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Over the years, the epigenetic landscape has grown increasingly complex. Until recently, methylation of DNA and histones was
considered one of the most important epigenetic modifications. However, with the discovery of enzymes involved in the
demethylation process, several exciting prospects have emerged that focus on the dynamic regulation of methylation and its
crucial role in development and disease. An interplay of the methylation-demethylation machinery controls the process of gene
expression. Since acute kidney injury (AKI), a major risk factor for chronic kidney disease and death, is characterised by
aberrant expression of genes, understanding the dynamics of methylation and demethylation will provide new insights into the
intricacies of the disease. Research on epigenetics in AKI has only made its mark in the recent years but has provided
compelling evidence that implicates the involvement of methylation and demethylation changes in its pathophysiology. In this
review, we explore the role of methylation and demethylation machinery in cellular epigenetic control and further discuss the
contribution of methylomic changes and histone modifications to the pathophysiology of AKI.

1. Introduction

Epigenetic mechanisms effectuate a broad variety of gene
expression in several cells and tissues of multicellular organ-
isms. Epigenetics refers to the modification and modulation
of gene expression without imparting any direct alteration
in the DNA sequence. DNA methylation is one such epige-
netic mark that exists to control a variety of gene expression
in eukaryotes. The first evidence of DNA methylation was
observed as modified cytosine demonstrated by Rollin
Hotchkiss in 1948 using paper chromatography. It was only
in the 1980s that studies started demonstrating the role of
DNA methylation in controlling gene expression [1, 2], and
now, decades of research have successfully established its
importance in growth, development, and diseases. Along
with enzymes catalysing DNA methylation, there also exists
“erasers” that remove DNA methylation. This process of
modifying or removing methyl groups is epigenetically
termed as DNA demethylation. With accumulating evidence
of molecules and mechanisms in reversing DNAmethylation

in mammalian cells, it has become evident that the interplay
between methylation and demethylation severs to control or
maintain a stable cellular functionality [3].

With recent advances in epigenetic technology and
understanding of the mammalian methylome, several epige-
netic modifications have been implicated in the pathogenesis
of acute kidney injury (AKI). AKI is characterised by rapid
fall in renal function and crude renal structural changes [4]
with an increased risk of chronic kidney diseases and end-
stage renal failure [5]. The pathophysiology of AKI as a result
of insults such as ischemia-reperfusion, sepsis, contrast
media, rhabdomylosis, and nephrotoxins is well documented
[6, 7]. The clinical causes of AKI are grouped as prerenal,
renal, and postrenal [8], but with the increased number of
studies with ischemic and nephrotoxic insults, it is consid-
ered that renal/intrinsic factors are mostly associated with
actual renal tissue injury. Of 35–70% of AKI as a result of
renal etiologies; ischemic injury or nephrotoxins contribute
to 80–90% of the intrinsic factor [9]. Although the cellular
and molecular abnormalities during AKI have been vividly
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investigated, the epigenetic understanding of AKI onset, pro-
gression, and treatment is still at its nascent stage. Upon
understanding the importance of epigenetic processes in
other model systems, it is most likely that epigenetics plays
a crucial part in AKI [10–13]. Although DNA methylation
is the best characterised epigenetic mark, it is yet to be inten-
sively described in the context of renal pathology. The dis-
covery of 5-hydroxymethylcytosine (5hmC) has brought
interesting findings and opinions on the essential role of
DNA methylation and demethylation in development and
diseases. The bulk of research on 5hmc has, however, been
focussing on neural and cancer studies, but with recent
advances in global, locus-specific, and single nucleotide
5hmc analysis, it will be exciting to understand the role and
mechanism of action of 5hmc in the pathological conditions
of the kidney.

In this review, we introduce the readers to a comprehen-
sive understanding of the DNA methylation and demethyla-
tion machinery and their role in epigenetic regulation of gene
and cellular mechanisms. We further highlight the advances
in epigenetic regulation of AKI by providing insight into
the implications of methylomic changes and histone modifi-
cations in the pathogenesis of AKI.

2. DNA Methylation

DNA methylation represents a mechanism of cellular
memory. This was first proposed independently in 1975 by
Holliday and Pugh [1] as well as Riggs [14]. Both groups
hypothesised that CpG methylation and nonmethylation
patterns could be copied during cell division. This was origi-
nally based on the fact that cytosine methylation in mamma-
lian cells occurs predominantly in CpG dinucleotides. Once
the DNA replicates, the parental DNA strand wouldmaintain
its pattern of modified cytosines while the newly synthesized
strand remains unmodified. To establish proper copying of
the parental pattern onto the progeny strand, both these
groups postulated an enzyme that would methylate CpGs
base-pairedwith amethylated parental CpG. Thiswas the task
ofmethyltransferases. The action ofmethyltransferaseswould
result in patterns of DNA methylation that would replicate
semiconservatively like the base sequence of DNA. DNA
methylation in mammals refers to the transfer of the methyl
group from S-adenosyl methionine (SAM-CH3) to cytosines
in the CpG dinucleotides [15] contributing to epigenetic
inheritance and has a vital role in development and diseases.
Methylated cytosines or 5mC is found almost entirely within
CpG dinucleotides [16]. The genome of mammalian somatic
tissues is methylated at 70%–80% of all CpG dyads. Often sat-
ellite DNAs, repetitive elements, nonrepetitive intergenic
DNA, and exons of genes bear high levels of methylation.
However, CpG islands are an exception to this global methyl-
ation as they remainmostly unmethylated in the germline, the
early embryos, and also in most somatic tissues [17]. CpG
clusters called CpG islands are most often situated in gene
promoters and regions more toward the 3′ end [18]. They
function as strong promoters and also as replication origins
[19]. Contrary to the popular understanding that CpG islands
are known to be mostly unmethylated [17], during the

