiac magnetic
resonance imaging techniques that are already widely used in the clinic, which yields
information that is more rapidly transferrable and relevant.
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Table 1. Cardiac similarities and differences of large animals compared to humans.

Specie Similarities Differences

Canine

Closed circulatory system composed
by heart, veins, and arteries

Physiological function of the heart
Heart anatomy (4 chambers)
Hemodynamic parameters

Anatomic variation in the thoracic cavity
Collateral coronary circulation

Smaller heart size
Resting heart rate (60–160 bpm)

Number of pulmonary veins (4–8)
Presence of the left azygous vein

Positioning of vena cava
Size and shape of the atrial appendage
Higher heart weight/body weight ratio

Tricuspid valve with 2 leaflets
Physiological respiratory arrhythmia

Swine

Closed circulatory system composed
by heart, veins, and arteries

Physiological function of the heart
Heart anatomy (4 chambers)

Heart size
Coronary anatomy

Analogous coronary pattern
Lack of collateral coronary circulation

Left coronary supplies the majority of the myocardium
Hemodynamic parameters

Heart weight/body weight ratio
Valvular anatomy

Anatomic variation in the thoracic cavity
Number of pulmonary veins (2)

Higher content of Purkinje fibers
Higher presence of numerous nerves

Presence of the left azygous vein
Faster sinus rhythm
Shorter PR interval

Ovine

Closed circulatory system composed
by heart, veins, and arteries

Physiological function of the heart
Heart anatomy (4 chambers)

Lack of collateral coronary circulation
Heart rate

Anatomic variation in the thoracic cavity
Lower heart weight/body weight ratio
Shorter and immobile ascending aorta

Structure and composition of the valves
Intervalvular or membranous septum absent

Non-
human

primates

Closed circulatory system composed
by heart, veins, and arteries

Physiological function of the heart
Heart anatomy (4 chambers)

Lack of collateral coronary circulation
Genomic organization of the MHC region

Genetic and metabolic parameters
Ratio of heart weight to body weight

Faster heart rate

These large species have exhibited marked improvement in cardiac function following
stem cell treatments using a variety of cells, including skeletal myoblasts, bone marrow
and adipose tissue-derived stem cells, cardiac stem cells, and endothelial adult stem
cells [163–165]. Moreover, meta-analysis studies involving large animals that have received
cardiac stem cells as therapy for ischemic heart disease clearly demonstrate that these
models can predict clinical trial outcomes, and that such treatments are safe; however,
the specific reported cardiac improvements are mixed and the gathered datasets very
heterogeneous [149]. These studies can potentially address a variety of important issues
before the perfor-mance of clinical trials, including determination of the optimal cell type
and delivery method, time of administration, and types of clinical condition for which a
treatment can be beneficial.

4. Applications of iPSC-Based Therapies in Large Animal Models of MI

All the iPSC-based therapies in large animal models are summarized in Table 2. Key
published literature was searched using PubMed. We applied the search terms: (“induced
pluripotent stem cells” OR “ipsc”) AND (“large animals” OR “swine” OR “pig”) and
(“induced pluripotent stem cells” OR “ipsc”) AND (“large animals” OR “swine” OR “pig”
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AND (“myocardial infarction”) including only original articles in English language until
October 2021.

Table 2. iPSC studies in large animals. MI: myocardial infarction; HF: heart failure; hESC-CMs: human embryonic stem
cell-derived cardiomyocytes; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; hiPSC-ECs:
human induced pluripotent stem cell-derived endothelial cells; hiPSC-MSCs: human induced pluripotent stem cell-derived
mesenchymal stem cells; hMSCs: human mesenchymal stem cells; hiPSC-SMCs: human induced pluripotent stem cell-
derived smooth muscle cells; Tac: Tacrolimus; CsA: Cyclosporine; MMF: Mycophenolate mofetil; PSL: prednisolone;
Methylene prednisolone: METH-PSL; NS: not specified.

