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Abstract
Background: Identifying risk factors for negative postoperative outcomes is an 
important part of providing quality care. Here, we build machine learning (ML) 
ensembles to model the independent impact of presurgical comorbidities on 
discharge disposition and length of stay (LOS) following brain tumor resection from 
the HCUP National Inpatient Sample (NIS).
Methods: We performed a retrospective cohort study of 41,222 patients who 
underwent craniotomy for brain tumors during 2002–2011 and were registered in 
the NIS. Twenty‑six ML algorithms were trained on prehospitalization variables to 
predict nonhome discharge and extended LOS (>7 days), and the most predictive 
algorithms combined to create ensemble models. Models were validated to 
demonstrate generalizability. Analysis was done to identify which and how specific 
comorbidities influence ensemble predictions.
Results: Receiver operating curve analysis showed area under the curve of 
0.796 and 0.824 for the disposition and LOS ensembles, respectively. The 
disposition ensemble was most strongly influenced by preoperative paralysis and 
fluid/electrolyte abnormalities, which independently increased the risk of nonhome 
discharge in craniotomy patients by 35.4% and 13.9%, respectively. The LOS 
ensemble was most strongly influenced by the presence of preoperative paralysis, 
fluid/electrolyte abnormalities, and other nonparalysis neurological deficits, which 
independently increased the risk of extended LOS in craniotomy patients by 20.4%, 
22.5%, and 38.3%, respectively.
Conclusions: In this study, we used ML ensembles to identify preoperative 
comorbidities that increased the risk of nonhome discharge and extended LOS 
following craniotomy for brain tumor. Recognizing these risk factors for poor 
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INTRODUCTION

It is important for neurosurgeons to identify risk factors 
for poor outcomes following craniotomy for brain 
tumor (CFBT) as it impacts care on both the individual 
patient and healthcare systems level. An improved 
understanding of risk factors allows better patient 
counseling by providers, helps facilitate coordination of 
postoperative care between patients, providers, patient 
caregivers, and insurance companies, and affords patients 
and providers the opportunity to address potentially 
reversible conditions that could adversely impact 
postoperative outcomes. On the healthcare systems 
level, accurate identification of patients at high risk for 
poor postoperative outcomes helps surgeons and hospital 
administrators more efficiently apportion scarce hospital 
resources, while also helping hospitals and payers more 
easily determine appropriate rates of reimbursement for 
high‑resource patients. Prediction of high‑risk patients also 
allows more accurate calculation of observed‑to‑expected 
morbidity and mortality ratios, which can benefit quality 
improvement initiatives and avoid undue penalties for 
providers and hospitals that take on challenging cases.

Several operative risk assessments have already been 
developed and are in regular use. Some, such as 
the American Society of Anesthesiologists Physical 
Status (ASA‑PS) classification system, are very simple risk 
indices. While intuitive and user‑friendly, this risk index 
is not specific to neurosurgical patients and does not look 
at specific comorbidities, limiting its usefulness in terms 
of targeting potentially reversible preoperative patient 
characteristics.[23] This is particularly important in light 
of the fact that baseline patient characteristics have been 
identified as critical drivers of poor outcomes following 
CFBT. Grossman et al. showed that preoperative 
Charlson Comorbidity Score (a weighted patient 
comorbidity index) is predictive of inpatient postoperative 
mortality, length of stay (LOS), total hospital charges, 
and postoperative complications for elderly patients 
undergoing craniotomy for meningioma[10] and for 
metastatic brain tumors.[11] Dasenbrock et al. identified 
specific comorbidities recorded in the National Surgical 
Quality Improvement Program (NSQIP) database that 
increased the risk of extended LOS in patients undergoing 
CFBT.[8] It is clear, therefore, that risk prediction tools 
that incorporate patient comorbidities are needed to 
provide the most useful information to providers and 
their patients.

Here, we use a novel machine learning (ML) technique 
to predict two postoperative outcomes for patients 
registered in the National Inpatient Sample (NIS) 
undergoing CFBT – discharge disposition and length of 
hospital stay (LOS). We directly compare the predictive 
ability of 26 unique ML algorithms and combine the 
top performing algorithms to create final predictive 
ensembles. We then interrogate the ML ensembles 
to investigate the independent impact of 29 different 
patient comorbidities on discharge disposition and LOS. 
We also build ML ensembles for specific tumor subtypes 
to determine whether comorbidity risk factors vary based 
on pathologic diagnosis.