embryogenic process of X chromosome inactivation in female
placental mammals, CpG islands become de novomethylated
[20] leading to silencing of genes on the inactivated chromo-
some necessary for dosage compensation [21]. Apart from X
chromosome inactivation, DNA methylation plays a crucial
role in suppressing retrotransposon elements, genomic
imprinting [16], and for normal development [22, 23]. We
now know that DNA methylation also occurs at non-CpG
sites such as CpA, CpT, and CpC. [24]. An interesting feature
of non-CpG methylation is that it is most frequently
found at CpA dinucleotide, and several studies using
whole genome bisulphite sequencing have described the
trend in frequency of methylation at each dinucleotide
(CpG>CpA>CpT>CpC) [25–28]. Also, non-CpG dinu-
cleotides represent an asymmetrical sequence, for example,
CpA dinucleotides are paired with complimentary TpG
dinucleotides on the opposite strand (CpA:TpG). There-
fore, non-CpG methylation is often only present on one
DNA strand at any given site [24]. It is, however, not the
same in case of the palindromic CpG dinucleotides, which
are usually symmetrical (CpG:GpC) leading to methylation
at cytosine residues on both DNA strands [24]. Few studies
show that non-CpG methylation is only a by-product of the
hyperactivity of nonspecific de novo methylation of CpG
sites [27, 29]. However, other reports argue that non-CpG
methylation is correlated with gene expression and tissue
specificity [25, 30, 31]. Although there is now evidence of
non-CpG methylation occurring within various cell types
and specific tissues, its functional relevance in the mamma-
lian genome is yet to be completely understood.

3. Patterns of DNA Methylation

DNA methylation pattern is highly tissue-specific, nonran-
dom, and well maintained [32, 33]. There exist two models
accounting for the methylation pattern in mammals: (i) pro-
teins bound to specific DNA regions leads to inaccessibility to
methylation sites [34, 35] and (ii) proteins bound to specific
DNA sequence directing the methylation targeting mecha-
nism [36–38]. The first model is referred as the exclusion
model where studies reported by Macleod et al. [34] and
Brandeis et al. [35] showed that when Sp1 binding sites flank-
ing a CpG island are removed, it led to the de novo methyla-
tion of the CpG island during development. Studies by
Macleod et al. [34] and Brandeis et al. [35] suggest that when
Sp1 sites flanking the CpG islands are occupied by Sp1 tran-
scription factors, it causes the DNA methylases to not gain
access to the relevant CpG island. Also, the methylation state
of the sites to which DNA-binding protein binds can also be
affected if there is any modulation in the affinity of the DNA
binding [39, 40]. As a result of these experiments, it can be
suggested that exclusion of de novo methyltransferases
(DNMTs) might have a role in the formation of patterns such
as those that occur in early development [41]. Although the
targeting model has arisen from the association of DNMTs
with certain proteins (specifically with proteins including
Rb, E2F1, histone deacetylases (HDACs), and the tran-
scriptional repressor RP5), there is no evidence of such
interactions leading to de novo methylation. Earlier, it was
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believed based on experimental evidence that the mainte-
nance methylationmodel drives the patterning process. Here,
the de novomethyltransferases DNMT3a andDNMT3bwere
thought to establish the methylation patterns at the early
development which is further maintained through somatic
cell divisions by maintenance methyltransferase DNMT1,
acting on the hemimethylated CpG sites generated by DNA
replication (Figure 1) [1, 14]. In the case of non-CpGmethyl-
ation, the role of only DNMT3a and DNMT3b is attributable
whereas DNMT1 is not associated with non-CpG methyla-
tion patterns [42, 43]. In vivo studies showed that DNMT1
knockout mouse embryonic stem (ES) cells retained patterns
of non-CpGmethylation [42] whereas DNMT3l (a regulatory
molecule) knockout mice had significantly lower levels of
CpA methylation in their prospermatogonia [44]. Further-
more, DNMT3a andDNMT3b double knockout ES cells were
reported to have much lower CpAmethylation levels [43, 45].
Therefore, unlike CpG methylation, non-CpG methylation
would need to be reestablished de novo after each cell division
in order to bemaintained. This claim is supported by the study
of Ichiyanagi et al. [44] that non-CpG methylation accumu-
lates in nondividing male mouse germ cells but is rapidly lost
following the recommencement of cell division.Most changes
in methylation patterns occur during mammalian develop-
ment and cell differentiation. In mouse germ cells and early
embryos, there occur large scale demethylation and remethy-
lation changes [46]. Once fertilization occurs, the paternal
genome undergoes rapid demethylation [47, 48] and the
maternal genome undergoes passive, replication-dependent
demethylation during subsequent cleavage divisions [48].
Once implantation occurs, global de novo methylation takes
place that reestablishes the DNA methylation patterns which
are maintained in somatic tissues. Another example of
dynamic methylation patterning could be seen during
lineage-specific differentiation of hematopoietic progenitors

when gene-specific de novo methylation and demethylation
occur [49].

4. De Novo Methylation by De
Novo Methyltransferases

DNMT3a and DNMT3b are the DNA methyltransferases
playing a role in the process of mammalian DNA methyla-
tion. DNMT2 is another candidate methyltransferase that
has limited DNA methyltransferase activity in vitro, and lack
of DNMT2 has no effect on de novo or maintenance methyl-
ation of DNA [50]. In fact, DNMT2 has been shown to
specifically methylate cytosine 38 in the anticodon loop of
transfer RNAAsp [51]. DNMT3a and 3b are structurally
related and do not require hemimethylated DNA to bind;
they show an equal affinity for hemimethylated and
unmethylated DNA [52]. However, both DNMT3a and 3b
are highly required for de novo methylation as evidenced
from study in the ES cells and embryos where the absence
of DNMT3a and 3b led to exclusion of de novo methylation
of proviral genomes and repetitive elements [22]. Unlike
DNMT3a which is expressed ubiquitously, DNMT3b is
poorly expressed by the majority of differentiated tissues
except for thyroid, testes, and bone marrow [53]. Also,
DNMT3a in association with DNMT3l, a regulatory mole-
cule, is required for establishing distinct DNA methylation
patterns on imprinted genes [54].