Species;
Gender Sample Size Model Delivery Cell Type

Immuno-
Suppressive

Therapy
Benefits Adverse

Events Ref

Swine; NS
Sham n = 6
PBS n = 6

piPSC n = 6
MI IM piPSC No

Cardiac autonomic
nerve regeneration;

less ventricular
arrhythmia;
myocardial

perfusion; cardiac
function.

No [166,167]

Swine; NS
Sham n = 6
PBS n = 6

piPSC n = 6
MI IM piPSC CsA +

METH-PSL

Reduction of scar
size; angiogenesis;
less apoptosis and

fibrosis.

No [168]

Swine; NS

AGTP n = 6
Scaffold n = 13

Scaffold + AGTP n = 7
piPSC + AGTP n = 9

piPSC + Scaffold n = 11
piPSC + Scaffold + AGTP

n = 11

MI

Scaffold +
adipose
pedicle
(AGTP)

piPSC No None No [169]

Non-Human
Primate; NS

MHC matched iPSC-CMs +
TAC + MMF + PSL n = 2

MHC mismatched
iPSC-CMs + TAC + MMF +

PSL n = 3
MHC matched iPSC-CMs

+TAC n = 1
MHC matched iPSC-CMs +

No drug n = 1

Healthy Sheet (back)
vs. IM (heart) iPSC-CMs Tac + MMF +

PSL

No host immune
response in

MHC-matched
group + TAC +
MMF + PSL.

No [170]

Non-Human
Primate; NS

PSC vehicle n = 5
MHC matched iPSC-CMs

n = 5
MI IM iPSC-CMs Tac+

METH-PSL

Cardiac function;
less fibrosis; higher

vascular density.

Ventricular
arrhyth-

mias
[114]

Non- Human
Primate; NS

Sham n = 4
MHC matched iPSC-CMs

n = 4
MHC mismatched

iPSC-CMs n = 4

MI Sheet iPSC-CMs Tac + MMF +
PSL

Cardiac function;
less fibrosis; higher

vascular density.
No [171]

Swine; NS

Sham n = 17
MI n = 17

Cells n = 17
Patch n = 17

Cells + Patch n = 17

MI Sheet vs. IM

hiPSC-CMs
hiPSC-ECs

hiPSC-
SMCs

CsA

Cardiac function;
cardiac

metabolism; higher
vascular density;

apoptosis
reduction.

No [172]

Swine; NS Sham n = 5
Cells + Patch n = 5 MI Sheet

hiPSC-CMs
hiPSC-ECs

hiPSC-
SMCs

Yes; NS
Cardiac function;

less fibrosis; higher
vascular density.

No [173]

Swine; NS

Sham n = 8
MI n = 15

Cells + Patch n = 13
Patch n= 14

MI Sheet

hiPSC-CMs
hiPSC-ECs

hiPSC-
SMCs

CsA +
Methy-PSL

Cardiac function;
less fibrosis; infarct
size; less apoptosis.

No [174]

Swine; Female
MI n = 9

hESC-CMs n = 10
hiPSC-MSCs n = 9

HF IM
hiPSC-

MSCs vs.
hESC-CMs

CsA + steroid

Cardiac function;
higher vascular

density; less
inflammation.

No [175]

Swine; Female Sham n = 6
Cell + Patch n = 6 MI Sheet hiPSC-CMs Tac

Cardiac function;
higher vascular

density; less
fibrosis.

No [176]



Biomedicines 2021, 9, 1836 10 of 25

Table 2. Cont.

