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The relaxins (RLNs) are a group of peptide hormone/neuromodulators

that can regulate a wide range of physiological processes ranging from

reproduction to brain function. All the family members have originated from

a RLN3-like ancestor via different rounds of whole genome and gene specific

duplications during vertebrate evolution. In mammals, including human, the

divergence of the different family members and the emergence of new

members led to the acquisition of specific functions for the various relaxin

family peptide and associated receptor genes. In particular, in mammals, it was

shown, that the role of RLN3 is correlated to the modulation of arousal, stress

responses, emotion, social recognition, and other brain functions, positioning

this gene/peptide as a potential therapeutic target for neuropsychiatric

disorders. This review highlights the evolutionary conservation of relaxin

family peptide and receptor gene expression and their associated brain

neural circuits. In the zebrafish, the expression pattern of the different relaxin

family members has specific features that are conserved in higher species,

including a likely similar functional role for the ancestral RLN3-like gene.

The use of different model organisms, particularly the zebrafish, to explore

the diversification and conservation of relaxin family ligands and receptor

systems, provides a relatively high-throughput platform to identify their

specific conserved or differential neuromodulatory roles in higher species

including human.
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Overview of insulin-like/relaxin
family peptides and receptors in
mammals

Two relaxin genes (RLN1 and RLN2) have been identified
in humans (Crawford et al., 1984) and higher primates (Arroyo
et al., 2014), whereas other mammals have only one gene
(Rln1). Other insulin-like/relaxin family member genes were
subsequently identified in humans (and other species): insulin-
like peptide 3 (INSL3) (Adham et al., 1993); insulin-like peptide
4 (INSL4) (Koman et al., 1996); insulin-like peptide 5 (INSL5)
(Conklin et al., 1999); insulin-like peptide 6 (INSL6) (Lok et al.,
2000); and the most recently discovered, relaxin-3 (RLN3) (or
insulin-like peptide 7, INSL7) (Bathgate et al., 2002; Burazin
et al., 2002; Tanaka et al., 2005).

It is now widely accepted that RXFP1, RXFP2, RXFP3, and
RXFP4 are the cognate receptors for RLN, INSL3, RLN3, and
INSL5, respectively (Hsu et al., 2002; Hsu, 2003; Liu et al., 2003;
Halls et al., 2007).

Relaxin peptide is considered a pleiotropic hormone acting
as a paracrine, autocrine, and endocrine factor to mediate
matrix remodeling, with numerous roles in and independent
of reproduction, such as vasodilator and anti-fibrotic properties
(Nistri et al., 2007; Du et al., 2010; Halls et al., 2015; Samuel
et al., 2017). The numerous hormonal effects of relaxin are in
accordance with the broad expression of its cognate receptor,
RXFP1 (see Novak et al., 2006; Giordano et al., 2012; Bathgate
et al., 2013; Chen et al., 2020 for details).

A clear role in male and female reproduction has been
established for INSL3/RXFP2 signaling, since both Insl3 and
Rxfp2 knockout male mice display a cryptorchid phenotype (Nef
and Parada, 1999; Zimmermann et al., 1999; Overbeek et al.,
2001; Gorlov et al., 2002), and an essential role in ovarian follicle
maturation has been described (Pelusi et al., 2013; Ivell and
Anand-Ivell, 2018).

The expression of Insl5 and Rxfp4 mRNA has been detected
in the pancreas, thymus, eye and in the gastrointestinal tract
(Conklin et al., 1999; Grosse et al., 2014), particularly in the
L-cells of distal gut (Billing et al., 2018, 2019); and INSL5 has
been shown to function as an orexigenic hormone (Grosse et al.,
2014), with a role in control of colonic propulsion (Diwakarla
et al., 2020).

RLN3 is considered a neuropeptide in mammals, since
Rln3/RLN3 mRNA/peptide is highly expressed in GABAergic
neurons in the ventromedial pontine tegmentum, in an area
known as the nucleus incertus (NI), and in the pontine raphe
nucleus, the juxta-aqueductal ventral periaqueductal gray and
the area adjacent to the substantia nigra in non-human primate,
rat and mouse brain (Bathgate et al., 2002; Burazin et al.,
2002; Liu et al., 2003; Tanaka et al., 2005; Ma et al., 2007,
2009; Smith et al., 2010). The cognate receptor for Rln3, Rxfp3
is widely expressed in many areas of the brain including
the prefrontal and cingulate cortex, hippocampus, septum,

