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ABSTRACT

Fever is commonly used to diagnose disease and
is consistently associated with increased mortal-
ity in critically ill patients. However, the molecular
controls of elevated body temperature are poorly
understood. We discovered that the expression of
RNA-binding motif protein 3 (RBM3), known to re-
spond to cold stress and to modulate microRNA
(miRNA) expression, was reduced in 30 patients
with fever, and in THP-1-derived macrophages main-
tained at a fever-like temperature (40◦C). Notably,
RBM3 expression is reduced during fever whether
or not infection is demonstrable. Reduced RBM3 ex-
pression resulted in increased expression of RBM3-
targeted temperature-sensitive miRNAs, we termed
thermomiRs. ThermomiRs such as miR-142–5p and
miR-143 in turn target endogenous pyrogens includ-
ing IL-6, IL6ST, TLR2, PGE2 and TNF to complete a
negative feedback mechanism, which may be crucial
to prevent pathological hyperthermia. Using normal
PBMCs that were exogenously exposed to fever-like
temperature (40◦C), we further demonstrate the trend
by which decreased levels of RBM3 were associated
with increased levels of miR-142–5p and miR-143 and
vice versa over a 24 h time course. Collectively, our
results indicate the existence of a negative feedback
loop that regulates fever via reduced RBM3 levels

and increased expression of miR-142–5p and miR-
143.

INTRODUCTION

Since antiquity, fever has been used as an indicator for
diseases. Fever is defined as a regulated increase in body
temperature above normal fluctuations, and is associated
with various immune stressors from infectious and non-
infectious sources. The increase in body temperature is initi-
ated and regulated by numerous cytokines that act either as
pyrogens or antipyretics (1). These constitute a complex cir-
cuitry that resets the temperature balance point of the body
through a humoral or neural response (2).

There are long-standing arguments for and against treat-
ing elevated body temperature depending mainly on the
presence of specific acute neurological injuries. Fever is as-
sociated with a worse outcome for patients with stroke and
neurologic injury (3) and antipyretic treatment is thus rec-
ommended in these cases. However letting a fever run its
course can be beneficial in sepsis where an elevated temper-
ature in the first 24 h is associated with decreased mortality
in severe infections (4).

MicroRNAs (miRNAs) are short RNAs (≈22 nu-
cleotides) that reduce gene expression, usually by binding
to the 3′ untranslated region (UTR) of target mRNAs.
miRNAs guide an RNA-induced silencing complex (RISC)
to specific mRNA target sites called miRNA responsive
elements (mREs) to trigger translation inhibition and/or
mRNA degradation (5). The first eight nucleotides of a
miRNA, now called the seed region, may be complemen-
tary to motifs that determine their ability to regulate gene
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expression (6). Over 1000 miRNAs have been identified in
humans, hundreds of which are associated with major bio-
logical processes including cell proliferation and differenti-
ation, development and diseases (7,8). Consequently, miR-
NAs are arguably one of the most important classes of func-
tional RNAs.

Specific genes and miRNAs associated with the febrile re-
sponse may impact patient outcomes after infection (9,10).
The effects of isolated temperature elevation however have
not been examined at a molecular level. Our in silico anal-
ysis showed decreased levels of mRNA encoding a cold-
shock protein, RBM3 in febrile patients that is dependent
on the presence of fever but not infection. We also identi-
fied differentially expressed mRNAs and miRNAs in THP-
1-derived macrophages at normal (37◦C) and fever-like tem-
peratures (40◦C). As expected, mRNAs encoding RBM3
were the most significantly downregulated at 40◦C. Small
RNA sequencing and confirmation by quantitative poly-
merase chain reaction (PCR) assays revealed upregulation
of temperature-sensitive miRNAs, we termed thermomiRs,
including miR-10a, miR-10b, miR-151–5p, miR-151–3p,
miR-125a, miR-98, miR-142–5p and miR-143 in THP-
1-derived macrophages at 40◦C compared to 37◦C. Two
thermomiRs, miR-142–5p and miR-143 were significantly
increased following RBM3 knockdown in THP-1-derived
macrophages; confirming the role of RBM3 in the regula-
tion of these miRNAs at fever-like temperatures. Quantita-
tion of target mRNA levels following knockdown and over-
expression of miR-142–5p and miR-143 confirmed their
roles in the regulation of pyrogen expression. In peripheral
blood mononuclear cells (PBMCs) exposed to 40◦C over a
time course of 24 h (n = 5), we observed a trend whereby
RBM3 levels increased when miR-142–5p and miR-143 de-
creased and vice versa. Our data indicate the existence of
temperature-sensitive miRNAs, miR-142–5p and miR-143,
which are regulated by RBM3 in a negative feedback mech-
anism established in response to fever.

