Bladder cancer among hairdressers: a meta-analysis

Melanie Harling,¹ Anja Schablon,¹ Grita Schedlbauer,¹ Madeleine Dulon,¹ Albert Nienhaus²

¹Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services, Department of Occupational Health Research, Hamburg, Germany ²University Medical Center Hamburg-Eppendorf, Institute for Health Service Research in Dermatology and for Health Care Workers, Hamburg, Germany

Correspondence to

Melanie Harling, Institution for Statutory Accident Insurance and Prevention in the Health and Welfare Services, Department of Occupational Health Research, Pappelallee 35/37, Hamburg 22089, Germany; melanie.harling@bgw-online.de

Accepted 2 December 2009

ABSTRACT

Background Occupational risks for bladder cancer in hairdressers by using hair products have been examined in many epidemiological studies. But owing to small sample sizes of the studies and the resulting lack of statistical power, the results of these studies have been inconsistent and significant associations have rarely been found.

Methods We conducted a meta-analysis to determine summary risk ratios (SRRs) for the risk of bladder cancer among hairdressers. Studies were identified by a MEDLINE, EMBASE, CENTRAL search and by the reference lists of articles/relevant reviews. Statistical tests for publication bias and for heterogeneity as well as sensitivity analysis were applied. In addition, the study quality and the risk of bias were assessed using six criteria.

Results 42 studies were included and statistically significantly increased risks around 1.3—1.7 were found for all but one analysis. The SRR increased with duration of employment from 1.30 (95% Cl 1.15 to 1.48) for 'ever registered as hairdresser' to 1.70 (95% Cl 1.01 to 2.88) for 'job held ≥10 years'. No difference was found between the risk for smoking-adjusted data (SRR 1.35, 95% Cl 1.13 to 1.61) and no adjustment (SRR 1.33, 95% Cl 1.18 to 1.50). Studies assessed as being of high quality (n=11) and of moderate quality (n=31) showed similar SRRs. There was no evidence of publication bias or heterogeneity in all analyses.

Conclusion In summary, our results showed an increased and statistically significant risk for bladder cancer among hairdressers, in particular for hairdressers in jobs held \geq 10 years. Residual confounding by smoking cannot be totally ruled out. Because of the long latency times of bladder cancer it remains an open question whether hairdressers working prior to 1980 and after 1980, when some aromatic amines were banned as hair dye ingredients, have the same risk for bladder cancer.

INTRODUCTION

Until the end of the 1970s several aromatic amines (eg, 4-aminobiphenyl, benzidine, 2-naphthylamin, 4-chloro-o-toluidine) were used in hair dyes and other hair products, which were identified as carcinogenic for urothelial cancers.^{1 2} In response, regulatory action was taken in 1978 and some aromatic amines were banned as hair dye ingredients in the European Union, but other aromatic amines have still been used in hair dyes. Therefore today, there seems to be no relevant bladder cancer risk from the use of hair dyes. But human urothelial cancers, chemically induced by aromatic amines, typically have latency times often longer than 30 or 40 years.^{2–5} As earlier exposures to aromatic amines

What this paper adds

- Aromatic amines which were identified as carcinogenic for urothelial cancers were used in hair dyes and other hair products until the end of the 1970s.
- In response, many epidemiological studies have been conducted to examine occupational risk factors for bladder cancer among hairdressers, but the results of these studies have been inconsistent.
- The results of the present meta-analysis on 42 studies suggest that there is robust evidence for an increased risk of bladder cancer among hairdressers, in particular for hairdressers in a job held ≥10 years.
- The data available from the individual studies do not provide adequate information to draw a conclusion regarding the question whether current occupational exposure to modern hair products is still related to some excess bladder cancer risk among hairdressers and therefore further research is needed.

this means that the possibility of bladder cancer in hairdressers having worked with hair dyes during earlier decades (prior 1980) should be taken into account. Furthermore, a study conducted by Turesky *et al*⁶ demonstrates that aromatic amines with carcinogenic effect (derivatives of 4-amino-biphenyl) are still present in some commercial hair dyes.

The risk for bladder cancer among hairdressers has been examined in many epidemiological studies. But owing to small sample sizes and the resulting lack of statistical power the results of these studies have been inconsistent and significant associations have rarely been found.