MATERIALS AND METHODS

Database
We used the NIS in‑hospital discharge database for the 
years 2002–2011. NIS is the largest all‑payer inpatient 
database publicly available in the United States, containing 
approximately 8 million hospital stays from ~1000 hospitals, 
sampled to approximate a 20% stratified sample of US 
hospitals.[13] NIS is compiled and maintained by the Agency 
for Healthcare Research and Quality (AHRQ, Rockville, 
Maryland, USA). This publicly available, de‑identified 
database was considered exempt from IRB review.

Patient selection
All 79,742,743 admissions registered in the NIS between 
2002 and 2011 were screened for inclusion in the 
study. Eligible admissions were first identified by ICD9 
diagnosis codes for brain tumor (225.0–225.4, 225.8, 
225.9, 199.1, 191.0–191.9). Admissions in this subset 
were then screened for ICD9 procedure codes matching 
craniotomy (01.20–01.29, 01.31, 01.32, 01.39, 01.59). We 
further restricted our cohort to patients 18 years or older. 
A total of 41,222 admissions met our criteria.

To determine whether trends in the entire CFBT 
population are mimicked within specific brain 
tumor diagnoses, we derived the following tumor 
subsets using the appropriate ICD9 diagnosis 
codes: meningioma (225.2), nonmeningioma benign 
tumor (225.0, 225.1, 225.8, 225.9), and malignant 
tumor (199.1, 191.0–191.9).

Variable selection and primary outcomes
Data was collected on a variety of preoperative patient 
characteristics, including age, race, sex, specific 
neurosurgical diagnosis, comorbidities, admission 

postsurgical outcomes can improve patient counseling and offer opportunities 
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type, emergent vs nonemergent surgery, expected 
payer, and hospital characteristics. The 29 included 
comorbidity variables were identified using the 
Elixhauser Comorbidity Software administered by 
AHRQ [Table 1]. In total, 61 different variables were 
considered [Supplementary Table 1]. The primary 
outcome for the discharge disposition model was home 
vs other (including death, short‑term hospital, AMA, 
home health, and other). Based on previous studies of 
LOS in the CFBT population, the primary outcome 
for the LOS model was defined as greater than 7 
inpatient days versus less than or equal to 7 inpatient 
days.[8] According to this definition, patients with 
extended LOS made up approximately one‑third of the 
CFBT population.

Data preprocessing
Numerous data preprocessing approaches are 
represented in the collection of algorithms evaluated in 
the leaderboard. This section describes the approaches 
used in the algorithms included in the final ensembles. 
Missing numerical data was dealt with by imputing 
the median of the column and creating a new binary 
column to indicate the imputation. Numerical data 
was standardized in each column by subtracting the 
mean and dividing by the standard deviation. For 
linear algorithms (Support Vector Machine, Elastic 
Net Classifier, Regularized Logistic Regression, 
Stochastic Gradient Descent Classifier, and Vowpal 
Wabbit Classifier), categorical data was turned into 
many binary columns by one‑hot encoding. Missing 
categorical values were treated as their own categorical 
level and get their own column. For tree‑based 
algorithms, categorical data was encoded with integers. 

The assignment of category values to integers was done 
randomly.

Leaderboard construction and model validation
Before training, 20% of the dataset was randomly 
selected as the holdout, which was never used in 
training or cross‑validation. The remaining data was 
divided into five mutually exclusive folds of data, four 
of which were used together as training, with the final 
fold used for validation.[16] Training was performed 
five times per algorithm, with each fold used once 
for validation. Cross‑validation scores were calculated 
by taking the average area under the curve (AUC) of 
the receiver‑operating characteristic (ROC) of the five 
possible validation folds. Twenty‑six ML algorithms were 
trained and scored, and the top performing algorithms 
were selected for use in each ensemble. The algorithms 
were combined with an Elastic Net Classifier and an 
Average Blender for the disposition and LOS ensembles, 
respectively. Following ensemble model creation, 
validation was performed on the holdout to demonstrate 
the ability of the model to generalize never‑before‑seen 
data. The holdout was taken as a single sample, and 
hence no confidence intervals were calculated. Model 
construction was performed using DataRobot (version 
3.0; DataRobot, Inc, Boston, MA).