MATERIALS AND METHODS

Cell Lines and primary samples

Human THP-1 cells were maintained in RPMI me-
dia supplemented with 10% (v/v) FCS, 0.05 mM 2-
mercaptoethanol, 0.1 mg/ml penicillin/streptomycin
and 2 mM L-glutamine. Differentiation of THP-1 into
macrophages was performed as previously described (11).
Briefly, cells were plated at a density of 1.5 × 107 cells
per 75 cm2 culture flask containing supplemented RPMI
with 100 ng/ml phorbol-12-myristate 13-acetate (PMA)
and 50 �M 2-mercaptoethanol for 48 h. Undifferentiated
cells that did not exhibit plastic-adherence were removed.
Differentiated THP-1 cells, which adhered to tissue culture
flasks, were then maintained at normal (37◦C) or fever-like
(40◦C) temperatures for up to 24 h. Cells maintained at
40◦C were harvested at 2, 8 and 24 h for subsequent small
RNA and transcriptomic analyses. Human K562 cells were
maintained in RPMI 1640 supplemented with 10% (v/v)
FCS and antibiotics.

With ethics approval from the Human Research
Ethics Committee of the Royal Prince Alfred Hospital
(HREC/08/RPAH/222) and informed consent, whole

blood samples were obtained from five healthy individuals
(N1, N2, N3, N4 and N5). PBMCs were isolated using
PolymorphPrep (Axis-Shield) according to the manu-
facturer’s instructions, and maintained in supplemented
RPMI media (used for THP-1) at fever-like (40◦C) temper-
atures for 0, 2, 8, 16 and 24 h followed by RNA extraction
and RT-qPCR analyses.

Flow cytometry analysis

Flow cytometry analysis to confirm the differentiation of
THP-1 into macrophages was performed with anti-CD11b
and -CD44 staining. Cell viability following exposure to
40◦C was determined by measuring the percentages of
necrotic and apoptotic cells stained with propidium iodide
(PI) and Annexin V. All analysis was performed in triplicate
on an LSR Fortessa (BD Biosciences).

Trypan blue staining and caspase activity assay

Differentiated THP-1 cells were stained with 0.4% (w/v)
trypan blue and counted under the microscope to assess vi-
ability (250 - 300 cells for each culture condition). Caspase
activity assay was performed using the Caspase-Glo R©3/7
Kit (Promega) according to the manufacturer’s instruc-
tions. Positive control THP-1 cells were irradiated in a UV
Stratalinker 2400 (Stratagene) with a 400 000 �J UVC
dosage and incubated in fresh media for 16 h.

RNA extraction, RT-qPCR and miRNA detection assays

RNA extraction was performed using Trizol (Invitrogen)
according to the manufacturer’s instructions. RT-qPCR was
performed on cDNA generated from 1 �g DNaseI-treated
total RNA using SuperScript R© III First-Strand Synthesis
System (Invitrogen), according to the manufacturers’ in-
structions. RT-qPCR reactions were prepared in 20 �l vol-
umes containing 1× IQ SyberGreen supermix and 0.3 �M
of the respective forward and reverse primers. Samples were
amplified and analysed using the CFX96(TM) Real Time
PCR Machine (Bio-Rad).