thalamus, hypothalamus and the brainstem, and the pattern
of RXFP3 expression largely overlaps NI efferent projections
targets (Liu et al., 2003; Sutton et al., 2004; Smith et al., 2010).
The broad expression of Rxfp3 in the brain is in line with
suggested roles for Rln3/Rxfp3 signaling in modulation of stress
responses, appetite, feeding and metabolism, motivation and
reward, exploratory navigation, emotion (anxiety) and social
recognition, memory and cognition, and sleep and circadian
rhythm (Sutton et al., 2004; Gundlach et al., 2009; Smith et al.,
2010; Tanaka, 2010; Callander et al., 2012; Ganella et al., 2013;
Ma et al., 2013, 2017; Ryan et al., 2013; Kumar et al., 2017; de
Ávila et al., 2018; Albert-Gasco et al., 2019; Kania et al., 2020).

There is little information available about the role of INSL4
and INSL6, and their target receptors are yet to be identified.
Therefore, the following sections concentrate on the other
relaxin family peptides, with a special focus on RLN3, a product
of the ancestral relaxin family gene, as its expression and role in
both fish and mammalian brain is well studied.

Insulin-like/relaxin family peptide
and receptor systems in teleost
fish and mammals

Based on sequence conservation, a RLN3-like gene emerged
as the ancestral member of the relaxin peptide family (Wilkinson
et al., 2005a,b). This hypothesis was later corroborated by
studies of gene expression patterns in the developing zebrafish
(Donizetti et al., 2008, 2009), that revealed a pattern of mRNA
localization that closely resembled that of mammalian Rln3
mRNA in the mature brain of multiple species and developing
mouse brain (Miyamoto et al., 2008). Subsequent phylogenetic,
molecular evolutionary, and syntenic analyses established that
teleosts contain orthologs of four relaxin family peptides (Good-
Avila et al., 2009). A tripartite origin was proposed for the relaxin
ligand/receptor system, whereby all vertebrate family members
appear to have arisen from three genes in the ancestral vertebrate
genome, one for the ligand (ancrln), and two for the receptors
(ancrxfp1/2 and ancrxfp3/4) (Yegorov et al., 2014). During
vertebrate evolution, the repertoire of ligands and receptors
increased differently between tetrapods and teleost fish, with
significantly higher retention rates of rxfp genes in the latter
(Yegorov and Good, 2012).

In humans and mice, the receptor to ligand ratio is
close to one, although binding promiscuity accounts for
the observations that ligands can bind to multiple receptors
(Bathgate et al., 2013, 2018). The co-evolution of rln/insl/rxfp
peptide and receptor genes in teleosts is different, with a
receptor-ligand ratio in zebrafish higher than in tetrapod species
(Good et al., 2012; Alnafea et al., 2019). In teleosts, there are
multiple receptors for some ligands (for comprehensive analysis
of relaxin ligand-receptor phylogenetics and coevolution see
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Good et al., 2012; Yegorov et al., 2014). Two duplicated
rln3 and insl5 paralogs are present in zebrafish together with
seven rxfp3 paralogs (zebrafish lacks a rxfp4 gene, but has an
additional copy of the rxfp3-3 gene, and rxfp3-3a3), while rln
and insl3 are in single copy together with one copy of rxfp1
and three of rxfp2 (Good et al., 2012; Yegorov et al., 2014).
Retention of such multiple copies of ligand and receptor genes
may be a consequence of the sub-functionalization process
and provides the opportunity to dissect the role in specific
territories/processes of the mammalian ortholog.

Relaxin ligand/receptor system
expression in the developing
zebrafish

The study of the developmental expression pattern of relaxin
family ligands and receptors in zebrafish provided some insights
into their likely function in vertebrate embryogenesis, which is
largely unexplored in mammals. Zebrafish possesses six genes
for relaxin ligands and eleven for their putative receptors
(Yegorov and Good, 2012). Most of them are expressed during
embryonic development with many transcripts of maternal
origin, and an expression level relatively higher at pharyngula
and larval stages than early stages (Donizetti et al., 2008, 2009,
2010, 2015a,b; Fiengo et al., 2012, 2013; Venditti et al., 2018).
The temporal expression pattern during zebrafish development
offers an interesting insight into the evolution of duplicated
genes. Regarding the paralog genes arising from the teleost-
specific, third whole genome duplication, the zebrafish genome
contains paralog genes for two relaxin family ligands, rln3 and
insl5, and three receptors, rxfp2, rxfp3-2, and rxfp3-3. All the
paralog genes display a different expression pattern, highlighting
the divergence of their regulatory regions, and corroborated by
their spatial expression pattern (see below).