Species;
Gender Sample Size Model Delivery Cell Type

Immuno-
Suppressive

Therapy
Benefits Adverse

Events Ref

Swine; Female

Cell + Patch n = 8
Cell + Patch + Omentum

flap n = 8
Sham n = 5

Cell + Patch + Omentum
flap n = 7

Cell + Patch n = 6
Omentum flap n = 5

MI Sheet +
omentum flap

hiPSC-
MSCs

hMSCs
Tac

Cardiac function;
higher vascular

density.
No [177,178]

Swine; Female MI n = 8; Tb4 n = 9; Tb4 Cell
n = 8; Cell n = 8. MI Sheet + Tb4

microspheres hiPSC-CMs CsA

Cardiac function;
higher vascular

density; less
fibrosis; reduction

of scar size

No [101]

Swine; Female

Sham n = 7
PBS n = 7

CCND2WTCMs n = 7
CCND2OECM n = 7

MI IM

hiPSC-
CCND2WTCMs

vs.
hiPSC-

CCND2oeCMs

No

Host CM
proliferation;

angiogenesis in
border zone;

cardiac function;
less fibrosis;

reduced
hypertrophy.

No [179]

Swine; female Healthy pigs n = 15
Healthy mini-pigs n = 20 Healthy

3D spheroids
injection
device

hiPSC-CMs NS Higher
engraftment. No [180]

Swine; Female
Sham n = 5

Hydrogel n = 7
Cardiac spheroid n = 8

HF
3D spheroids

injection
device

hiPSC-CMs Yes; NS
Cardiac function;

infarct size
reduction.

Ventricular
arrhyth-

mias
[103]

4.1. Undifferentiated iPSCs

Some groups have generated piPSCs, opening up a wide range of possibilities to con-
duct pre-clinical testing in pigs without requiring immunosuppressive
treatment [48,55,56,181]. However, good differentiation of piPSCs to CMs has not yet
been achieved, and most piPSC studies performed in swine have used undifferentiated
cells. Nevertheless, one major concern is the possibility of uncontrolled tumorigenesis
after stem cell administration [182] and studying allogeneic transplantation in immune-
competent pigs could reveal whether the immune system can control undifferentiated cells
that may remain after transplantation.

In 2013, Li and colleagues published the first study assessing intramyocardial injec-
tion of allogeneic piPSCs in a pig model of MI [166,167]. First, they tested intracoronary
administration of piPSCs, and found no effect on the infarct zone or in terms of cardiac
perfusion, mainly due to cell washout through the blood circulation. Thus, to ensure piPSC
engraftment, they performed a second study testing the direct intramyocardial injection
of 2 × 107 piPSCs into infarct zones (8 sites) and border zones (12 sites). Six weeks after
injection, treated animals exhibited an improved left ventricular ejection fraction (LVEF),
better myocardial perfusion (likely due to vascular endothelial cell differentiation of the
engrafted iPSCs), less oxidative stress, angiogenesis in the border zone, upregulated con-
nexin 43 expression, and less ventricular tachycardia inducibility. Importantly, no tumors
were detected in any animal, despite the use of undifferentiated cells. Collectively, their
data demonstrated that direct intramyocardial injection of piPSCs is safe and can decrease
infarct size and improve cardiac function; however, the slight reported improvements were
clinically irrelevant.

In 2014, the same research team published another study using an identical piPSC cell
line, dose, and delivery route in an immune-suppressed MI porcine model to alleviate the
non-specific immune response and the acute inflammatory reactions [168]. At 6 weeks after
treatment, the iPSC group showed less pronounced LV structural abnormality and cardiac
dysfunction and accompanied again by a slightly reduced scar size. Notably, most of the
transplanted cells were found in the border zone, and they had differentiated into vascular
endothelial cells (ECs), which were integrated into pre-existing vessels or generating new
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vessels, and to a lesser extent into myoblasts. Thus, iPSC transplantation was associated
with significantly increased vascular density and reduced myocardial apoptosis in the
border zone. Moreover, the iPSC group exhibited significantly increased proangiogenic and
antiapoptotic factors, and significantly attenuated CM hypertrophy. In conclusion, these re-
sults suggested that piPSC transplantation can result in cardiac functional recovery, mainly
by promoting angiogenesis, inhibiting apoptosis, and ameliorating cardiac remodeling.