The expression of known miRNAs was measured using
TaqMan R© MiRNA assays (Applied Biosystems) accord-
ing to the manufacturer’s instructions. Normalisation for
cDNA input was performed using a stably expressed ref-
erence snoRNA, RNU24.

Sequencing and Bioinformatics analysis

Small RNA libraries were prepared from 5 �g of RNA us-
ing the Small RNA Sample Preparation Alternative v1.5
Protocol (Illumina) according to the manufacturers’ in-
structions and sequenced at Geneworks (Adelaide) using an
Illumina GAIIx platform. Reads were aligned with Bowtie2
(12) on hg19 and miRNA expression was quantified us-
ing SeqMonk (http://www.bioinformatics.babraham.ac.uk/
projects/seqmonk/) with a loess normalisation. Novel miR-
NAs were investigated using a sliding window of 20 bp
across the aligned reads on the genome. Contigs of length
between 17 and 25 bp with a coverage of at least 10 reads
were then evaluated by a support vector machine for char-
acteristics of a miRNA hairpin (13).

http://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
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Western blot

Total protein lysates were loaded onto precast SDS-PAGE
gels (Invitrogen) and subjected to electrophoresis before be-
ing transferred onto PVDF membranes. Membranes were
blocked with 5% (w/v) BSA in TBS for 2 h at room tem-
perature and incubated overnight with a mouse mono-
clonal anti-RBM3 antibody (1:5000; Atlas Antibodies) or
a rabbit polyclonal anti-actin antibody (1:5000; Sigma).
Following washes, membranes were incubated with HRP-
conjugated secondary anti-mouse or anti-rabbit antibody
(1:5000; Chemicon), and exposed using enhanced chemilu-
minescence reagents (Pierce) on a Kodak Imager (Kodak).
Bands were quantified using ImageJ.

Knockdown of RBM3

Knockdown of RBM3 in differentiated THP-1 cells was
performed by transfecting small interfering RNAs (siR-
NAs) into cells using nucleofection (11). A total of three
siRNAs against RBM3 (s118 #58, #59 and #60; Applied
Biosystems) and a negative control siRNA (Applied Biosys-
tems) were used.

nCounter miRNA quantification

Total RNA (100 ng each) was analysed using the nCounter
Human miRNA Expression Assay Kit Version 2.0 (NanoS-
tring Technologies) according to the manufacturers’ in-
structions. Data were analysed using the nSolver software,
with normalisation performed using the top 100 highly ex-
pressed miRNAs.

Nucleofection of cells with anti-miRNA and mimic

THP-1 cells were differentiated into macrophages at 40◦C,
harvested and nucleofected with the custom designed 2′-O-
methylated miRIDIAN miRNA Hairpin Inhibitor (Dhar-
macon) directed against hsa-miR-142–5p, hsa-miR-143–3p
or non-human miRNA control. These inhibitors do not
necessarily direct degradation of miRNAs but would in-
duce loss-of-function as previously published (14). Cells
were co-transfected with pmaxGFP vector and GFP-
expressing cells were purified 24 h post nucleofection us-
ing fluorescence-activated cell sorting on the InfluxTM Cell
Sorter (BD Biosciences). Nucleofection of miR-142 and
miR-143 mimics (Dharmacon) and the miRIDIAN mi-
croRNA Mimic Negative Control #1 (Dharmacon) was
performed using the same protocol. 300nM of miRNA in-
hibitor or mimic was used in each nucleofection reaction.

Analysis of gene expression in febrile patients and controls

Data from GSE40396 were normalised using the cyclic
lowess algorithm (15) from the Affymetrix package in R
(3 cycles). Pseudogenes and predicted genes were removed
based on Gencode annotation (http://www.gencodegenes.
org) before analysis of differential gene expression using
GENE-E (Broad Institute). Individual patients were la-
belled for infection (presence/type or absence) and fever
(presence or absence). A heat map for the top 100 genes (50
increased and 50 decreased; signal to noise) was determined

using Marker Selection for patient samples with fever versus
no fever.