Two reviews summarised available evidence on the association between hair dyes and cancer.²⁷ But neither were the search strategies or inclusion criteria for the studies explained, nor were extensive meta-analyses carried out. Recently Reulen *et al*⁸ conducted a meta-analysis on the association between bladder cancer and occupation, among others in hairdressers. A small but significantly increased risk was determined for hairdressers in the pooled analysis, even for smoking-adjusted data. But due to the fact that Reulen *et al*⁸ worked on a total of over 60 occupational groups, a more detailed analysis for hairdressers was not possible and is still missing. None of the three reviews covered duration of exposure.

Therefore we conducted a meta-analysis to determine the risk for bladder cancer among

This paper is freely available online under the BMJ Journals inlocked scheme see VED SILE hairdressers in more detail: pooled risk estimators stratified by study design, gender, study quality, duration of employment as hairdresser and adjusted by smoking were calculated.

MATERIALS AND METHODS

Search strategy and screening form

We conducted a MEDLINE, EMBASE, CENTRAL search for articles published after 1970 in October 2008 (update February 2009). The search terms included 'Urinary Bladder Neoplasms' [MeSH], 'occupation', 'occupational exposure' or 'hairdresser' and 'hair dye' or 'hair color/colour' or 'hair colourant/colorant'. Additional studies were identified from the reference list of articles and relevant reviews. Three authors screened all abstracts and full texts by an initially developed screening form, which included the following inclusion criteria:

- Study design: randomised controlled trial (RCT), casecontrol study or cohort study
- Study population: the population included hairdressers
- _ Exposure: job held as a hairdresser is clearly stated
- Analysis: occupation is determined as a risk factor
- Outcome: clinically confirmed diagnosis of bladder cancer
- Languages: English and German

Studies which do not meet the inclusion criteria were excluded and the reasons for exclusion were noted. When the information provided by abstracts was insufficient to decide on inclusion or exclusion, we retrieved and evaluated the full text.

Assessment of study quality and the risk of bias

In concordance with the literature for the assessment of study quality of observational studies $^{9-13}$ we generated six criteria. Each of these criteria were scored with one, two or three stars as follows:

- 1. A clearly stated aim^{9 10}: reported and adequate (***), reported, but inadequate (**), not reported (*). 2. Response rate/trace rate¹¹¹²: ≥70% (***), ≥50% (**), <50%
- (*).
- 3. Comparability of subjects¹⁰⁻¹²: population-based controls (***), matching (**), no matching (*).
- 4. Elevation of exposure¹²: definition for job held ≥ 5 years (***), definition for job held <5 years (**), definition for 'ever registered as a hairdresser' or not reported (*).
- 5. Adequate statistical analysis and confounding¹⁰ ¹¹ ¹³: adjustment for smoking (***), partially adjusted (**), non-adequate statistics or not adjusted (*).
- 6. Discussion of limitations and generalisability⁹: limitations and generalisability discussed (***), partially discussed (**), not discussed (*).

Two authors individually graded the study quality by a predefined form. In a consensus meeting the results were compared and potential disagreement was resolved following discussion.

We developed the grading system according to the process of the Methodological Index for Non-Randomised Studies (MINORS).¹⁰ Overall, 18 stars could be achieved. By summing up the stars, the studies were classified according to their quality: 17–18 stars=high-quality level

 \leq 16 stars=moderate-quality level

Evaluation of heterogeneity

Heterogeneity is a consequence of methodological diversity between the studies and manifests itself in the observed effects being more different from each other than one would expect by random error (chance) alone. The absence of heterogeneity

among studies indicates between-study comparability. We used the χ^2 test to test for heterogeneity. Because the χ^2 has lower power in the situation of a meta-analysis when studies have small sample size, we used a p value of 0.10 to determine statistical significance for heterogeneity. This means a nonsignificant result indicates absence of heterogeneity.¹¹

Statistical pooling

The data for the statistical analysis were extracted by a predefined data extraction form. For the overall meta-analysis we extracted the sample size, the sizes of the case group and control group, the effect estimate, given as the OR or the standardised incidence ratio, or standardised mortality ratio (both abbreviated as SMR), respectively, with a 95% CI. When necessary, we contacted the authors of some studies for further clarification. Data extraction was individually carried out by two reviewers.