Years later, our group conducted another study that proved the safety of transplanting
allogeneic piPSCs using three different engineered constructs that were implanted into
an immune-competent MI swine model [169]. We tested the adipose graft transposition
procedure (AGTP) [183], an acellular human pericardial scaffold (scaffold), and a combina-
tion of both (AGTP-scaffold), with or without 0.5–1 × 106 piPSCs, which was a lower cell
concentration than used in the previously described works. Thirty days after implantation,
histopathological analyses confirmed no presence of piPSCs within the host myocardium
or biomatrices. The AGTP-scaffold group showed significantly higher vascularization,
irrespective of piPSC delivery, in both the infarct and border zones. Consistent with the
disappearance of the implanted cells, and unlike in other studies, these treatments did not
yield functional benefit in terms of LVEF, cardiac output, ventricular volumes, or necrotic
mass. On the other hand, histopathological examination of the heart at 90 days of follow-up
confirmed the absence of teratoma formation in all animals. Therefore, we concluded that
residual undifferentiated piPSCs should pose no safety concern when used in an allogeneic
context in immune-competent recipients, at least in cardiac regenerative medicine.

Taken together, the above-mentioned studies have demonstrated that allogeneic iPSC
therapy is safe in terms of teratogenesis; however, no clinical benefits are obtained due to
the host immune reaction against the delivered cells.

4.2. Differentiated iPSCs

Theoretically, iPSCs have the capacity to differentiate into any other cell type present
in the body, independent of the germ layer of choice. This process can be directed by using
specific gene regulation methods that target highly conserved developmental molecular
pathways, with each differentiation protocol being specific to the desired cell line. Undif-
ferentiated iPSCs are more flexible at delivery but are much less effective at improving
tissue-specific problems. In contrast, iPSC-derived cell lines have the potential to more ef-
fectively target distinct cellular dysfunctions and have been the central focus of iPSC-based
therapeutic research for some years now.

4.2.1. Allogeneic iPSC-CMs: Non-Primate Models

Autologous iPSC transplantation therapy avoids the need for immunosuppression
and related problems, such as malignancy and infection. However, the clinical application
of this approach is limited by high costs, safety concerns, and challenges related to manu-
facturing and regulation. To overcome these limitations, an iPSC bank has been developed
to store iPSC lines with established safety, with the aim of transplanting iPSC derivatives
in an allogeneic manner. However, as previously stated, a potential disadvantage of allo-
geneic transplantation lies in the immune reaction response, which is responsible for graft
rejection [184]. The major histocompatibility complex (MHC) plays an essential role in the
post-transplant immune response [185,186]. Therefore, donor/recipient MHC matching
can decrease the rejection rate following organ and cell transplantation [187]. To that end,
the establishment of iPSC lines from healthy donors with homozygous MHC alleles could
be useful for minimizing the number of banked iPSC lines [188,189].

To that end, Kawamura and co-workers generated iPSC-CMs with a homozygous
MHC HT1 haplotype line from the cynomolgus macaque, which has an MHC structure
identical to that of humans [170]. They transplanted 3.3 × 106 iPSC-CM sheets at the
subcutaneous level and by intramyocardial injection in MHC-matched macaques (with
heterozygous MHC haplotypes) and MCH-mismatched macaques (without identical MHC
alleles) in conjunction with immune suppression treatment. Compared to the MHC-
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mismatched group, the MHC-matched group displayed a higher engraftment rate and
less infiltration of immune cells (CD3+ and CD4+ T cells). However, MHC-matched
transplantation with single or no immune-suppressive drugs still induced a substantial host
immune response to the graft. Thus, although MHC-matched transplantation reduced the
immunogenicity of allogeneic iPSC-CMs, successful engraftment still required appropriate
immune suppression.