Relaxin ligand/receptor system
expression in the teleost fish brain

The distribution of rln3a expression during zebrafish
development was in accordance with the embryonic expression
pattern of the Rln3 gene during rat brain development
(Miyamoto et al., 2008), with rln3 mRNA-expressing cells
located in two bilateral columns near the fourth ventricle, which
likely correspond to the nucleus incertus (NI) (Donizetti et al.,
2008). Despite this conservation, some interesting differences
between zebrafish and rat were also observed. In the developing
and adult rat brain, Rln3 transcripts are reported to be
predominantly located in the NI, whereas a smaller number
of Rln3 mRNA-expressing neurons are present in other brain
regions, such as periaqueductal gray (PAG), lateral substantia

nigra and nucleus of the raphe pontis (Tanaka et al., 2005;
Ma et al., 2007; Miyamoto et al., 2008; Blasiak et al., 2013).
In zebrafish larva, rln3a gene expression appears first in the
griseum centrale (GC), the homolog region of the mammalian
PAG (Figure 1; Donizetti et al., 2008). The rln3b paralog gene
is uniquely expressed in this territory during zebrafish brain
development (Figure 1; Donizetti et al., 2009). Interestingly, the
zebrafish rln gene, differently from the mammalian homolog
Rln1, is expressed in the NI (Figure 1; Fiengo et al., 2012),
probably as a consequence of an evolutionary conservation
of regulatory elements for the expression in that territory
associated with the ancestral gene. This expression pattern
corroborated the hypothesis that the rln gene in fish is under
different evolutionary pressures compared to the mammalian
homolog gene, mimicking rln3 gene (Good-Avila et al., 2009),
and highlighting the putative relevance of the rln3-like ancestral
gene function for the NI.

As predicted, relaxin family receptors display a wider
expression in the developing zebrafish brain than their putative
ligands (Figure 1; Donizetti et al., 2010, 2015a; Fiengo
et al., 2013), highlighting an intricate network of functional
connections between the different expression territories. At the
larval stage, expression of rxfp1 has been observed in different
brain regions, among them the post-optic area, posterior
tuberculum, hypothalamus, and cell clusters in the optic tectum
and the rhombencephalic region (Donizetti et al., 2010). Rxfp3-
2b is the receptor gene that displayed the widest expression,
with cell clusters distributed in several brain regions, such
as forebrain, pallium, epiphysis, habenula, thalamic regions
and optic tectum, posterior tuberculum area of hypothalamus,
medulla oblongata, and cranial nerve nuclei (Fiengo et al.,
2013). rxfp3-3b transcripts were detected in the PAG, raphe
and hypothalamus (caudal region) at relatively high levels,
while weak hybridization signals were evident in the epiphysis,
preoptic area, pons region and in the posterior rhombencephalic
region (Figure 1; Donizetti et al., 2015a). Overall, the expression
patterns of rxfp3-2b and –3b generally overlap the expression
pattern of their mammalian ortholog (Liu et al., 2005; Sutton
et al., 2004; Ma et al., 2007; Smith et al., 2010).

Relaxins in the fish–functional
implications

In zebrafish, rln3a is expressed in two neuron clusters
belonging to the GC; and the rln3b gene is co-expressed with
rln3a in one cell cluster, while rln is co-expressed with rln3a
in the other cluster. The GC is already present in lampreys,
the oldest currently living group of vertebrates, and the pattern
of input and output connections of the GC/PAG is similar in
lampreys, zebrafish and mammals (Olson et al., 2017). One of
the major inputs to the GC in zebrafish, originates from the
dorsal interpeduncular nucleus (dIPN), and the IPN is heavily
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FIGURE 1