Structural studies have shown that the C-terminal
domains of DNMT3a and 3l form a tetrameric complex
(3l-3a-3a-3l) with two active sites [55] that can methylate
two CpGs spaced by 8–10 bp, in vitro [56, 57]. Similar to
DNMT3l, there are other interacting factors involved in de
novo methylation at specific genomic regions. For example,
the Piwi-interacting small RNA pathway plays a vital role
in de novo methylation of retrotransposons in fetal male
germ cells. However, its mechanism is yet to be elucidated
[58, 59]. DNMT3a and 3b are also responsible for establish-
ing methylation patterns during early development [22]. De
novo DNA methylation was first described in an experiment
where foreign DNA became methylated upon introduction
into a preimplantation embryo in an unmethylated state. A
study by Jähner et al. [60] reported stable retroviral DNA
methylation from infected mouse preimplantation embryos
and also a stable methylated DNA injected into mouse
zygotes; however, no retroviral DNA methylation occurred
in embryos at the later stage of gastrulation. This study sup-
ports de novo methylation in the early embryonic stage and
suggests that this process is confined to the pluripotent cells
of early embryos. Additional support of this theory was
provided by Stewart et al. [61] when they reported that in
retroviral infected cells, the retroviral DNA was completely
methylated and the viral genes were silenced. The same
authors gave another indication of de novo methylation
occurring in early development by reporting that somatic cells
infected with viral DNA did not undergo any methylation.

Although much is known about the enzymes partaking in
the de novo methylation process, not much is known as to
how de novo DNMTs target specific genetic regions. Recent
structural and biochemical studies showed that the plant
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Figure 1: De novo DNA methylation and maintenance.
Methylation of unmethylated DNA (shown as white circles)
occurs when a methyl group is transferred to the cytosine residue
in the DNA, mainly in the CpG dinucleotide. The de novo
methyltransferases (DNMT3a and DNMT3b) catalyse this process
thereby generating 5-methylcytosine (shown as black circles), and
upon DNA replication, the DNMT1 acts on the hemimethylated
DNA to maintain the fidelity of inherited methylation patterns.
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homeodomain (PHD) of DNMT3a could directly interact
with H3 tails unmethylated at Lys-4 in vitro [62–64]. Also,
the PWWP domain located in the N-terminal parts of
DNMT3a and 3b can interact with H3 tails with trimethy-
lated Lys-36 (H3K36me3) in vitro [65]. Another theory is
that DNMTs are recruited to specific sequence motifs by
transcription factors that bind to the DNA thereby catalysing
DNAmethylation or preventing it. DNMTs may also bind to
transcription factors to target DNA methylation [66]. In case
of a mutation in the transcription factor binding site span-
ning the CpG islands, these regions are unable to retain their
unmethylated state [34, 35], thereby implicating that exposed
CpG islands serve as direct targets of DNMTs. Based on these
proposed mechanisms, it can be suggested that either de
novo methylation by DNMT3a and 3b occurs by their
recruitment to gene promoters by specific transcription
factors or they may perform genome-wide methylation of
all unprotected CpG sites.

5. DNA Methylation and Gene Expression

Methylation of promoters leads to transcriptional repression
[67]. DNA methylation studies in mammalian cells came
into light when Jones and Taylor in 1980 described that
5-azacytidine, a nucleoside analog, was capable of inhibiting
DNA methylation in living cells [68]. The concept that
DNA methylation leads to gene repression was further sup-
ported by genetic analysis using DNMT1 knockout mice
[69]. Li et al. [69] showed that when DNMT1 is inactivated,
there occurs a genome-wide loss of DNA methylation and
activation of X silenced genes, viral genes, and imprinted
genes like H19 and IGF2. Several transcription factors bind
to GC-rich sequence motifs that can contain CpG sequences.
However, when CpGs are methylated, the binding of these
transcription factors is severely hindered [70]. Bell and
Felsenfeld in their study [71] showed that the CpG-rich CTCF
binding sites are methylated at the paternal locus thereby pre-
venting CTCF binding and thereby allowing the downstream
enhancer to activate Igf2 expression. In thematernally derived
copy of the Igf2 locus, the gene is silent as CTCF binds
between its promoter and a downstream enhancer. This study
describes the role of DNA methylation in gene regulation by
regulating the transcriptional process.

DNAbinding factors can also interfere withDNAmethyl-
ation patterns. Stalder et al. [72] showed that embryonic stem

cells and neuronal progenitors consisted of distal regulatory
regions with poor CpG and with a low level of methylation.
Thesewere termed as lowmethylated regions, and the binding
of transcription factors in these regions was indications of
local DNA methylation being influenced by their binding.
Another mode of gene repression by DNA methylation is by
recruiting proteins to methyl-CpG regions. Methyl-CpG-
binding protein complexes (MeCP1 and MeCP2) were the
initial proteins identified to take part in this mechanism
[73]. Later, the methyl-CpG-binding domain protein (MBD)
family was identified comprising MeCP2, MBD1, MBD2,
MBD3, and MBD4 (Table 1) [74]. Bird and Wolffe [74]
described that MBD1, MBD2, and MeCP2 were key
players inmethylation-dependent repression of transcription.
During DNA replication, silencing of genes by MBD1 occurs
when it associates with histone lysine methyltransferase
SETDB1 [75] leading to continuous H3K9 methylation at
the target sequence. The DNA-binding component ofMeCP1
is MBD2 [76, 77]. A study by Hendrich et al. [78] showed that
MBD2-deficient mice have aberrations in tissue-specific gene
expression. MeCP2 together with mSin3a corepressor com-
plex depends on histone deacetylation for its repressive action
[79, 80], and these findings show that each of the fourmethyl-
CpG-binding proteins associates with different corepressor
complexes for carrying out their action.