Permutation importance
The relative importance of a feature to the final 
ensemble model was assessed using permutation 
importance, as described by Breiman.[3] Using training 
data only, for each variable, the ensemble was retrained 
on data with the values for the variable randomly 
permuted. The difference in performance in AUC 
between the ensemble built on the reference data and 
that of the data with the permuted variable was used 
to rank and compare the relative importance of the 
features to the ensemble.

Partial dependence
To understand the independent impact of race on the 
disposition and LOS ensembles, we constructed Partial 
Dependence plots, as described by Friedman.[9] A subset 
of the training data was selected. For any variable, we 
made predictions from the ensemble after replacing all 
values for the variable with a constant test value and 
computing the mean of those predictions. We tested 
many values to observe how the ensemble reacts to 
changes in the variable of interest.

Other statistical methods
Traditional statistical analysis was performed on selected 
patient and hospital characteristics. Continuous variables 
were compared using the Mann–Whitney U test. 
Categorical variables were compared using Pearson’s χ2 test. 
Statistical analysis was performed using the open source 
statistical tools in SciPy (SciPy ver 0.17).

Table 1: AHRQ comorbidities included in ensemble 
training
AIDS Lymphoma
Alcohol abuse Metastatic cancer
Chronic blood loss anemia Obesity
Chronic pulmonary disease Other neurologic disorders
Coagulopathies Paralysis
Congestive heart failure Peptic ulcer disease excluding bleeding
Deficiency anemias Peripheral vascular disorders
Depression Psychoses
Diabetes, uncomplicated Pulmonary circulation disorders
Diabetes, with chronic 
complications

Renal failure

Drug abuse Rheumatoid arthritis/collagen vascular 
diseases

Fluid/electrolyte abnormalities Solid tumor without metastasis
Hypertension Valvular disease
Hypothyroidism Weight loss
Liver disease
AHRQ: Agency for Healthcare Research and Quality
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RESULTS

Patient characteristics
A total of 41,222 admissions for CFBT were reviewed 
for analysis; 25,406 resulted in discharge to home 
and 15,705 admissions did not. One hundred and 
eleven admissions had no or unknown discharge 
disposition recorded and were excluded from the 
study. 69.3% of patients had at least one comorbidity. 
With the exception of drug abuse and peptic 
ulcer disease, all comorbidities were associated 
with a significantly increased risk of nonhome 
discharge [Supplementary Table 2]. Patients at 
higher risk for nonhome discharge tended to be 
females (P < .001), black (P < .001), older (average 
age 60.7 years versus 50.5 years P < .001), have 
Medicare as their primary payer (P < .001), and 
have nonelective surgeries (P < .001). They were 
seen in medium‑sized (P = 0.02), private (P < .001) 
urban nonteaching (P < .001), northeastern 
hospitals (P < .001) [Supplementary Table 3].

A total of 27,314 admissions lasted less than or equal 
to 7 days, and 13,907 admissions lasted more than 
7 days. One admission had no recorded LOS and 
was excluded from analysis. 69.4% of the patients 
had at least one comorbidity. Except lymphoma and 
rheumatoid arthritis or other collagen vascular diseases, 
all comorbidities were associated with a significant risk 
of extended LOS [Supplementary Table 4]. Patients at 
higher risk for extended hospitalization also tended to 
be older (average age 57.8 years vs 52.7 years, P < .001), 
black or other nonblack minority race (P < .001), and 
have nonelective surgeries (P < .001). They were seen 
in medium‑sized (P < .001), private (P < .001), urban 
nonteaching (P < .001), southern hospitals (P < .001) 
[Supplementary Table 5].

Receiver‑operator characteristics curve and 
other classifier statistics
An ensemble model including a Nystroem Kernel Support 
Vector Machine (SVM) Classifier, Elastic‑Net Classifier, 
and Extreme Gradient Boosted Trees Classifier was best 
able to predict discharge disposition, and an ensemble 
comprising an Elastic‑Net Classifier, a Vowpal Wabbit 
Classifier, a Stochastic Gradient Descent Classifier, two 
Extreme Gradient Boosted Trees Classifiers, a Gradient 
Boosted Tree Classifier, a Nystroem Kernel SVM, and 
a Regularized Logistic Regression was best able to 
predict extended LOS. The disposition ensemble model 
had an AUC on the validation set of 0.796 (95% CI, 
0.790–0.801), and the LOS ensemble had an AUC of 
0.824 (95% CI, 0.823–0.826). Validating on the holdout 
set yielded an AUC of 0.807 for the disposition ensemble 
and 0.818 for the LOS ensemble. When optimizing the 
F1 score, the discharge ensemble had a positive predictive 
value (PPV) of 60.0% (95% CI, 59.1–60.9%), a negative 
predictive value (NPV) of 82.0% (95% CI, 81.5–82.4%), 
sensitivity of 75.5% (95% CI, 75.0–76.0%), and specificity 
of 68.9% (95% CI, 67.9–69.8%). The LOS ensemble 
had a PPV of 58.8% (95% CI, 58.6–59.0%), an NPV of 
86.2% (95% CI, 86.0–86.4%), sensitivity of 77.2% (95% CI, 
76.9–77.5%), and specificity 72.5% (95% CI, 72.2–72.7%). 
All additional ensembles predicted their respective 
outcomes with similar discrimination [Table 2].