Additionally, in 2016, another study examined allogeneic iPSC intramyocardial trans-
plantation in a non-human primate model [114]. Two weeks after MI, 4 × 108 iPSC-CMs
were injected into the infarct and border zones of MHC-matched and MHC-mismatched
monkeys under immunosuppressive treatment. In the MHC-mismatched group, implanted
iPSC-CMs were thoroughly rejected due to severe infiltration of T lymphocytes at 4 weeks
after transplantation. However, in the MHC-matched group, the grafted iPSC-CMs sur-
vived for 12 weeks with no evidence of immune rejection and exhibited electrical coupling
with host CMs. Despite evidence of improved cardiac contractile function at 4 and 12 weeks
after iPSC-CM transplantation, the incidence of ventricular tachycardia was significantly
increased compared to vehicle-treated controls. No animal showed tumor formation. Col-
lectively, their data demonstrated that allogeneic iPSC-CM transplantation regenerates the
infarcted non-human primate heart. However, there remains a need for further research on
controlling post-transplant arrhythmias.

Most recently, Sawa’s group tested the effects of iPSC-derived cardiac sheet transplan-
tation in both MHC-matched and MHC-mismatched immunosuppressed macaques. In
line with previous findings, the treated animals showed significantly improved cardiac
function with less fibrosis and higher vascular density, compared to sham animals, and
homozygous MHC haplotypes were preferred to avoid immune rejection. Unfortunately,
no arrhythmic inducibility analysis was reported [171].

4.2.2. Xenogeneic hiPSC-CMs

Recent studies have reported methods for the highly efficient differentiation of CMs
from hiPSCs, which show typical electrophysiological function and pharmacological re-
sponsiveness [190,191]. Transplantation of hiPSC-CMs would mechanically contribute
to directly improving cardiac function, among other benefits. However, low retention
of the transplanted cells remains a primary factor limiting the effectiveness of this cell
therapy [173,192–194].

In the onerous fight to identify the ideal approach to ensure hiPSC-CM engraftment,
three different techniques have been tested: cell sheets, intracoronary infusion, and in-
tramyocardial injections. Direct intramyocardial or intracoronary injections of dissociated
single cells yields an engraftment rate of <10% immediately after transplantation [195,196].
Therefore, some studies have focused on developing innovative new injection techniques
to improve cellular retention, such as co-transplantation with human MSCs that release
antiapoptotic factors [197]. Moreover, in recent years, various new tissue engineering ap-
proaches, including cell sheets, have been developed to enhance cell delivery in myocardial
regeneration therapy. In contrast to the needle injection technique, a cell sheet can drive a
large number of cells to damaged tissue without transplanted cell loss or injury to the host
myocardium. Furthermore, the arrangement of hiPSC-CMs in three-dimensional patches
promotes their continuous maturation [174,198,199].

Dr. Sawa’s lab has acquired expertise in generating hiPSC-CM sheets. In their first
study in a porcine MI model, cell sheets generated from 2.5 × 107 hiPSC-CMs yielded
improved cardiac function (LVEF) and myocardial perfusion, attenuating LV remodeling.
Furthermore, treated animals consistently exhibited significantly less accumulation of
interstitial fibrosis in border zones, and increased myocardial vascular density, mainly
through paracrine effects. The lack of teratoma formation in animals that received hiPSC-
CM sheets confirmed the safety of this treatment [176]. However, the authors reported poor
engraftment of the transplanted cells, affecting the long-term effectiveness of the treatment.
This low cell retention was attributed to ischemia caused by poor vascularization and
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inflammation in the transplanted sites, as also suggested in other studies [200–202]. To
overcome this issue, Sawa’s group has focused on a new approach using an omentum
flap [177,178]. The omentum is a vascular-rich organ that contains abundant angiogenic
factors and has anti-inflammatory effects and was thus expected to help to sustain a blood
supply for the cell sheets [203]. The group examined the survival of hiPSC-CMs, enriched
with commercial human mesenchymal stem cells (hMSCs), with or without an omentum
pedicle, after transplantation into healthy mini-pigs [177] and a mini-pig MI model [178].
They observed significantly improved hiPSC-CM survival in mini-pigs with the omentum
than without omentum. Over three months, both groups showed a steady decrease of cell
survival, but the proportion of the decrease was significantly less in the omentum group.
Moreover, the omentum group exhibited increased capillary density, and upregulated
VEGF, SDF-1, and bFGF expression in the transplanted area. Therefore, the omentum
pedicle yielded enhanced hiPSC-CM survival in vivo, and produced longer therapeutic
effects after MI.