Few important studies have also provided compelling
evidence of non-CpG methylation having a functional role
in mammalian gene expression. Malone et al. [81] showed
that when the CpmCpNpGpG site within the promoter of
the B29 gene is methylated, it represses the promoter activity
in human B cells by blocking the binding of the early B cell
factor, a transcription factor. Also, within the human
SYT11 promoter region, non-CpG methylation of the Sp
transcription factor binding sites reduces the binding of Sp
proteins and associated transcription factors [82]. Barrès
et al. [30] showed that the promoter of the peroxisome
proliferator-activated receptor-γ coactivator 1α (PGC-1α)
gene is more methylated at non-CpG sites in patients with
type 2 diabetes mellitus and it results in the downregulation
of PGC-1α. Transcriptional repression in brain cells because
of non-CpG methylation has also been reported [83]. Bellizzi
et al. [84] in their study of mitochondrial DNA methylation
has reported that the D-loop region which contributes
to the regulation of mitochondrial DNA replication and tran-
scription has ~50% of methylcytosine within non-CpG

Table 1: Role of the methyl-binding domain protein family.

MBD family Binding activity Implication Reference

MeCP2
Binds to methyl CpG with an adjacent stretch of

AT-rich nucleotide
Repression of transcriptional activity [80]

MBD1
Binds to methyl CpG via methyl-binding

domain
Gene silencing during DNA replication [75]

MBD2 Binds to methyl CpG Repression of transcriptional activity [85]

MBD3
Low binding/incapable of binding to methyl

CpG
Subunit of NuRD corepressor complex and acts as a

transcriptional repressor
[86]

MBD4
Binds to methyl CpG and T:G mismatches at

methyl CpG sites
Catalyses the removal of T and U paired with G within

CpG sites
[87]
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dinucleotides. Collectively, these studies implicate that non-
CpG methylation at gene promoters is associated with
reduced gene expression.

6. Methylation and Chromatin Changes

Inside the nuclei of eukaryotic cells, there exists a complex of
DNA and proteins, together forming the chromatin. The
nucleosome is the fundamental repeating unit of chromatin
characterised by DNA of length 146 base pairs wrapped
around the histone protein cores (two H2A/H2B dimers
and an H3/H4 tetramer). Methylation of these histone
proteins changes the transcription machinery by providing
certain proteins (chromatin modifiers) with docking sites,
thereby creating an active or repressive chromatin structure
and transcriptional marks. Histone H3 lysine residues
(K4, K9, K23, K27, K36, K56, and K79), K20 in H4, K26 in
H1, and arginine (R) residues (R2, R8, R17, and R26) in H3
along with R11, R12 in H2A, and R3 in H4 are the known
methylation sites [88, 89]. This methylation is mediated by
histone methyltransferases namely lysine-specific (KMT)
and arginine-specific (RMT). Except H3K79, located within
the nucleosome core, all other sites are found within the his-
tone tails. Modifications of both histone tails and residues
within the core play a role in gene expression [90].

Amidst the known methylated sites in histone proteins,
one of the best studied methylated histone marks is H3K4
which is known to protect DNA from de novo methyla-
tion [91, 92]. The PHD-like domain of DNMT3l initiates
de novo methylation by recruiting DNMT3a2 (germ cell-
specific isoform of DNMT3a) to the nucleosomes that
contain unmethylated H3K4, and this interaction gets
abolished if H3K4 is methylated [57, 93, 94]. This inverse
correlation between H3K4 methylation and DNA methyla-
tion suggests that in certain imprinted regions in germ cells,
it is crucial that H3K4 undergoes demethylation for de novo
methylation to take place. Furthermore, biochemical and
structural studies revealed that the ATRX-DNMT3-
DNMT3l (ADD) domain found in DNMT3a and DNMT3b
could directly interact with H3 tails unmethylated at lysine
4 in vitro even without any accessory proteins [63, 64, 95].
Also, the PWWP domain of DNMT3a specifically interacts
with H3K36me3 in vitro [65]. This interaction leads to an
increase in activity of DNMT3a2 on chromatin-bound
DNA [64, 65]. Genome-wide studies have found that
H3K36me3 is located mainly in the bodies of active genes
[96, 97] and this modification positively correlates with
DNA methylation, therefore, suggesting that DNMT3a can
specifically recognize histone modifications and then meth-
ylate the associated DNA [96, 97]. The in vivo evidence of
the interactions of DNMTs with histone tails has been
reported in several studies [99, 100]. Noh et al. [99] in their
study demonstrated that DNMT3A enzyme with an engi-
neered ADD domain is able to bind to H3K4me3 and
H3T4 phosphorylated within the H3 N terminus
(H3T4ph). Morselli et al. [100] showed that in Saccharo-
myces cerevisiae that expressed a heterologous DNMT3b
or in mouse ES cells, DNMT3b is specifically enriched at
H3K36me3 sites and that recruitment is based on binding

affinity. DNA methylation in mammals is also regulated by
histone H3K9 methyltransferases (G9a and Suv39h). Few
major satellite repeats, retrotransposons, and the G9a pro-
moter were found to be significantly lacking DNA methyla-
tion in G9a-negative mouse ES cells [101, 102]. However,
G9a−/− cells expressing a G9a mutant that is defective in
the methylation of H3K9 were found to undergo normal
DNA methylation suggesting that DNA methylation does
not require methylation of H3K9 [101–103]. It is believed
that G9a can recruit DNMT3 methyltransferases to the
promoters for de novo methylation upon interacting with
DNMT3a and DNMT3b [103]. Likewise, double knock
out of Suv39h1 and Suv39h2 in mouse ES cells was seen
to result in loss of methylation at pericentric major satel-
lite repeats [104]; however, their way of contributing to
DNA methylation is still unclear. Most euchromatin regions
are characterised by H3K79 methylation [105] mediated
by DOT1L, a histone H3K79 methyltransferase [106], and
most of the transcriptionally repressed genes are enriched
in H3K9m2, H3K9m3, H3K27m2, H3K27m3, H4K20m2,
and H4K20m3 [107].