A summary risk ratio (SRR) was calculated using the generic inverse variance approach. The weight given to each study in the inverse variance approach is chosen to be the inverse of the variance of the effect estimate (ie, one over the square of its standard error $(1/SE_i^2)$ which calculates a weighted SRR as shown in the following formula¹¹:

$$SRR = \frac{\sum \left(T_i / SE_i^2\right)}{\sum \left(1 / SE_i^2\right)}$$

SRR=summary risk ratio, T_i =risk estimate in study i, SE_i= standard error of the risk estimate in study i.

If SE was not given by the individual study, an approximate standard error of the logarithm of the risk estimate was calculated as follows¹¹:

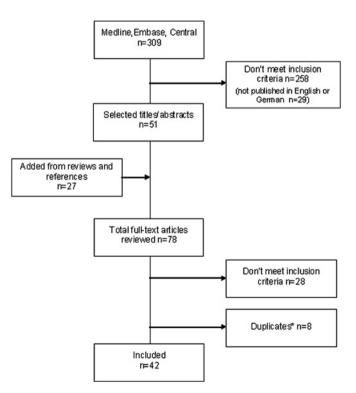


Figure 1 Flow diagram of the process of identifying and including studies. *When the study population was described in more than one study, only the study with the greatest number of cases was included. All others were excluded as duplicates.

Table 1 Abstracted study information and risk estimates for bladder cancer from the individual studies and assessment of study quality