Schematic illustration of relaxin ligand and receptor expression patterns in the larval zebrafish brain. crhr1, corticotropin-releasing hormone
type 1 receptor gene; ccl, ganglion cell layer; E, epiphysis; Hb, habenula; Hc, caudal hypothalamus; inl, inner cell layer; L, lens; NI, nucleus
incertus; NIII, NIII cranial nerve nuclei; NV, NV cranial nerve nuclei; NVI, NVI cranial nerve nuclei; PAL, pallium; PAG, periaqueductal gray; PO,
preoptic area; rln, relaxin; rln3a, relaxin peptide 3a gene; rln3b, relaxin peptide 3b gene; RN, raphe; rxfp1, relaxin family peptide type 1 receptor
gene; rxfp3-2b, relaxin family peptide type 3 receptor 2b gene; rxfp3-3b, relaxin family peptide type 3 receptor 3b gene; TeO, optic tectum; TH,
thalamus.

innervated by the lateral part of the dorsal habenula (dHbL)
(Okamoto et al., 2012). A very similar pattern of innervation
is observed in mammals, where the medial habenula (mHb;
homolog of dorsal habenula in fish) heavily innervates the IPN
(Lima et al., 2017; Quina et al., 2017), and the PAG and the NI
receive a strong innervation from the IPN (Goto et al., 2001;
McLaughlin et al., 2017; Quina et al., 2017). Notably, the mHb-
IPN pathway is one of the most evolutionarily preserved neural
tracts in the forebrain from lamprey to human (Díaz et al.,
2011; Stephenson-Jones et al., 2012; Villalón et al., 2012). The
conservation of the GC/PAG region and its connectivity with
other brain areas, suggests that a structure corresponding to the
GC/PAG was present very early in vertebrate evolution and that
the functions of the neuronal circuits associated with GC/PAG
are similar in the vertebrate lineage.

In both fish and mammals, the GC/PAG and NI are
embedded within neural circuits associated with aversion
and stress-related behavior (Figure 2; Agetsuma et al., 2010;
Okamoto et al., 2012; do Carmo Silva et al., 2018) and the
Hb–IPN–GC/PAG/NI pathway has been suggested to control
freezing and stress/aversion-related behaviors (Agetsuma et al.,
2010; Yamaguchi et al., 2013). In rodents the RLN3/RXFP3

signaling system, with RLN3 neurons originating in the NI,
has been implicated in the control of food intake, stress
responses (including freezing), anxiety, addiction, locomotor
activity, memory, and other arousal-related behaviors (Ma
et al., 2013; Pereira et al., 2013; Blasiak et al., 2017;
Kumar et al., 2017). Moreover, NI RLN3-synthetizing neurons
have been shown to be directly sensitive to stress and
arousal-related neurotransmitters, and to express corticotropin-
releasing hormone type 1 receptors (CRHR1), orexin type 2
receptors (OX2), and melanin-concentrating hormone type 1
receptors (MCH1) (Blasiak et al., 2013, 2015; Ma et al., 2013,
2017; Kastman et al., 2016; Sabetghadam et al., 2018). Although
these data relate to studies in rats, and the role of rln3a and
rln3b expressing neurons in fish has not been verified, given the
conservation of the relaxin family peptides and the predicted
distribution of Rln3a and Rln3b peptides in corresponding,
highly preserved structures in fish and mammalian brain (CG
and PAG/NI, respectively), it is reasonable to consider that the
role of these peptides is similar across these, and other vertebrate
groups. Involvement of the RLN3/RXFP3 system in mammals
and fish in stress-related behaviors is also supported by crhr1
expression in NI neurons in zebrafish (Donizetti et al., 2008).
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FIGURE 2

The connectivity pattern of the griseum centrale in zebrafish and the nucleus incertus in rat. AMY, amygdala; dHbL, dorsal habenula lateral part;
dIPN, dorsal interpeduncular nucleus; GC, griseum centrale; HIP, hippocampus; HYP, hypothalamus; IPN, interpeduncular nucleus; nCX,
neocortex; mHb, medial habenula; NI, nucleus incertus; PAL, pallium; RN, raphe nucleus; SNc, substantia nigra pars compacta.

These data suggest, that in fish as in mammals, the RLN3/RXFP3
system may be involved in control of behavioral activity levels,
and specifically in CRH/CRHR1 system-induced hyperactivity
(Donizetti et al., 2008; Ma et al., 2013; Lu et al., 2020; Faught
and Vijayan, 2022). Finally, the expression of rxfp3-2b in areas
of fish brain that broadly overlap the expression pattern of its
mammalian ortholog, RXFP3 in rodent brain (Fiengo et al.,
2013; Ma et al., 2017), reinforces the proposed parallel role for
the RLN3/RXFP3 system across vertebrates.