7. DNA Demethylation

Although the underlying molecular mechanism of DNA
demethylation is still unclear, several accumulating evi-
dences suggest that the process of DNA methylation is
reversible. The process of reversal is either by active
replacement of methylated cytosine residues to unmodified
cytosine or by passive demethylation during cell division
due to inactive DNA methyltransferases (DNMTs) [108–
110]. A classic example of passive DNA demethylation in
mammalian development is the replication-dependent pro-
cess of dilution of methylation marks in the maternal
genome during preimplantation growth [48]. The passive
process occurs simply by not methylating the new DNA
strand after replication as a result of reduced activity or
the absence of DNMTs (Figure 2) [111]. The active pro-
cess of genome-wide DNA demethylation is well studied
in zygotes [47, 48], in primordial germ cells [46, 112],
and T lymphocytes [113]. Also, locus-specific active
demethylation has been evidenced in somatic cells, such
as neurons [114]. Although there exists numerous concrete
evidences of active DNA demethylation, the mechanisms
remain poorly understood. The mechanisms of enzymatic
removal of the 5-methyl group from the modified cytosine
residue involve several players of the active demethylation
pathway (Figure 3). Also, the mechanism(s) of locus-
specific demethylation might be different from the global
genome-wide demethylation process. However, the pro-
cess, the conversion of the methylated cytosine to an
unmodified base, is unlikely to be a one-step process.
Unlike plants, there is no known mammalian homolog
for the DME/ROS1 family of 5mC-specific DNA glycosy-
lase that can directly remove the 5mC base. Thus, all 5-
methylcytosine (5mC) to the C conversion process known
so far involves modifying the base either by oxidation or
deamination followed by replacement of the modified base
[108, 115].
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8. Mammalian Glycosylases in Active
DNA Demethylation

In Arabidopsis, the DME/ROS1 family of 5mC DNA gly-
cosylases had been shown to perform active demethylation
of specific genes [115]. For example, ROS1 with its apuri-
nic/apyrimidinic lyase activity first removes the methylated
base and then cleaves the basic site, leaving a nick, which
then gets repaired [115]. This process resembles the base
excision repair (BER) mechanism in mammals; however,
the enzyme and the underlying process appear to be dif-
ferent from those in Arabidopsis. With no mammalian
homolog of the DME/ROS1 family, it was earlier believed
that thymine DNA glycosylase (TDG) and MBD4 might
exert DNA demethylating activity [116, 117]. However, for
both these glycosylases, the activity toward T-G mismatch
was higher than 5mC and was, therefore, considered weak
5mC glycosylases [116, 117].

9. DNA Demethylation by the AID/
APOBEC Family

Activation-induced deaminase (AID) has been a subject of
the intense study over several years because of its critical role
in hypermutation, class switch recombination, and gene con-
version in activated B cells [118, 119]. It was only recently
that the role of AID in DNA demethylation was reported
[120, 121]. The AID is a member of the apolipoprotein B
mRNA-editing catalytic polypeptide (APOBEC) family
[122] and was identified in an experimental screening of
cytosine deaminases expressed in mouse oocytes [123]. AID
deaminates cytosine residues to uracil, which are then
repaired by either base excision (BER) or mismatch repair
(MMR) [124, 125]. The role of AID in global DNA demeth-
ylation was first discovered in zebrafish embryos, and the

study indicated that the overexpression of both AID and
MBD 4, but not either alone, was required for demethylation
of DNA [126]. Similar experimental evidence was also given
by Popp and colleagues who suggested a role of AID in global
DNA demethylation at a later stage of mice embryogenesis
[127]. Studies with AID null mice also showed increased
DNA hypermethylation in primordial germ cells suggesting
the role of AID in DNA demethylation [119]. Nuclear repro-
gramming studies provided the first evidence suggesting the
role of AID in DNA demethylation in mammals and somatic
cells [120]. Two independent groups working on nondivid-
ing heterokaryons (fusion of mouse ES cells with human
fibroblast cells) reported that AID knockdown reduced
reprogramming efficiency and also impaired demethylation
of promoters of genes (OCT4 and NANOG) associated with
pluripotency [120, 128]. With several studies addressing the
role of AID in DNA demethylation, there is a considerable
uprise in conflicting results. The role of AID in deamination
in the DNA demethylation process in mammals is yet to
reach a consensus conclusion. In a study of methylation
dynamics of mouse germinal center B cells, the authors found
no DNA demethylating effect of AID when using cells in cul-
ture [129]. DNA methylation was also found to be slightly
higher in primordial germ cells of AID null mice compared
to that of controls [127] although the difference in the genetic
background of AID null and control mice might have influ-
enced the result [130]. In another study, demethylation as a
result of deamination was suggested based on the detection
of a complex of Tdg, Gadd45a, and AID, but the activity of
AID on 5mC containing DNA was not directly demonstrated
[121]. It was also suggested that AID might deaminate C and
not 5mC [131–133]. This indirect deamination leads to the
replacement of 5mC by unmethylated C in the vicinity
[134–136]. The conflicting data on the role of AID necessi-
tates future studies of its action and also its role in active
DNA demethylation.

10. Implications of TETs in Oxidative
Demethylation of DNA

Ten-eleven translocation (TET) proteins are Fe(II)-depen-
dent dioxygenases constituting the human TET1, TET2, and
TET3 enzymes [137]. Although Wyatt and Cohen in 1952
[138] reported the existence of 5-hydroxymethylcytosine
(5hmC), it was not until Tahiliani et al. [139] who identified
these three human TET family proteins and showed that
TET1 can catalyse conversion of 5mC to 5hmC in vitro and
in cultured cells that its significance came to be known. The
TET family enzymes work by splitting oxygen molecule into
its constituent atoms. The splitting of molecular oxygen
occurs while bound to the iron in the active site of TET, and
this reaction catalyses the oxidation of the DNA base. After
the split, one oxygen atom inserts into the 5-substituent of
the cytosine base, converting 5mc to 5hmc. TET enzymes
function to convert 5mC to 5hmC [139, 140], 5hmC to
5-formylcytosine (5fC), and 5fC to 5-carboxylcytosine
(5caC) [137]. The oxidation of 5mC by TETs reduces
the levels of 5mC, and a loss of TETs causes hypermethy-
lation [141]. TET paralogs were also found in zebrafish
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Figure 2: Mechanism of passive DNA demethylation. De novo
methyltransferase 1 (DNMT1) is required to maintain the
methylation pattern through successive replication; however,
during reduced activity or in the absence of the maintenance
DNA methyltransferase (DNMT1), there occurs progressive
dilution of 5-methylcytosine (5mC) leading to the formation of
unmethylated DNA.
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and mouse, and all three mouse TET proteins are known
to catalyse a similar reaction [142]. While extending and
supporting the report of Tahiliani et al. [139] in describing
the role of TET1 in regulating DNA methylation, Shinsuke
et al. [142] in their study in mouse ES cells found that
TET1 was required for keeping the NANOG promoter in
a hypomethylated state. However, there are alternate
suggestions where these proteins are sought to mediate
the regulation of lineage-specific genes and not NANOG
studies despite their high levels in ES cells [143, 144].