Quality level: highStudy designSchoenberg et al^{15} Case-cSchoenberg et al^{16} Case-cSchumacher et al^{16} Case-cSilverman et al^{18} Case-cSilverman et al^{18} Case-cSiemiatycki et al^{19} Case-cGago-Dominguez et al^{21} Case-cCase-contraction of the second s	USA USA Canada Canada USA USA USA Canada	Study period* 1978 1980 1977 1977 1982 1990 1992 1988 1997 1996 1999	Study population 1916 1294 5974 1918 2897 244 3028 2736 331 3734	Cases 12 2 7 17 4 3 20 5 4 8	Gender M F M F M F/M F/M F/M M	Main risk estimate † (95% Cl or p value) 1.27 (0.59 to 2.73)§ 0.45 (0.01 to 4.08) 0.69 (0.01 to 8.59) 2.80 (0.70 to 11.60)§ 1.40 (0.70 to 2.90)§ 1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	1 *** *** *** *** *** ***	2 *** *** *** *** ***	3 *** *** *** *** ***	4 ** ** ** ** **	5 *** *** *** ***	6 *** ***
Schumacher et alCase-cSilverman et al $(1^{16}$ Case-cSilverman et al $(1^{8}$ Case-cSiemiatycki et alCase-cSiemiatycki et alTeschke et al (2^{20}) Case-cGago-Dominguez et alCase-cCaber et alCase-cColt et alCase-cGaertner et alCase-cSamanic et alCase-cCuality level:StudyModeratedesignViadana et alCase-cHowe et alCase-cAldersonCase-cAldersonCohortCatvrightCase-cTet at alCohortGuberan et alCohortMorrisonCase-cVineis and MagnaniCase-cVineis and MagnaniCase-cVineis and MagnaniCase-cVineis and MagnaniCohortRisch et alCase-c	USA USA Canada Canada USA USA USA Canada Spain Study area	1980 1977 1977 1982 1990 1992 1988 1997 1996	1294 5974 1918 2897 244 3028 2736 331	2 7 17 4 3 20 5 4	F M F M F/M F/M	0.45 (0.01 to 4.08) 0.69 (0.01 to 8.59) 2.80 (0.70 to 11.60)§ 1.40 (0.70 to 2.90)§ 1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	*** *** *** ***	*** *** ***	*** *** ***	*** ** **	*** ***	***
Schumacher et alCase-cSilverman et al 1^{16} Case-cSilverman et al 1^{18} Case-cSiemiatycki et alCase-cSiemiatycki et alSiemiatycki et alCase-cCase-cGago-Dominguez et alCase-cCase-cCase-cColl et alCase-cGaertner et alCase-cSamanic et alCase-cQuality level:StudyModeratedesignViadana et alCase-cAldersonCohortCatwrightCase-cTet at alCohortCatwrightCohortGuberan et alCohortGuberan et alCohortMorrisonCase-cVineis and MagnaniCase-cVineis and MagnaniCase-cVineis and MagnaniCase-cPearce and HowardCohortRisch et alCase-c	USA USA Canada USA USA USA Canada Spain Study area	1977 1977 1982 1990 1992 1988 1997 1996	5974 1918 2897 244 3028 2736 331	7 17 4 3 20 5 4	M F M F/M F/M M	0.69 (0.01 to 8.59) 2.80 (0.70 to 11.60)§ 1.40 (0.70 to 2.90)§ 1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	*** *** ***	*** ***	*** *** ***	**	***	
Silverman et al18Case-cSiemiatycki et al19Case-cSiemiatycki et al20Case-cGago-Dominguez et al21Case-cCheng et al22Case-cColl et al23Case-cGaertner et al24Case-cSamanic et al25Case-cQuality level:StudyModeratedesignViadana et al28Case-cAlderson29CohortCatwright 30Case-cTeta et al31CohortDubrow and Wegman32CohortGuberan et al33CohortWorrison34Case-cVineis and Magnani35Case-cPearce and Howard36CohortRisch et al37Case-c	USA Canada Canada USA USA Canada Spain Study area	1977 1982 1990 1992 1988 1997 1996 1999	1918 2897 244 3028 2736 331	17 4 3 20 5 4	M F M F/M F/M M	2.80 (0.70 to 11.60)§ 1.40 (0.70 to 2.90)§ 1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	*** ***	*** ***	*** ***	**	***	**;
Silverman et al18Case-cSiemiatycki et al19Case-cSiemiatycki et al20Case-cGago-Dominguez et al21Case-cCheng et al22Case-cColl et al23Case-cGaertner et al24Case-cSamanic et al25Case-cQuality level:StudyModeratedesignViadana et al28Case-cAlderson29CohortCatwright 30Case-cTeta et al31CohortDubrow and Wegman32CohortGuberan et al33CohortWorrison34Case-cVineis and Magnani35Case-cPearce and Howard36CohortRisch et al37Case-c	USA Canada Canada USA USA Canada Spain Study area	1977 1982 1990 1992 1988 1997 1996 1999	1918 2897 244 3028 2736 331	17 4 3 20 5 4	F M F/M F/M M	1.40 (0.70 to 2.90)§ 1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	*** ***	*** ***	*** ***	**	***	***