Gene expression array

Differential expression of mRNAs was assessed using the
GeneChip R© Prime View

TM
Human Gene Expression Ar-

ray (Affymetrix) at the Ramaciotti Centre for Genomics
(Sydney) according to the manufacturer’s instructions. The
arrays were normalised using the justRMA suite of algo-
rithms from Bioconductor (http://www.bioconductor.org)
and analysed as previously described (16). Raw data were
deposited in the Gene Expression Omnibus database (ac-
cession number GSE69343). Gene function enrichment
was performed using the DAVID functional enrichment
webtool (17). PrimeView gene set was used as background.

Statistics

The significance of fold-change in mRNA and miRNA ex-
pression between treatment and control cases were deter-
mined using two-tailed Student’s t-test. Values are shown
as mean ± SEM. Analyses were performed using Graph-
Pad Prism v.6 (La Jolla, CA, USA). Results were considered
significant when P-value < 0.05.

RESULTS

Reduced RBM3 expression is dependent on the presence of
fever but not infection

To determine fever-related gene expression changes, we
re-analysed whole genome microarray data performed on
whole blood from 30 febrile and 35 non-febrile children,
classified on the basis of infection by diverse viruses and
bacteria (18). As expected, transcripts encoding immune
and inflammatory response genes including FCGR1 fam-
ily members (19), CCR1 (20), TLR5 (21), TLR6 (22), TN-
FSF13B (23) and IL1B (24) were highly enriched amongst
the top 50 upregulated transcripts (Figure 1A). Many
mRNA processing and ribosomal protein synthesis related
genes were downregulated, including FBL, RPL3, RPL4,
RPL10A and RPL14 (Figure 1A), consistent with the
widespread inhibition of RNA processing and ribosomal
protein synthesis following heat-shock (25–27). Amongst
the most downregulated genes was RBM3 (signal-to-noise;
2.2-fold, Figure 1A), which encodes a cold-shock protein
known to be induced under conditions of mild hypother-
mia and also to alter miRNA levels by binding to the pre-
cursor transcript (28,29). We determined whether RBM3
expression was more relevant to fever or infections in pa-
tients (Figure 1B). RBM3 levels were significantly lower in
the presence of fever regardless of the type of infection (P =
2.1E-16). We found no significant difference in RBM3 lev-
els between patients with infection but no fever and patients
with no infection (P = 0.54, t-test). Thus, the presence of
fever, not infection, determined lower RBM3 levels.

Fever-like temperature alters the expression of diverse genes
including RBM3

In order to further understand the role of RBM3 dur-
ing fever, we performed in vitro studies using THP-1-

http://www.gencodegenes.org
http://www.bioconductor.org
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Figure 1. Differential gene expression in febrile and non-febrile patients. (A) Heatmap showing top 50 most upregulated (red) and downregulated (blue)
genes in 30 febrile patients compared to 35 non-febrile controls. (B) Re-analysis of RBM3 expression from Hu et al., 2013 (18) in 30 febrile and 35 non-febrile
patients.

derived macrophages; a model used extensively for study-
ing the immune response (30). Following 48 h exposure
to PMA, THP-1 cells exhibited plastic-adherence and ex-
pressed higher levels of CD11b and CD44 compared to un-
treated cells, confirming macrophage differentiation (Fig-
ure 2A). THP-1-derived macrophages were exposed to
fever-like temperature (40◦C) in vitro. In order to confirm

that these cells were viable at the elevated temperature, and
therefore appropriate for transcriptome and miRNAome
analyses, Annexin V/propidium iodide (PI) staining (Fig-
ure 2B), trypan blue staining (Supplementary Figure S1A)
and caspase activity assays (Supplementary Figure S1B)
were performed. All three approaches demonstrated that
exposure of THP-1-derived macrophages to 40◦C for up
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Figure 2. Expression of the cold-shock protein RBM3 is altered between 37◦C and 40◦C in THP-1-derived macrophages. (A) Confirmation of THP-1
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Western blot for RBM3 expression following incubation at 37◦C and 40◦C with actin used as the loading control. PMA, phorbol-12-myristate 13-acetate.