We also built logistic regressions to compare the 
predictive abilities of our ensembles to those of traditional 
regression‑based models. Both ensembles performed 
better than the corresponding logistic regression on the 
data hold out (AUC = 0.807 vs 0.802 for the disposition 
models; AUC = 0.818 vs 0.816 for the LOS models).

Permutation and partial dependence analysis
We performed permutation importance and partial 
dependence analyses to determine which variables are 

Table 2: Cross‑validation AUC and other metrics for constructed ensembles

Ensemble and patient 
population

AUC (95% CI) PPV, % (95% CI) NPV, % (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) Holdout

Discharge
CFBT 0.796 (0.790-0.801) 60.0 (59.1-60.9) 82.0 (81.5-82.4) 75.5 (75.0-76.0) 68.9 (67.9-69.8) 0.807
Meningioma 0.789 (0.777-0.799) 57.8 (56.7-58.7) 81.3 (79.7-82.6) 78.7 (76.2-80.8) 61.6 (59.6-63.4) 0.804
Nonmeningioma benign 
tumor

0.761 (0.744-0.776) 50.0 (47.3-51.9) 83.2 (81.9-84.4) 71.4 (69.1-73.5) 66.3 (63.4-68.8) 0.782

Malignant tumor 0.793 (0.788-0.797) 60.2 (59.9-60.4) 82.2 (81.9-82.5) 77.2 (76.5-77.7) 67.3 (66.8-67.8) 0.793
Length of Stay

CFBT 0.824 (0.823-0.826) 58.8 (58.6-59.0) 86.2 (86.0-86.4) 77.2 (76.9-77.5) 72.5 (72.2-72.7) 0.818
Meningioma 0.815 (0.809-0.820) 58.7 (60.0-60.3) 86.4 (85.5-87.2) 78.7 (77.0-80.2) 70.9 (68.7-72.8) 0.811
Non-meningioma benign 
tumor

0.788 (0.761-0.812) 56.0 (52.8-58.8) 84.1 (81.5-86.4) 73.3 (68.1-77.7) 71.0 (68.1-74.5) 0.779

Malignant tumor 0.819 (0.815-0.823) 55.8 (55.1-56.3) 88.2 (87.8-88.5) 82.6 (81.9-83.2) 66.4 (65.5-67.2) 0.817
Cross-validation receiver operating characteristic and other metrics for each ensemble. Metrics are calculated at the optimized F1 score for each ensemble. The holdout for 
each ensemble is taken as a single sample, and so no confidence intervals are calculated. AUC: Area under the curve, CI: Confidence interval, PPV: Positive predictive value, 
NPV: Negative predictive value, CFBT: Craniotomy for brain tumor
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most important to, and how they independently impact, 
the ensembles. The strongest risk factors for nonhome 
discharge are, in order, increasing age, preoperative 
paralysis, hospitalization in the northeast, nonelective 
surgery, and preoperative fluid/electrolyte abnormalities. 
The strongest risk factors for extended LOS in the 
LOS ensemble are nonelective surgery, preoperative 
paralysis, preoperative fluid/electrolyte abnormalities, 
increasing age, and other preoperative neurological 
deficits [Figure 1]. Preoperative paralysis and preoperative 
fluid/electrolyte abnormalities increase the risk of 
nonhome discharge by 35.4% and 13.9%, respectively. 
Preoperative paralysis increases the risk of extended 
LOS by 20.4%, whereas preoperative fluid/electrolyte 
abnormalities increase the risk by 22.5% and other 
preoperative neurological deficits increase the risk by 
38.3%. Subgroup analysis showed very little variance from 
the trends identified in the overall CFBT population, 
suggesting that specific tumor diagnosis does not strongly 
influence the effect of specific patient comorbidities on 
either discharge disposition or LOS [Figure 2].