After the discovery of 5hmC, it was believed that TETs
could remove the repression of gene expression caused by
5mC at several gene promoters [139, 142]. However, reports
of nonproductive transcription and inactive genes even in the
presence of high concentration of 5hmC [143, 145–147] con-
tradict the popular belief and suggest that 5mC to 5hmC con-
version is not functionally similar to the conversion of 5mC
to C [145]. In two independent studies, one with triple TET
knockout ES cells [141] and the other with murine embry-
onic fibroblasts (MEFs) [148], it was found that these cells
were viable but were defective in their ability of differentiating
and dedifferentiating. The dedifferentiation defect of MEFs
was a result of an impaired mesenchymal-to-epithelial transi-
tion (MET) and could be reversed by overexpression of
miRNAs that were initially suppressed due to TET deficiency
[141, 148]. In one study, TET overexpression was seen to
enable reprogramming where TET1 along with Oct4 led to
induced pluripotent stem cells (iPSCs) while other exogenous
reprogramming factors were absent [149]. These effects are
most likely mediated by the control of the methylation state
of enhancers [150, 151]. Other effects of TET deletion can be
seen as partly penetrant midgestation abnormalities due to
TET1 and TET2 double knockout [152], gastrulation defects
due to the decrease in expression of the Lefty genes that antag-
onizeNodal signalling leading toNodal gain [153]. TET3 defi-
ciency in Xenopus has been studied as a causative to the eye
and neural developmental defects [154]. A tripe TET gene
ablation in zebrafish leads to death beyond the larval stage
[155]. Studies in developmental genetics have found that prior
to cell division, TET3 plays a major role in the active loss of
5mC in male pronucleus upon zygote formation. This rapid

loss of 5mCwas due to an increase in the 5hmC level implicat-
ing 5mC to 5hmC conversion [156, 157]. Upon knocking out
TET3 in mouse zygotes by RNA interference (RNAi), there
was an increase in the 5mC level suggesting a huge potential
for TET proteins in DNA demethylation in early develop-
ment. TET may also function cooperatively with AID in
DNA demethylation activity [121] with AID acting upstream
or downstream of TETs but not on the same base. However,
such claims require additional experiments that would probe
into DNA methylation and demethylation mechanisms and
their regulation.

11. Base Excision Repair Mechanism by the BER
Glycosylase Family in DNA Demethylation

Active demethylation requires cytosine replacement via
DNA repair. Unlike plants, the base excision repair (BER)
mechanism in mammals is quite complex as there are no gly-
cosylases identified so far that would act directly on 5mC or
5hmC. An intermediate step of deamination precedes the
BER mechanism in mammals [121, 158]. Uracil generated
after cytosine deamination and upon mispairing with gua-
nine is excised by uracil-DNA glycosylase 2 (UDG2),
single-strand-selective monofunctional uracil-DNA glycosy-
lase 1 (SMUG1), MBD4, and thymine-DNA glycosylase
(TDG) [159]. Also, deamination of 5mC leading to the for-
mation of thymine upon mispairing with guanine is excised
by TDG and MBD4. UDG2 [135] and TDG [136] have also
been reported to remove 5mC bases in the vicinity by either
canonical mismatch repair or by long patch base excision.
These enzymes constitute the family of glycosylases impli-
cated in the BER pathway. Unlike deaminated methylcyto-
sine, oxidised methylcytosine derivatives do not undergo
mispairing [160, 161]; however, 5caC-G pairs may resemble
T-G mispairs [161, 162] and are known to have weak base
pairing [163]. Both 5fC and 5caC have weak glycosidic bonds
[162, 163] and therefore, resemble BER substrates for exci-
sion. Uracil-DNA glycosylase (UDG) occurs as UDG2 in
nuclear isoform as a result of alternate splicing and is capable
of removing uracil generated by deamination of cytosine.
Although it was initially found that in vitro UDG2 possessed
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Figure 3: Mechanism of active DNA demethylation. The active process of DNA demethylation progresses either through the
deamination or the oxidation pathway. In the case of the deamination pathway, the cytosine (C) residue of 5-methylcytosine (5mC)
and 5-hydroxymethylcytosine (5hmC) undergoes deamination catalysed by AID/APOBEC enzymes to generate 5-hydroxymethyluracil
(5hmU) and thymine (T) bases which are replaced by C during base excision repair (BER) mediated by thymine DNA glycosylase
(TDG). The oxidation pathway mediated by the ten-eleven translocation (TET) family of enzymes can hydroxylate 5mC to form
5hmC which upon oxidation forms 5fC and 5caC. These oxidation products (5fC and 5caC) can be removed by TDG to generate
an abasic site which is repaired by the BER pathway to generate a cytosine.
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no activity against substrates containing 5caC [164], later
experiments contradicted this finding by reporting an active
form of UDG2 in cultured cells that prevented the accumula-
tion of 5caC in genomic DNA resulting from TET2 (catalytic
domain) overexpression [165]. High levels of UDG expres-
sion in the zygote and early embryos led to a proposition of
its role in DNA demethylation at this stage. Zygote deficient
ofUDGwas found to have impaired demethylation at selected
loci, specifically,NANOGandLINE-1 elements [165]. Studies
have also reported a cooperative role of UDG2 with AID in
active DNA demethylation in zygote [135]. It is, however,
unclear if it is deamination or oxidation-based demethylation
that is affected by a loss of UDG.