to 24 h did not result in significant cell death compared to
cells maintained at 37◦C (Figure 2B, Supplementary Figure
S1A,B). Viability of >90% was maintained at 40◦C (Figure
2B and Supplementary Figure S1A).

Using whole genome expression array, we found 309
protein-coding genes that changed significantly (P < 0.01;
fold-change > 2) between 37◦C and 40◦C in THP-1-derived
macrophages (Supplementary Table S1). Of these, 132 genes
had increased expression at 40◦C and 177 had reduced ex-
pression. Upregulated genes were enriched in histone, nu-
cleosome and acetylation functions (Figure 2C). This en-
richment was anticipated by recent reports that an increase
in expression of acetylation genes such as HDAC and his-
tones are vital to the immune response (31). Downregulated
genes were not significantly enriched in any category (P <
1.0E-3). RBM3 showed the highest reduction at 40◦C (≈15-
fold decrease), consistent with our observation in febrile
patients (Figure 2D). While RBM3 levels have never been
investigated in hyperthermia, our model of fever demon-
strated that RBM3 mRNA levels were the most destabilised
with a concomitant ≈6-fold decrease in RBM3 protein lev-
els (Figure 2E). Because our focus is the temperature com-
ponent of fever and RBM3 is a temperature-sensitive pro-
tein known to regulate miRNA levels (28,29), we further in-
vestigated the link between RBM3 and miRNA regulation
in our model.

Fever-like temperatures alter the expression of miRNAs in
THP-1-derived macrophages

We performed small RNA sequencing on THP-1-derived
macrophages at 37◦C and on cells incubated at 40◦C for 2, 8
and 24 h. No miRNA showed significantly lower expression

after incubation at 40◦C. Eight miRNAs exhibited a signifi-
cantly higher expression after 24 h of incubation at 40◦C (P
< 0.05; fold-change > 2; Figure 3A), which we called ther-
momiRs. Importantly thermomiRs showed a consistent in-
crease in expression starting at 2 h. This increase in expres-
sion after 24 h was validated using RT-qPCR on all eight
miRNAs and three control miRNAs that did not show any
change in the sequencing data (Figure 3B). Many of these
miRNAs are known to have roles in the immune response.
For example, miR-10a is a key mediator of regulatory T
cell differentiation (32), miR-125a controls the inflamma-
tory response in macrophages (33) and in autoimmune dis-
ease (34), miR-98 regulates Fas-ligand apoptosis that plays
a crucial role in multiple immune functions, miR-142–5p
mediates T cell activation (35) and miR-143 regulates Toll-
like receptors (36).