DISCUSSION

In this study, we built ML ensemble models to identify 
preoperative comorbidities that most strongly predict 
nonhome discharge and extended LOS following CFBT. 
Previous work to identify patient characteristics that 
predict poor neurosurgical outcomes has tended to rely 
on traditional statistical techniques, in particular logistic 
regression (LR). While a powerful technique, LR works 
best on a limited range of datasets, particularly those 
that contain few, independent variables.[1] ML is a type of 
analysis that uses diverse computer algorithms to identify 
patterns in large, complicated data sets.[12] Newer ML 
algorithms are particularly adept at handling vast numbers 
of variables in complex and nonlinear ways to generate 
sophisticated predictions.[20] Given the complexity of 
human disease and the large amounts of patient data now 
collected in electronic medical records, some researchers 
have suggested that algorithms other than LR may be 
better suited to predicting patient outcomes.[21,24] It is 
impossible to know, however, which ML algorithm will best 
predict an outcome of interest for a given dataset without 

directly comparing the predictive abilities of the different 
algorithms. The advantage of our guided ML ensemble 
technique lies in the fact that we directly compare 26 
different ML algorithms using the same validation metrics, 
allowing us to objectively identify the algorithms that best 
predict outcomes of interest from our data.

Our ensemble models drew from a library of open 
source ML algorithms representing major classes of 
ML algorithms currently available. The algorithms 
selected for inclusion in each ensemble were selected 
based solely on their predictive abilities after training 
on the dataset – we did not bias our study by selecting 
algorithms a priori. The disposition ensemble comprised 
a Nystroem Kernel SVM classifier, Elastic‑Net classifier, 
and Extreme Gradient Boosted Trees classifier, whereas 
the LOS ensemble comprised an Elastic‑Net classifier, 
Stochastic Gradient Descent classifier, Vowpal Wabbit 
classifier, two Extreme Gradient Boosted Trees classifiers, 
and a Gradient Boosted Tree classifier, Nystroem Kernel 
SVM, and Regularized Logistic Regression. We briefly 
describe several of the machine learning algorithms that 
may be unfamiliar to the practicing neurosurgeon.
•	 Nystroem	Kernel	SVMs	plot	inputs	as	vectors	in	higher	

dimensional space, with each axis corresponding to 
a different variable. The algorithm then calculates 
a plane that separates the inputs into two different 
classes. New inputs are then assigned to a class based 
on which side of the plane they fall on[26]

•	 Elastic	 Nets	 are	 logistic	 regressions	 that	 employ	
lasso and ridge regularization to improve predictive 
accuracy. Lasso and ridge regularizations work to 
minimize model overfitting (when a model describes 
random error or noise inherent to the database rather 
than the true, underlying associations) by shrinking 
or eliminating large regression coefficients[27]

•	 Tree‑based	 models	 use	 decision	 rules	 to	 classify	
data. Large trees may have many decision rules, 
the outcome of each contributing to the overall 
likelihood that a data input will fall into one class or 
another. Extreme Gradient Boosted Trees continually 
add weak decision rules to the overall tree to produce 
models that are optimized to classify edge cases[4,7,9]

•	 Stochastic	 Gradient	 Descent	 classifiers	 are	 linear	
models that initially assign each variable a random 

Figure 1: Permutation importance. Permutation importance demonstrating the relative importance of individual variables to the disposition 
and LOS ensembles. The most important variable is given an importance value of 1.0 and the importance of other variables is shown 
relative to 1.0. Gray bars represent comorbidities. Dispo, disposition; LOS, length of stay. (a) disposition ensemble; (b) LOS ensemble

ba
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coefficient. The error function of the model is 
then calculated, and coefficient values updated in 
the direction that minimizes the error function. 
This process continues in a stepwise manner until 
minimization is achieved[3]

•	 Vowpal	 Wabbit	 classifiers	 represent	 a	 specific	
implementation of a Stochastic Gradient Descent 
classifier built specifically to handle large volumes of 
streaming (continually refreshing and updating) data.[25]

We point interested readers toward the references for 
more details.