Most recently, studies have tested the addition of different proteins to ensure hiPSC-
CM retention and proliferation in swine. Notably, Ye’s lab reported that thymosin β4 (Tb4)
improves the engraftment of hiPSC-CM fibrin scaffolds in a porcine model of sub-acute
MI [101]. They demonstrated that co-treatment with Tb4 significantly enhanced hiPSC-CM
engraftment, induced vasculogenesis, promoted proliferation of CMs and ECs, improved
LV systolic function, and reduced infarct size. Moreover, hiPSC-CM engraftment was not
correlated with incidence of ventricular arrhythmia, and no tumorigenesis was detected in
the immunosuppressed animals. Correspondingly, Zhao et al. have shown that hiPSC-CMs
overexpressing cyclin D2 were associated with improved LV function; reduced infarct size;
less fibrosis, ventricular hypertrophy, and CM apoptosis; and increased vessel density [179].

Preclinical and clinical studies of stem cell-based cardiac regenerative therapy have
widely applied intracoronary infusion and intramyocardial injection (either via direct
open-chest or transendocardial catheter-based injections) [204]. Intracoronary cell deliv-
ery into a recanalized infarct-related or target artery is safe and practical (e.g., it can be
performed using standard balloon catheters); however, its effectiveness is compromised
by the low cellular retention in the damaged myocardium. Compared to the intracoro-
nary route, direct intramyocardial injection often results in slightly better retention [205].
Several strategies have been investigated for improving transplanted cell engraftment
and viability—including cell aggregation, biomaterials or scaffolds, and pro-survival fac-
tors [122,206,207].

Fukuda’s lab has generated spheroids of purified hiPSC-CMs and used gelatin hy-
drogel as a biomatrix to enhance engraftment [180,206] and developed a new injection
device for optimal 3D distribution of these materials in the myocardial layer [208]. They
have demonstrated that aggregated CMs (spheroids) are less likely to be cleared from the
host heart by normal circulation compared to non-aggregated CMs [206], and that gelatin
hydrogel enhances CM engraftment [180]. Their new device comprises six needles, each
with six elliptical holes facing in various directions, and with a domed tip to minimize
damage to the myocardium. Compared to conventional needle injection procedures, direct
epicardial injection of spheroids resulted in better distribution and retention in a layer
within the myocardium, and no detrimental effects on cell viability, spheroid shape, or
size were detected in healthy pigs. Interestingly, cell injections in gelatin hydrogel in-
creased the retention of beads by approximately 20-fold compared to the retention rate
using saline. Furthermore, they verified that their injection device provided a more equal
three-dimensional distribution of transplanted cells in all layers of the host myocardium
compared to conventional procedures [208].

Most recently, Kawaguchi et al. transplanted intramyocardially hiPSC-derived cardiac
spheroids in pigs after cryoinjury. In line with previous works, treated animals exhibited
improved cardiac function and reduced infarct size. However, the engraftment of CMs
was unusual, and the treated pigs suffered ventricular arrhythmic events correlated with
tachycardia [103].
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4.2.3. Combination of Multiple hiPSC-Cardiovascular Lineage Cell Populations:
Cardiomyocytes, Endothelial, and Smooth Muscle Cells

Both cardiac muscles and vessels are excessively damaged following MI. Therefore,
therapeutic strategies should be focused on comprehensively repairing both together,
to achieve true cardiac repair. In vitro data strongly suggest that CMs exhibit better
survival and resistance to hypoxic injury when co-cultured with ECs and smooth muscle
cells (SMCs) than when cultured alone [172,209,210]. Thus, co-administration with ECs
and SMCs could enhance the engraftment of transplanted CMs, as well as improve LV
myocardial perfusion, cardiac metabolism, and contractile activity through release of
signaling molecules [211–213]. Consistent with this hypothesis, some groups have tested
the differentiation of iPSCs to ECs and SMCs, and their combination with iPSC-CMs and
growth factors to treat MI.