RBM3 regulates expression of miR-142–5p and 143

As RBM3 controls miRNA expression through an RNA-
binding motif, we examined the effects of reducing RBM3
levels on miRNAs in THP-1-derived macrophages using
three different siRNAs (37). RT-qPCR and Western blot
analyses confirmed reduced RBM3 expression in cells trans-
fected with each of these three siRNAs by ≈3–20-fold (Fig-
ure 4A,B). Using the NanoString nCounter analysis, we
found 40 miRNAs for which the expression increased con-
sistently for all three RBM3 knockdowns (Supplementary
Table S2). Only one miRNA, miR-221 showed a decrease
after RBM3 knockdown. Of the 40 miRNAs affected by
RBM3 knockdown, miR-142–5p and miR-143 were out-
liers in terms of change in expression (Figure 4C). miR-
143 was only detectable after RBM3 knockdown. miR-142–
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Figure 4. RBM3 siRNA knockdown increases the expression of thermomiRs. (A) Expression of RBM3 mRNA by RT-qPCR, and (B) RBM3 protein levels
by Western blot in THP-1-derived macrophages nucleofected with negative control siRNA and each of the three siRNAs against RBM3: #58, #59 and
#60. (C) Average counts of individual miRNAs from the three RBM3 knockdown experiments as measured using NanoString nCounter. Two miRNAs
miR-142 and miR-143 showed the greatest change in expression. (D) Expression of pyrogens in THP-1-derived macrophages: IL6ST, TNF and TLR-2
following inhibition of miR-142–5p and miR-143 (relative to control inhibitor). (E) Expression of miR-142 and miR-143 in THP-1-derived macrophage at
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5p was most highly expressed amongst miRNAs with in-
creased expression after RBM3 knockdown. Notably, these
miRNAs were also amongst those that increased in ex-
pression following elevated temperature treatments (Figure
3A,B). These miRNAs may be two key modulators of pyro-
gens during a feedback loop that involves elevated temper-
ature and reduced RBM3 levels.

ThermomiRs miR-142–5p and miR-143 target important im-
mune genes and genes in the fever-response pathway

miR-143 is involved in the regulation of multiple pyrogens
including TLR2 (36), PGE2 (38) and IL-6 (39), as is miR-
142 (40). We inhibited miR-142–5p and miR-143 in THP-1
cells using antagomir oligonucleotides and measured the ex-
pression of six pyrogens: IL6ST, IFNA1, TNF, TLR2, IL6
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Figure 5. Temporal changes of RBM3, miR-142–5p and miR-143 expression in PBMCs exposed to 40◦C over a 24 h time course. (A) Expression of RBM3
mRNA in PBMCs by RT-qPCR (n = 5). (B) Expression of miR-142–5p and (C) miR-143 in PBMCs by Taqman miRNA assays (n = 5). Fold change was
measured relative to 0 h. N1–N5 denote five healthy individuals recruited for this experiment.

and PGE2 by RT-qPCR (Figure 4D). Of these, three targets
IL6, IFNA1 and PGE2, were expressed at levels below the
detection limit of RT-qPCR pre- and post-knockdown of ei-
ther miRNA. We confirmed that miR-142–5p and miR-143
regulated the expression of IL6ST (P = 0.0279) and TLR2
(P = 0.0476) respectively (Figure 4D). Although inhibition
of miR-142–5p resulted in the increased expression of TNF
by 1.4-fold, this did not reach statistical significance (P =
0.1304). Increased expression of miR-142 and miR-143 via
nucleofection with miRNA mimics (Figure 4E) resulted in
significantly reduced expression of IL6ST, TNF and TLR2
(Figure 4F), confirming that these pyrogens are regulated
by miR-142 or miR-143. Our data in addition to the previ-
ously described validated targets of miR-142 and miR-143
show that these miRNAs regulate major pyrogens (41).

RBM3 levels decreased with increased miR-142–5p and miR-
143 levels and vice versa in primary human PBMCs

In order to confirm the association between RBM3, miR-
142–5p and miR-143 in primary cells, we measured their
expression in PBMCs from healthy individuals (n = 5) sub-

jected to 40◦C over a 24 h time course. Exogenous exposure
of PBMCs to 40◦C resulted in decreasing RBM3 expression
starting from 2 up to 8 h before the levels increased at 16–
24 h (Figure 5A). In contrast, the levels of miR-142–5p and
miR-143 increased and predominantly peaked at 8 h before
dropping again at 16–24 h (Figure 5B and C). This trend of
increasing RBM3 expression in conjunction with decreas-
ing miR-142–5p and 143 levels, and vice versa, supports a
feedback mechanism involving RBM3 and these miRNAs
in response to increased temperature.