Siemiatycki et al al Case-cTeschke et al al^{20} Case-cGago-Dominguez et alCase-cZheng et alCase-cColt et alCase-cGaertner et alCase-cSamanic et alCase-cQuality level:StudyModeratedesignViadana et alCase-cAldersonCase-cAldersonCohortCartwright30Case-cCohortGuberan et alCohortGuberan et alCohortGuberan et alCohortMorrisonCase-cVineis and MagnaniCase-cPearce and HowardCohortRisch et alCase-c	Canada Canada USA USA USA Canada Spain Study area	1982 1990 1992 1988 1997 1996 1999	2897 244 3028 2736 331	4 3 20 5 4	M F/M F/M M	1.00 (0.30 to 2.90)§ 3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	*** ***	***			***	
Teschke et al al^{20} Case-cGago-Dominguez et alCase-cCanding et alCase-cColt et alCase-cColt et alCase-cCarter et alCase-cSamanic et alCase-cCaulity level:StudyModerateStudyViadana et alCase-cAldersonCase-cAldersonCase-cAldersonCohortCartwright30Case-cCohortGuberan et alCohortGuberan et alCohortMorrisonCase-cVineis and MagnaniCase-cPearce and HowardCohortRisch et alCase-c	Canada USA USA USA Canada Spain Study area	1990 1992 1988 1997 1996 1999	244 3028 2736 331	3 20 5 4	F/M F/M M	3.2 (0.20 to 179.00)§ 1.5 (0.70 to 3.20)§	***	***		***	***	***
Gago-Dominguez et al21Case-cZheng et al22Case-cColt et al23Case-cGaertner et al24Case-cSamanic et al25Case-cQuality level:StudyModeratedesignViadana et al28Case-cAlderson29CohortCartwright 30Case-cGuberan et al31CohortDubrow and Wegman32CohortGuberan et al33CohortWineis and Magnani35Case-cPearce and Howard36CohortRisch et al37Case-c	USA USA USA Canada Spain Study area	1992 1988 1997 1996 1999	3028 2736 331	20 5 4	F/M M	1.5 (0.70 to 3.20)§		***	***			***
Zheng et $a ^{22}$ Case-cColt et $a ^{23}$ Case-cGaertner et $a ^{24}$ Case-cSamanic et $a ^{25}$ Case-cQuality level:StudyModeratedesignViadana et $a ^{27}$ Case-cHowe et $a ^{28}$ Case-cAlderson ²⁹ CohortCartwright ³⁰ Case-cDubrow and Wegman ³² CohortGuberan et $a ^{33}$ CohortMorrison ³⁴ Case-cVineis and Magnani ³⁵ Case-cPearce and Howard ³⁶ CohortRisch et $a ^{37}$ Case-c	USA USA Canada Spain Study area	1988 1997 1996 1999	2736 331	5 4	М		***			***	***	***
Colt et al ²³ Case-c Gaertner et al ²⁴ Case-c Samanic et al ²⁵ Case-c Quality level: Study Moderate design Viadana et al ²⁷ Case-c Alderson ²⁹ Cohort Catwright ³⁰ Case-c Alderson ²⁹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c Vineis and Magnani ³⁵ Case-c Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c	USA Canada Spain Study area	1997 1996 1999	331	4				***	***	***	***	***
Gaertner et al ²⁴ Case-c Samanic et al ²⁵ Case-c Quality level: Study Moderate design Viadana et al ²⁷ Case-c Howe et al ²⁸ Case-c Alderson ²⁹ Cohort Cartwright ³⁰ Case-c Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c Vineis and Magnani ³⁵ Case-c Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c	Canada Spain Study area	1996 1999				1.8 (0.40 to 8.00)§	***	***	***	***	***	***
Samanic et al ²⁵ Case-c Quality level: Study Moderate design Viadana et al ²⁷ Case-c. Howe et al ²⁸ Case-c. Alderson ²⁹ Cohort Cartwright ³⁰ Case-c. Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.	Spain Study area	1999	3734	0	F	2.1 (0.50 to 8.00)§	***	**	***	***	***	***
Quality level: ModerateStudy designViadana et al27Case-c.Howe et al28Case-c.Howe et al28CohortCartwright 30Case-c.Cartwright 30Case-c.Dubrow and Wegman32CohortGuberan et al33CohortMorrison34Case-c.Vineis and Magnani35Case-c.Pearce and Howard36CohortRisch et al37Case-c.	Study area			8	Μ	3.42 (1.09 to 10.80)§	***	**	***	***	***	***
Quality level: Moderate Study design Viadana et al ²⁷ Case-c. Howe et al ²⁸ Case-c. Alderson ²⁹ Cohort Cartwright ³⁰ Case-c. Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.	Study area			6	F	0.75 (0.28 to 2.01)§						
Moderate design Viadana et al ²⁷ Case-c. Howe et al ²⁸ Case-c. Alderson ²⁹ Cohort Cartwright ³⁰ Case-c. Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.			2079	12	М	1.24 (0.51 to 3.01)§	***	***	**	***	***	***
Moderate design Viadana et al ²⁷ Case-c. Howe et al ²⁸ Case-c. Alderson ²⁹ Cohort Cartwright ³⁰ Case-c. Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.		Study	Study	Hairdr	essers:	Main risk estimate†	Gradi	ing crite	ria			
Howe et alCase-c.AldersonCohortCartwright30Catwright30Cata et alCohortDubrow and WegmanCohortGuberan et alCohortMorrisonCohortMorrisonCase-c.Vineis and MagnaniCase-c.Pearce and HowardCohortRisch et alCase-c.	USA			Cases	Gender	(95% Cl or p value)	1	2	3	4	5	6