In 2014, Ye et al. transplanted hiPSC-CMs, -ECs, and -SMCs into injured hearts
of a porcine MI model, with comparison of two delivery methods: through direct in-
tramyocardial injections or through a fibrin patch loaded with insulin growth factor 1
(IGF-1)-microspheres [172]. Four weeks after transplantation, the cell + patch + IGF an-
imals showed the best engraftment rate, ~20-fold greater than achieved with any other
delivery method used in the porcine MI model [214]. Their results also demonstrated that
co-administration of multiple hiPSC-cardiovascular linage cell transplantation significantly
improved LV function, vascular density, and cardiac metabolism; and yielded reductions
of infarct size, ventricular wall stress, and apoptosis, without inducing ventricular ar-
rhythmias. The increased angiogenesis was related to paracrine effects, as suggested by
other studies [209,211]. Together, these findings reveal that co-administration of trilineage
cardiac cell populations, conjugated by microspheres of IGF-1, improves engraftment and
graft effectiveness.

Most recently, clinical-sized cardiac tissue sheets (L-CTSs) comprising hiPSC-CMs and
hiPSC-derived vascular cells (ECs and vascular mural cells) were also evaluated in a porcine
MI model [173]. Transplantation of L-CTSs restored wall motion of the transplanted region,
improved cardiac function in terms of higher LV systolic function and LVEF, and yielded
reduced fibrosis and greater capillary density in the border region. L-CTS transplantation
induced neovascularization, prompting CM hypertrophy attenuation and reducing global
LV remodeling, as reported in previous works [215,216]. Once again, the authors stated that
the therapeutic mechanism was mainly mediated by paracrine mechanisms, considering
that the small engrafted cells cannot be responsible for the reinforcement of mechanical
ventricular contraction.

In the same year, Gao et al. developed human cardiac muscle patches (hCMPs) by
suspending 4 × 106 iPSC-CMs, 2 × 106 iPSC-SMCs, and 2 × 106 iPSC-ECs in a fibrin
scaffold that covers the acute ischemic area in pigs [174]. The cell engraftment rate was 11%
at 4 weeks after transplantation, and the hCMP treatment was associated with significantly
improved LV function, reduction on infarct size, myocardial wall stress, and myocardial
hypertrophy, and less apoptosis in the border area. Notably, the exosomes released from
the hCMP exhibited cytoprotective properties that improved CM survival and neovascu-
larization activity, and protected myocytes of the border from apoptosis. These paracrine
mechanisms, as well as the microenvironment of the patch itself, likely contributed to
the relatively high engraftment rate, which is consistent with the results from studies in
rodents [11,217,218].

4.2.4. iPSC-Derived Mesenchymal Stem Cells

Besides iPSCs, mesenchymal stem cells (MSCs)—which can be obtained from several
tissues, including bone marrow, fat, placenta, Wharton’s jelly, etc.—have been exhaus-
tively examined as another promising cell type for HF treatment. The differentiation of
MSCs from iPSCs (hiPSC-MSCs) has also been successfully tested, and some groups have
demonstrated that hiPSC-MSCs exhibit better proliferative capacity, survival, and thera-
peutic efficacy for tissue repair than bone marrow-derived MSCs [219–221]. In parallel,
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Liao et al. compared the safety and efficacy of human embryonic stem cell-derived CMs
(hESC-CMs) vs. hiPSC-MSCs following transplantation in a porcine model of MI-induced
HF [175]. At 8 weeks post-transplantation, both cell groups exhibited significantly im-
proved LV function. However, the percentage of infarcted area normalized to body weight
did not significantly differ in the hiPSC-MSC group or hESC-CM group compared with
in the MI group, suggesting that cell transplantation did not lead to cardiac regeneration.
Notably, only the hiPSC-MSC group exhibited markedly increased vessel density and
expressions of TGF-α and VEGF-A. These results show that hiPSC-MSCs can stimulate
angiogenesis by upregulating the myocardial expression of angiogenic cytokines after
transplantation. Moreover, histological assays confirmed the immunomodulatory potential
of the hiPSC-MSCs, which activated regulatory T cells and reduced inflammatory cells in
the myocardium.