DISCUSSION

During infection, lizards will move to a warmer environ-
ment. Preventing them from doing so can result in a mor-
tality rate of up to 70% (42). This simple experiment demon-
strates that fever is a crucial part of the response to infec-
tion. Indeed, fever is an adaptive mechanism that evolved
over 200 million years ago. All vertebrates elevate their body
temperature in response to infection and fever confers a sur-
vival advantage to all vertebrates studied. Curing paralysis
caused by syphilis by inducing fever from malaria infection
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was the subject of the 1927 Nobel prize in medicine. Despite
a growing body of evidence pointing towards a beneficial ef-
fect of fever on patient outcome, antipyretic drugs are still
commonly used to treat fever at home and in the intensive
care unit (ICU) and no study has investigated the molecular
consequences of fever at a cellular level.

Our findings define a novel role for RBM3 as a gauge
and potential mediator of pyrexia with crucial downstream
functions effected via miRNAs. miRNAs have previously
been implicated in diverse homeostatic and metabolic path-
ways (43) and more recently have been used to predict
outcome in critically ill patients and sepsis (44). In our
model, temperature–sensitive miR-142–5p and miR-143
were shown to be key regulators of pyrexia. When RBM3
levels decrease, the expression of these ‘thermomiRs’ in-
creases dramatically. In turn these ‘thermomiRs’ target the
pyrogens that cause the increase in body temperature. We
present here a negative feedback loop to regulate body tem-
perature that involves reduced expression of RBM3 and in-
creased expression of ‘thermomiRs’ to fine-tune levels of
pyrogens (Figure 6). Our microarray data demonstrate lack
of changes in pyrogen expression in THP-1-differentiated

macrophages following 40◦C exposure (Supplementary Ta-
ble S1). In contrast, knockdown of miR-142–5p or 143 in
the absence of elevated temperature exposure resulted in a
significant increase in the expression of two pyrogens (Fig-
ure 4D). These results support our model that miR142 and
miR-143 counteract the natural increase of pyrogens follow-
ing increased temperature.

Consistent with this model, we demonstrate in primary
PBMCs exposed to fever-like temperature that RBM3 levels
anti-correlate with miR-142–5p and miR-143 levels, poten-
tially in order to maintain homeostasis during unfavourable
temperature conditions. This mechanism may be crucial to
prevent an excessive increase in body temperature and re-
lated molecular response leading to pathological hyperther-
mia.

Our data suggest that most temperature-sensitive miR-
NAs are not regulated by RBM3 (Figure 4C). These miR-
NAs may respond directly to temperature changes or may
be regulated by other heat responsive protein(s). These pro-
teins may include the cold inducible RNA binding pro-
tein, CIRBP, that was also downregulated following expo-
sure of THP-1-differentiated macrophages to 40◦C (Supple-
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mentary Table S1). Future work is required to determine
whether downregulation of this protein regulates the ex-
pression of one or more thermomiRs. Notably, CIRBP and
RBM3 are regulated by body temperature changes associ-
ated with the circadian rhythm (45). It would be interesting
to determine if miRNA expression that changes during this
process (46) is also regulated by CIRBP and RBM3.

Given the importance of the targets of thermomiRs that
respond to changes in temperature, this study provides
novel insight into the mechanisms that mediate fever. From
the use of over the counter antipyretics to targeted tem-
perature management used in the ICU for cardiac arrest
or elevated intracerebral pressure (47), medical control of
body temperature is common and can be critical to a pa-
tient’s outcome. Here we demonstrate that a small change
in temperature between 37◦C and 40◦C has a major effect
on miRNAs and on their target gene expression. Given that
these miRNAs and their targets are crucial to the control of
pyrexia and to the immune response in general, it is essential
to understand how these molecular changes mediate differ-
ent types of insult. Our results are directly relevant to the
clinical context given recent evidence that increased levels
of IL-6, IL6ST (48), TLR2 (49), PGE2 (50) and TNF (51),
each of which is regulated by miR-142–5p or miR-143, are
associated with a poor outcome in patients with severe sep-
sis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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