Howe et alCase-c.AldersonCohortCartwright30Catwright30Cata et alCohortDubrow and WegmanCohortGuberan et alCohortMorrisonCohortMorrisonCase-c.Vineis and MagnaniCase-c.Pearce and HowardCohortRisch et alCase-c.		1960	35 428	5	М	1.49 p>0.05§	***	*	*	***	***	*
Alderson ²⁹ CohortCartwright ³⁰ Case-c.Teta <i>et al</i> ³¹ CohortDubrow and Wegman ³² CohortGuberan <i>et al</i> ³³ CohortMorrison ³⁴ Case-c.Vineis and Magnani ³⁵ Case-c.Pearce and Howard ³⁶ CohortRisch <i>et al</i> ³⁷ Case-c.	Canada	1975	1264	3	М	4.04¶	***	***	***	*	***	***
Cartwright ³⁰ Case-c. Teta <i>et al</i> ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan <i>et al</i> ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.				2	F	6.03¶						
Cartwright ³⁰ Case-c. Teta <i>et al</i> ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan <i>et al</i> ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	England	1970	504	7	М	1.23 p=0.33	***	***	***	*	*	***
Teta et al ³¹ Cohort Dubrow and Wegman ³² Cohort Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.	England	1979	2329	4	F/M	0.9 (0.30 to 3.20)	***	*	**	*	**	***
Guberan et al ³³ Cohort Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch et al ³⁷ Case-c.	USA	1956	11 845	14	F	1.6 (0.74 to 2.27)	***	***	***	***	*	***
Morrison ³⁴ Case-c. Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	USA	1972	16 629	4	М	1.16 p<0.001	***	***	***	*	*	***
Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	Switzerland	1962	1380	10	М	2.56 (1.39 to 4.35)	***	***	***	**	*	***
Vineis and Magnani ³⁵ Case-c. Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.				2	F	2.00‡						
Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	Boston	1977	2388	7	М	1.00 (0.00 to 2.60)§	***	***	***	*	***	**
Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	Manchester			2	М	NP						
Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	Nagoya			1	М	NP						
Pearce and Howard ³⁶ Cohort Risch <i>et al</i> ³⁷ Case-c.	Italy	1981	1108	9	М	0.90 (0.40 to 2.30)§	***	*	*	**	***	***
	New Zealar	d 1976	5356	2	М	17.84 (2.00 to 64.40)	***	***	***	*	*	***
	Canada	1987	1618	9	F	1.44 (0.22 to 11.80)§	***	**	***	**	***	***
Lynge and Thygesen ³⁸ Cohort				11	М	0.65 (0.13 to 2.98)§						
	Denmark	1975	14 371	7	F	1.76 (0.71 to 3.36)	***	*	***	*	*	***
				41	М	2.05 (1.51 to 2.78)						
Steineck et al ³⁹ Case-c.	Sweden	1968	541	1	М	0.40 (0.00 to 4.70)§	***	***	***	*	***	***
Skov <i>et al</i> ⁴⁰ Cohort	Norway	1972	6505	23	М	1.50 (1.00 to 2.30)	***	*	***	*	*	***
				11	F	1.50 (0.80 to 2.80)						
	Sweden	1970	23 464	54	М	1.50 (1.10 to 1.90)						
				6	F	0.40 (0.20 to 1.00)						
	Finland	1975	9566	0	М	1.67 (NP)						
				3	F	1.70 (0.40 to 5.10)						
	Total		39 535	97	F/M	1.30‡						
Burns and Swanson ⁴¹ Case-c.	USA	NP	6139	11	F/M	0.90 (0.40 to 1.90)§	***	***	*	***	***	**
Kunze <i>et al</i> ⁴² Case-c.	Germany	1981	1062	10	М	1.70 (0.60 to 4.50)	***	*	**	**	**	*
Pukkala <i>et al</i> ⁴³ Cohort	Finland	1979	247	1	F	0.40 (0.01 to 2.24)	***	***	***	*	*	***
Trögner ⁴⁴ Case-c.	Germany	1987	546	2	М	1.00 (1.14 to 7.10)	***	*	**	**	***	***
				0	F	0.25 (NP)						
Bolm-Audorff et al ⁴⁵ Case-c.	Germany	1990	600	7	F/M	6.48 (1.15 to 36.61)§	***	***	**	**	***	**
Cordier <i>et al</i> ⁴⁶ Case-c.	France	1986	1316	5	M	1.49 p>0.05§	***	*	**	**	***	***
Burnett <i>et al</i> ⁴⁷ Cohort	USA	1975	133 560	6	M	1.42 (NP)	***	*	***	**	*	***
Golka <i>et al</i> ⁴⁸ Case-c.		1986	824	3	M	0.73 (0.15 to 3.48)§	***	*	**	**	***	**
Skov and Lynge ⁴⁹ Cohort	Denmark	1979	4337	67	M	1.58 (1.24 to 2.01)	***	*	***	*	*	*
, ,				12	F	1.23 (0.64 to 2.15)						
Sorahan <i>et al</i> ⁵⁰ Case-c.	England	1992	2938	11	F/M	1.70 (0.74 to 3.89)§	***	**	***	*	***	***
Lamba <i>et al</i> ⁵¹ Cohort	USA	2001	9495	6	M	0.59 (0.27 to 1.31)	***	*	**	**	*	***
201012			1.50	88	F	1.36 (1.10 to 1.68)						
Bouchardy <i>et al</i> ⁵² Cohort	Switzerland	1987	58 134	24	M	1.50 (1.00 to 2.20)	***	***	*	*	*	**
Czene <i>et al⁵³</i> Cohort	Sweden	1979	45 690	51	F	1.09 (0.81 to 1.43)	***	***	***	***	*	***
				87	M	1.22 (0.98 to 1.51)						
Ji <i>et al</i> ⁵⁴ Cohort	Sweden	1984	24 041	88	M	1.10 (0.88 to 1.34)§	***	*	***	***	**	***