Study in UDG-deficient mice has shown that despite ele-
vated levels of uracil in DNA, the animals develop naturally
and show no unconcealed phenotype [166]. TDG was the
first reported enzyme with the ability to excise 5fC and
5caC [164, 167]. TDG acts against thymine bases generated
from 5mC deamination mispaired to G. The ability of TDG
in rapidly excising fC than T from pairs with G [167] showed
that the primary role of TDG might be in DNA demethyla-
tion rather than in deamination repair. Levels of TDG tran-
scripts are extremely low in zygote and oocytes and are
therefore not required for demethylation of the paternal pro-
nucleus [163] but is highly essential for MET [148] during
somitogenesis and organogenesis. Both TDG and SMUG1
can convert 5hmU to cytosine and are thought to act together
with TET and AID/APOBEC [121, 158]. Such implications
of their enzymatic activity were reported in a knockdown
experiment that demonstrated that after TET-induced con-
version of 5mC to 5hmC, AID/APOBEC mediates deamina-
tion of 5hmC to 5hmU and its further replacement occurs by
an unmethylated cytosine through the BER pathway cata-
lysed by TDG and SMUG1 [121, 158].

12. Nucleotide Excision Repair (NER) and
Noncanonical Mismatch Repair
(ncMMR) in DNA Demethylation

Barreto et al. [168] proposed that Gadd45a, a protein factor
that can promote active demethylation in cultured mamma-
lian cells, functions by NER as it requires NER endonuclease
XPG, which directly binds to Gadd45a. However, another
study in Gadd45a null mice could not confirm these findings
as there was no observable increase in either global or locus-
specific methylation [169]. The role of Gadd45a in active
demethylation was also supported by a study which showed
that active demethylation of the rRNA gene promoter is
mediated by Gadd45a and the NER machinery. Gadd45b,
a member of the Gadd45 family, was also observed to per-
form DNA demethylation at specific regulatory regions of
Bdnf and Fgf1, two genes of adult neurogenesis [114]. It
remains largely unknown as to which DNA demethylation
pathways are stimulated by Gadd45 proteins. 5fC and
5caC may initiate transcription-coupled nucleotide exci-
sion repair (TC-NER) [170] as their presence in the tem-
plate strand interferes with transcription [171, 172]. In
addition to NER, ncMMR has also been implicated for the

repair step of DNA demethylation. ncMMR process initiates
at a nick in the DNA stand, removes mismatches, and
replaces nucleotide patches from the nick to ~150 nucleo-
tides beyond the mismatch site [173]. One recent study
described nick-dependent repair by the ncMMR process that
replaced 5mC nucleotides in DNA upon being triggered by
uracil in the DNA [136]. ncMMR might be involved in
AID-dependent demethylation as uracil plays a critical role
in this process, but another report suggests its involvement
in oxidation-dependent DNA demethylation [174]. The
amount of research associating ncMMR and DNA demethyl-
ation is very minimal, and therefore, their involvement in the
physiological and pathological circumstances has not yet
been demonstrated.

13. Changes in DNA Methylome and Histone
Methylation during AKI

Changes in DNA methylation were first reported by Pratt
et al. [175] where they described the demethylation of a cyto-
sine residue in the INF-γ response element within the com-
pliment C3 promoter in response to cold ischemia in the
rat kidney and additional demethylation during further
warm reperfusion. The same authors also demonstrated that
demethylation of the C3 promoter in rats with transplanted
kidneys lasted for at least six months. The authors also pro-
posed that during C3 promoter demethylation in ischemia-
reperfusion injury (IRI) there occurs progressive oxidation
of 5mC which was later proved in 2011 by the reports of
Guo et al. [158]. In a study to examine the DNA methylation
of gene promoters in urines of kidney transplant patients,
Mehta et al. [176] reported that DNA methylation levels in
the calcitonin (CALCA) promoter was higher in urines of
kidney transplant recipients compared to those in healthy
controls. They found that patients with acute tubular necro-
sis (proven by biopsy) compared to those that had acute
rejection and slow graft function had higher DNA methyla-
tion levels. Their results strongly suggest the increase in
5mC levels during IRI. Endo et al. [177] reported that plasma
levels of methylated DNA at Slc22a12 promoter region, a
proximal tubular cells specific urate transporter, were signif-
icantly elevated after acute kidney cortex necrosis. In another
study signifying the importance of epigenetic changes in
renal kallikrein (KLK1) expression and susceptibility to
AKI or recovery, Kang et al. [178] showed that promoter
KLK1 CpG methylation was higher in blood than that in
urine DNA. They studied the promoter CpG methylation
of the KLK1 gene in blood and urine DNA from patients with
established or incipient AKI and compared to healthy/non-
hospital as well as ICU controls. They suggested that KLK1
methylation in blood DNA was significantly higher in estab-
lished AKI than that in healthy controls, though KLK1 meth-
ylation in urine tended to be higher in AKI, directionally
consistent with earlier/incipient but not later/established
changes in KLK1 excretion in AKI.

The role of DNA demethylation in an AKI setting was
recently demonstrated by Huang et al. [179] where they
reported a global decrease in the 5hmC level in mouse with
IRI-induced AKI while the global levels of 5mC remained
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unchanged. They found that these changes were a result of
decreased levels of TET1, TET2, but not TET3 mRNA
transcripts. They also identified lower 5hmC levels corre-
sponding to Cxcl10 and Ifngr2 gene promoters with
increased gene expression following IRI. However, they
did not report the causal relationship between levels of
5hmC and gene expression. The same group in 2016
reported the relationship between gene expression and
genomic distribution of 5hmC in the mouse kidney [180].
In their study, they profiled the DNA hydroxymethylome
of the mouse kidney by hydroxymethylated DNA immuno-
precipitation (hMeDIP-seq) and revealed that 5hmC is
enriched in genic regions but depleted from intergenic
regions. They further demonstrated that gene body enrich-
ment of 5hmC is positively associated with the gene expres-
sion level in the mouse kidney. Also, during IRI-induced
AKI, genes associated with IRI in the mouse kidney
showed significantly higher 5hmC enrichment in their
gene body regions when compared to those unchanged
genes. Similar to that of DNA methylation studies, there
are only few studies that have examined the effect of
DNA demethylation in AKI. From the limited reports
mentioned above, it is evident that AKI leads to changes
in promoter DNA methylation with increase in 5mC
levels in some genes and decrease in others. This is not
surprising as there are several pathways regulating the
activity of DNA methylation. Also, with advances in
demethylation studies, it will be interesting to see if any
of the several players of DNA demethylation emerges as
a novel AKI biomarker.