5. Conclusions

Preclinical studies in large animal models of MI indicate that iPSC therapy might be
a promising approach for treating CVDs. However, cell therapies are notably complex,
and studies in large animal models could be performed to fine-tune several factors to
further improve the clinical outcomes resulting from such advanced treatments. Specific
aspects requiring further investigation include the optimal delivery method (cell sheets vs.
intramyocardial injections), and type of cell administered (undifferentiated vs. iPSC-CMs
vs. co-administration of multiple iPSC-derived cardiac cell types).

The desirable stem cell for regenerative medicine should be immunologically compati-
ble, easily accessible, with high in vitro expansion, long-term survival, and able to integrate
into the host target tissue. Currently, the MSC are the most extensively cell source tested in
preclinical and clinical trials, due its easy isolation, high plasticity, and immunomodulation
potential [222]. However, results show that the benefits are modest and mainly due to
their paracrine effect, not to their nesting and differentiation in the host tissue. Contrary,
iPSC, despite their capacity of teratoma formation (that can be evaded by a previous differ-
entiation into committed lineages), are able to migrate, nest and integrate with the host
myocardium, acting as new functional cardiac cells. Nevertheless, iPSC therapy not only
still requires high immunosuppression to ensure its safety and effectiveness, but also their
arrhythmic potential has to be solved before reaching the clinical setting. Considering
the results of the preclinical studies with MSC and iPSC, it is difficult to conclude which
of the two cell sources offers more notable positive outcomes. In this sense, MSCs, due
to their immunomodulatory potential, may offer greater benefit in the context of acute
MI when the inflammatory plethora of cytokines is active and on which the extension
of the definitive myocardial scar (tissue at risk) depends. On the other hand, iPSC-CM
could be a promising therapy not only for acute but also for chronic MI, where cardiac
regeneration is feasible. Taken together, one possibility to consider in the search for the
best therapeutic results lies in the joint administration of MSC and iPSC to simultaneously
resolve post-MI inflammation, iPSC rejection, as well as cardiac regeneration, converging
in a cardiac functional improvement.

The available data show that co-administration of hiPSC-cardiovascular lineage cell
populations conjugated with certain biological molecules yield the most robust response
in terms of promoting myocardial repair, as this method comprehensively approaches all
injured tissues of the heart (rather than only CMs) to achieve true cardiac repair. Addi-
tionally, cell-sheet delivery systems are probably the most effective for delivering large
numbers of cells without cell loss due to post-transplantation physical strain, hypoxia, or
cell washout through the vascular or lymphatic system. However, a primary factor limiting
the efficacy of this approach is the low proportion of transplanted cells that survive in the
recipient heart just a few weeks following graft administration. Many research groups have
begun examining this problem and are providing innovative solutions to improve the cell
engraftment rate—such as new injection techniques, combination of the cell sheets with
the omentum flap, or adding specific proteins. Additional research is clearly still needed to
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overcome engraftment issues, as well as to study more intricate cellular interactions, such
as innervation (critical to the electric coupling of the graft and recipient tissue), vascular-
ization, and final integration, it has been less than 15 years since the discovery of iPSCs,
let alone since their application as stem cell therapy. If the progression of future research
resembles the success over the past decade—as indeed seems to be the case—there will
still be plenty of opportunities to marvel at the solutions that have yet to come and that
will render stem cell approaches routine clinical practice.
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