We take further advantage of ML by combining the 
top performing models into ensembles, allowing us 
to utilize the unique advantages of different classes 
of algorithms within the same predictive ensemble. 
Our ML ensembles have good discrimination for both 
nonhome discharge (AUC = 0.796) and extended 

Figure 2: Partial dependence plots for comorbidities in the disposition and LOS ensembles. Partial dependence plots demonstrating 
the independent impact of comorbidities included in the top five most important variables for predicting discharge disposition or LOS. 
X‑axis represents probability of non‑home discharge or extended LOS, with 1 equivalent to 100% likelihood of non‑home discharge 
or extended LOS and 0 equivalent to 0% likelihood. Dispo, disposition; LOS, length of stay. (a) disposition ensemble for all tumors, (b) 
Disposition ensemble for meningiomas, (c) Disposition ensemble for non‑meningioma benign tumors, (d) Disposition ensemble for 
malignant tumors, (e) LOS ensemble for all tumors, (f) LOS ensemble for meningiomas, (g) LOS for non‑meningioma benign tumors, 
(h) LOS for malignant tumors

d h

c g
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LOS (AUC = 0.824) on internal validation. Importantly, 
the ensemble models also have good discrimination on 
the data hold out (AUC = 0.807 for the disposition 
model; AUC = 0.818 for the LOS model), demonstrating 
the ability of the ensembles to correctly categorize 
never‑before‑seen patients into home and nonhome 
discharge and extended and nonextended LOS. 
Ultimately, by building the most predictive ensembles 
for discharge disposition and LOS from our data, we 
can draw more accurate conclusions about the impact of 
comorbidities on the outcomes of interest.

Univariate analysis of the NIS database demonstrated 
that the presence of at least one comorbidity is 
associated with nonhome discharge and extended LOS. 
Analysis of each of the 29 comorbidities individually 
also revealed a statistically significant association with 
nonhome discharge and extended LOS for nearly all 
recorded comorbidities. Using permutation analysis and 
partial dependence plots of our ensembles, we identified 
preoperative paralysis and fluid/electrolyte abnormalities 
as the strongest independent comorbidity risk factors 
for nonhome discharge, and preoperative paralysis, 
fluid/electrolyte abnormalities, and other neurological 
deficits as the strongest independent comorbidity 
risk factors for extended LOS. Knowing that these, 
among the myriad comorbidities represented in the 
ensembles, most strongly influence the risk of nonideal 
postoperative outcomes helps neurosurgeons provide 
more accurate risk assessments for patients. Importantly, 
the independent impact of these preoperative 
comorbidities remains even in the presence of many 
other covariates, including age, gender, elective vs 
nonelective surgery, race, specific tumor diagnosis, and 
hospital characteristics.

While we controlled for a large number of variables 
before identifying the impact of preoperative paralysis, 
fluid/electrolyte abnormalities, and nonparalysis 
neurological deficits on extended LOS and nonhome 
discharge, these comorbidities may act as partial 
surrogates for variables not included in the original 
ensembles. Disease severity, for example, is a particularly 
important variable that was not directly addressed in 
the ensembles. It is likely that preoperative paralysis and 
nonparalysis neurological deficits correlate with more 
advanced preoperative disease, reflecting large tumor 
size or proximity of tumors to sensitive brain structures, 
which in turn may be associated with a host of negative 
prognostic factors, including extent of tumor resection 
and length of operation.

It is similarly possible that fluid/electrolyte 
abnormalities reflect a patient’s baseline health 
status, rather than acting as true independent 
predictors of poor postsurgical outcomes. Cecconi 
et al. demonstrated, for example, that only severe 

hypernatremia is independently associated with 
increased postoperative mortality, and that poor 
outcomes associated with other types of sodium 
abnormalities likely reflect the underlying cause of the 
abnormality rather than the abnormality itself.[6] In 
our study, we attempt to control for baseline health 
characteristics by including a fairly comprehensive array 
of 29 preoperative comorbidities in our ensembles. It 
is possible, however, that they do not fully describe a 
patient’s preoperative state of health.

Understanding the impact of these comorbidities 
on postsurgical outcomes is important from the 
perspective of patient counseling and treatment 
planning. We were surprised to find that some of the 
comorbidities identified here as strongly informing risk 
of poor postoperative outcomes are not accounted for 
in well‑established surgical risk calculators, including 
the American College of Surgeons (ACS) Universal 
Surgical Risk Calculator.[2] This suggests that these 
tools may underestimate risk for patients undergoing 
CFBT. Notable among the omissions are preoperative 
fluid and abnormalities, which represent one of the 
strongest risk factors for both nonhome discharge and 
extended LOS for patients following CFBT. Critically, 
electrolyte and fluid abnormalities are potentially 
reversible conditions, giving providers an opportunity to 
intervene preoperatively to improve patient outcomes 
postoperatively.