The electrostatic interactions between the negatively
charged DNA and the positively charged histone amino
acid residues lead to a compact chromatin structure.
Methylation of histones alters the transcription machinery
by allowing the docking of chromatin modifiers. Although
few, there are important studies reporting the implications
of alterations in histone methylation (specifically in the
lysine residues) in AKI. TNF-α, MCP-1, and HMGCR
genes characteristically showed lysine 4 (K4) trimethyla-
tion (m3) on the histone H3 protein subunit in mouse
models of AKI induced by IRI, endotoxin, UUO, and
maleate [181–183]. The result of increase in H3K4m3
together with an increased expression of SET1 enzyme
suggested that increased H3K4m3 levels are catalysed by
this enzyme [184]. However, it was also shown that
increased levels of H3K4m3 at these genes did not sustain
in case of AKI induced by IRI [181]. In the study on uri-
nary chromatin shed in patients with azotemia, Munshi
et al. [185] found an increase in H3K4m3 levels in
MCP-1 genes, therefore, highlighting the importance of
urine as a source of histone epigenetic markers in AKI.
In another study in patients with AKI, it was found that
HMGCR activity got upregulated with increase in levels
of H3K4m3 at exon 1 of the HMG-CoA reductase
(HMGCR) gene [186]. As the existing data on the implica-
tions of histone methylation in AKI is scarce, it remains
unclear whether any modulation of histone methylation
would bring an alteration to the pathogenesis and regener-
ative responses after AKI.

14. Conclusion and Future Outlook

With recent advent of technological advancements in charac-
terising the epigenome, the perspective of epigenetic research
has drastically changed over the years. Essential parts of the
mammalian development are the epigenetic modifications,
and any disruption in this process results in detrimental cel-
lular transformations. Recent advances have shed light on the
possibility of a bidirectional dynamics in DNA methylation
and demethylation that is regulated throughout the devel-
opmental stages of certain tissue types, mainly the brain
[158, 187] to maintain a particular cellular epigenetic state.
This hypothesis necessitates research to probe into the
role, and coordination of methylation and demethylation
marks in both healthy as well as disease state as much
of this remains to be elucidated. The consequence of alter-
ations in the methylome and the chromatin landscape has
been extensively explored in cancer and neurological
research; however, the same is not the case in AKI as renal
epigenetic research is still at its infancy.

Despite the challenges, recent advances in epigenetic
tools have made renal research more efficient [188]. High-
throughput next generation DNA sequencing to examine a
single nucleotide specific genome-wide DNA methylation
pattern [91, 127], distinguishing 5hmC from 5mC in the
genome by high-performance liquid chromatography with
UV detection [189] or tandem mass spectrometry [190,
191], antibody enrichment of hydroxymethylated DNA or
precipitation of modified 5hmC after biotinylation followed
by microarray analysis [143, 145, 192–194], and quantifica-
tion of 5mC and 5hmC at single base resolution by oxidative
bisulfite sequencing [195] are few of many technological
achievements that will advance our understanding of the epi-
genetics in the normal and pathological state of the kidney.

Understanding the in vivo physical phenomenon of de
novo DNAmethylation within a chromatin and its profound
effect in AKI pathogenesis will be a good challenge to
researchers. AKI is pathologically complex, and understand-
ing how DNAmethylation (a key regulator of transcriptional
stability) integrates with other epigenetic modifications dur-
ing the onset of AKI, its progression, and recovery of kidney
after injury will enhance our knowledge on the state of
methylome in renal injury. Research on active DNA demeth-
ylation is giving new impetus to studying 5hmC which is
being considered as the “sixth” base. 5hmC is also being
regarded as an epigenetic marker given its accumulation in
certain tissues and cell types. Renal epigenetic research has
so far seen very limited studies addressing 5hmC. Genome-
wide studies have proposed 5hmC signatures as diagnostic
biomarkers for human cancers [196]; however; only future
studies will reveal if 5hmC can be considered as a worthy epi-
genetic marker of AKI or is just a simple intermediate of the
DNA demethylation process in the kidney.

DNA methylation and demethylation are tightly regu-
lated mechanisms, and there are several interesting questions
that arise from their dynamicity, in general and in the context
of AKI. However, here, we have enlisted only those that
prompted from our understanding of the extent of epigenetic
research in AKI. How do 5mC and 5hmC mark vary with
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different stages of AKI? Do all types of renal insults affect the
epigenetic landscape during AKI? If so, are the results same
and is it dependent on the extent of the injury? Will a dysreg-
ulated pathway or defective genes involved in DNA methyla-
tion lead to an aggravation of the injury? What controls the
choice of the DNA demethylation pathway? Is the patholog-
ical implication due to the absence of TET enzymes similar to
the reduced levels or lack of 5hmC? Can 5hmC be established
as a renal epigenetic biomarker of AKI? Although a long shot,
is it ever possible that renal epigenetic research might actually
find the specific BER glycosylases required for physiological
demethylation? Most of our knowledge on the epigenetic
changes during AKI is limited due to lack of concrete exper-
imental data. This questions every player and pathway of
DNA methylation and demethylation in their role in AKI.
It is well known that epigenetic modifications are reversible
and therefore, therapy to modulate the epigenetic states is a
promising option for not only AKI but other renal disorders
as well. A quest towards answering the above questions and
several other queries that would emerge in the way will yield
new discoveries to diagnose and treat every stage of AKI.
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