Future directions

Relaxin family peptides and their receptors are crucial
players in neural processes associated with survival and proper
functioning in the environment, yet many questions regarding
relaxinergic systems remain unanswered. The specific role and
nature of relaxin family peptide signaling in structures such
as amygdala, IPN, hippocampus and raphe nuclei, as well as
the consequences of dysregulation of relaxin family peptides
synthesis and their receptor functioning remain obscure and
identify the need for expansion of current studies into new
research areas using multiple techniques and tools. A high
level of conservation of relaxin family peptides and their
receptors, reflected by similarities in the structure of peptides
and receptors, as well as their distribution in the brain in fish

and mammals, makes the zebrafish an attractive experimental
model for this field. Importantly, the very similar pattern
of anatomical connections of structures shown to be part
of the relaxinergic system in fish and mammals, is a strong
predictor that these anatomical similarities are associated with
functional commonalities in these groups of organisms. This
particularly applies to the dHb/IPN/GC system, which in
zebrafish was shown to be crucial for the control of learning,
aversive behavior, directional-based decision making and social
interactions (Agetsuma et al., 2010; Chou et al., 2016; Cherng
et al., 2020; Palumbo et al., 2020); and is in line with data
revealing that mammalian Hb/IPN/PAG/NI connections and
interactions are involved in the control of the same processes
(Ma et al., 2013; Pereira et al., 2013; Kumar et al., 2017).

Therefore, expanding research on relaxin peptides and
their receptors in zebrafish provides a unique opportunity
to answer further questions about their specific function
in defined physiological processes, provide details of both
anatomical and functional connections between relaxin peptide-
and relaxin receptor-expressing brain structures, and determine
the influence of relaxinergic system manipulations on animal
behavior, including the involvement of relaxin family peptide
and receptor systems in stress management. In this regard,
zebrafish offers a powerful opportunity considering that the
stress response system in fish is comparable to those of rodents
and human. In fact, most stress-related genes show a high
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genetic homology between zebrafish and human/rodent analogs,
together with similar neurochemical and neuroendocrine
mechanisms related to physiological and behavioral stress
responses (reviewed in de Abreu et al., 2021). In addition,
the mammalian hypothalamic-pituitary-adrenal (HPA) axis, a
well-known responder during stress, shares extensive structural
and functional homologies with the hypothalamic-pituitary-
interrenal (HPI) stress axis of zebrafish (Alsop and Vijayan,
2008, 2009a,b). In regard to stress research, a fruitful
investigation would be the analysis of relaxin ligand/receptor
gene expression under prenatal stress conditions. In particular,
the zebrafish larva represents a valid complementary model
to rodents (Steenbergen et al., 2011), whereby alterations
in gene expression can be analyzed in relatively simple
experimental paradigms (D’Agostino et al., 2019). However,
one of the unresolved issues in zebrafish concerns the
effective identification and localization of the various relaxin
family peptides, to complement the anatomical expression
of their corresponding mRNA species and provide a more
complete picture of expression pattern regulation of these
peptide/receptor systems. In addition, the profile of binding
and activation of the receptors by key ligands also needs to
be determined to gain information on the pairing relationships
between ligands and receptors and to better elucidate the role of
the different relaxins.

In terms of functional studies, the zebrafish offers a powerful
platform to readily conduct loss-of-function studies and explore
possible genetic compensation by paralog genes (reviewed
in Salanga and Salanga, 2021). Currently, CRISPR/Cas9
technology represents a mature approach to generate gene
knockout lines, and can be integrated with strategies to generate
conditional KO lines (Hans et al., 2021), and it is potentially
able to precisely label different alleles and follow the genotype
of each allele and each cell (Li et al., 2019). A major advantage
of using the zebrafish for functional studies of the relaxinergic
system is the opportunity to focus on the larval stage when
expression of the relaxin ligand/receptor genes is restricted to
specific territories, but still largely reflects the expression in the
adult zebrafish brain. Studies at this developmental stage are
strategic considering that many methods can be applied in a
high-throughput fashion, such as an automated system that can
monitor and quantify multiple behavioral features in different
experimental paradigms, including sleep (Tran and Prober,
2022) and drug effects (see e.g., Barros et al., 2008; Cornet
et al., 2018). Therefore, these methods combined with genetic

manipulations could accelerate the discovery of the roles of
relaxinergic systems in zebrafish brain and help identify possible
therapeutic approaches for clinical neuropsychiatric conditions.
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