Identifying important risk factors for nonhome discharge 
and extended LOS is also important on a health‑systems 
level. In recognition of the importance of efficient 
coordination of discharge to post‑acute facilities or 
programs, some Medicare reimbursement models are 
now bundling acute hospitalizations and post‑acute care 
into single episodes of care.[5] Predicting which patients 
may require a higher level of care following CFBT 
will help acute and post‑acute care providers better 
coordinate transitions of care, potentially improving 
resource utilization and decreasing costs. Identifying 
patients at high risk for complications can also improve 
reimbursement for healthcare services. Missios et al. 
recently identified LOS as a primary driver of increasing 
hospitalization cost after CFBT – preemptively identifying 
patients who will require extended LOS following 
craniotomy can therefore help providers and hospitals 
justify appropriately higher rates of reimbursement for 
these patients to payers.[17]

Finally, recognizing risk factors for poor postoperative 
outcomes can aid hospitals and providers accurately 
gauge quality of care at their institutions. High quality 
care, which is defined by the Institute of Medicine as 
effective, efficient, equitable, safe, and timely provision 
of services, is being increasingly emphasized and 
incentivized in health care reimbursement strategies.[14] 
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Given the abstract nature of quality, surrogate measures 
for quality, including postoperative outcomes such 
as extended LOS, are seeing more extensive use. In 
agreement with other researchers, the findings of this 
study suggest that baseline patient characteristics play 
an important role in determining whether or not patients 
undergoing CFBT will have “poor quality” postoperative 
outcomes.[8,10,11] This has enormous implications for 
hospitals and providers who take care of patients with 
preoperative comorbidities, particularly those identified 
in this study as being strongly associated with nonhome 
discharge and extended LOS. Recognizing patients who 
will likely have nonhome discharge or extended LOS gives 
providers and hospitals a better understanding of the true 
quality of care that they provide, helping them not only 
avoid undue penalty for “poor quality” care for patients 
with these comorbidities but also helping them to target 
quality improvement projects to areas over which they 
have direct control.

Our study has several advantages; we use a 
well‑established, validated, multi‑institution database 
to train our predictive algorithms. We also use a 
standardized, validated method of identifying patient 
comorbidities within our database. In addition, our 
guided‑ML ensemble technique allows us to objectively 
select algorithms that best predict outcomes of interest 
from our database.

Despite these advantages, there are several limitations 
to the study; the guided‑ML ensemble is trained and 
validated on the same retrospective database. Though 
we demonstrate generalizability of the model to data 
never used in algorithm training, a stronger validation of 
the model would involve demonstrating generalizability 
to a prospective or to an entirely separate database. 
It is possible, for example, that nuances in the way 
data is collected in the NIS influence the model in a 
way that weakens generalizability to non‑NIS data. 
Furthermore, though a powerful modeling tool, ML 
and the associated algorithm analysis is unfamiliar to 
most surgeons and requires training and expertise to 
wield appropriately. Our strategy in particular is novel, 
and will require further study and validation. Finally, 
we were unable, due to limitations of the database, 
to correlate decreased LOS or home discharge with 
functional outcome measures. However, other work has 
shown that decreased LOS[15,18,22] and home discharge[19] 
may be associated with decreased readmission and 
all‑cause mortality rates for a variety of pathologies. 
It is possible that these improvements reflect milder 
preoperative disease severity. At least one study, 
however, demonstrated a decreased risk of 30‑day 
all‑cause mortality for a cohort of patients with hip 
fracture discharged to home as opposed to permanent 
nursing homes after controlling for preoperative 
functional status and comorbidities.[19]

CONCLUSION

In this study, we identify preoperative paralysis and 
fluid/electrolyte abnormalities as the strongest risk 
factors for nonhome discharge in craniotomy patients, 
whereas preoperative fluid/electrolyte abnormalities, 
paralysis, and other neurological deficits are the 
strongest risk factors for extended LOS. Recognizing 
these risk factors for poor postoperative outcomes 
provides opportunities to improve patient counseling, 
address potentially reversible causes of negative 
postoperative outcomes, improve reimbursement and 
resource allocation, and institute more effective quality 
improvement initiatives.
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