Continued

Table 1 Continued

Quality level: Moderate	Study	Study area	Study period*	Study pop.	Hairdressers:		Main risk estimate†	Grading criteria					
	design				Cases	Gender	(95% Cl or p value)	1	2	3	4	5	6
Dryson <i>et al</i> ⁵⁵	Case-c.	New Zealand	2003	684	6	F/M	9.15 (1.60 to 52.22)§	***	*	***	**	***	***
					2	М	5.41‡						
					4	F	9.95 (1.37 to 72.21)						
Golka <i>et al⁵⁶</i>	Case-c.	Germany	1993	492	4	М	4.9 (0.85 to 28.39)§	***	**	**	**	***	***

Case-c, case-control design; cohort, retrospective cohort design including registry data; M, male; F, female; Grading criteria, 1 (clearly stated aim), 2 (response rate / trace rate), 3 (comparability of subjects), 4 (elevation of exposure), 5 (adequate statistical analysis and confounding), 6 (discussion of limitations and generalisability), NP, not presented; bold, statistically significant. *Mean year of ascertainment of bladder cancer cases.

+Effect estimates used for the overall meta-analysis, stratified data not presented in table.

‡Calculated by data given by the original study.

SSmoking-adjusted (unadjusted data not given).

If extended data are provided but the count in the exposed control group was 0, the risk estimator and SE were calculated by adding a correction of 0.5 events in order to include the study in the meta-analysis as suggested by the Cochrane Collaboration.

$$SE = \sqrt{(1/A + 1/C)}$$

A=events occurred in the case group, C=events occurred in the control group.

In case of homogeneity we used a variation of the inverse variance approach with a fixed effect model and in case of heterogeneity we used the random effect model.^{11 14}

For the overall meta-analysis we used unadjusted data. If unadjusted data were not published by the individual studies, smoking-adjusted effect estimates were used for the overall meta-analysis. For studies where only stratified data on sex were given, we summarised the data and calculated the effect estimate among both sexes combined to calculate the overall SRR. All analyses were carried out using Review Manager 5 and Microsoft Excel 2007.

Stratification

For the stratified analysis we additionally extracted, where given, smoking-adjusted and stratified data for various factors. We calculated the SRR stratified for study design, gender, study period (defined as the mean year of ascertainment of the bladder cancer cases), study area, adjustment for smoking and study quality. If no adjustment or stratification were given, the studies were excluded from the stratified analysis. In addition, we analysed whether the SRR varies by duration of job held as a hairdresser, because demonstration of this association would lend additional weight to a suspected cause-effect relationship. Therefore three mutually non-exclusive categories were defined: ever registered as hairdresser, job held ≥ 5 years and job held \geq 10 years. If no definition for job held was given or if the categorisation used in the study did not fit neatly in this categories, the studies were excluded from this analysis.

Sensitivity analysis

Sensitivity analysis was carried out by recalculation of SRR after exclusion of each individual study in turn. This method of sensitivity analysis indicates the importance of each individual study in the combined meta-analysis and allows determination of whether any of these had a disproportionate influence.¹¹

Publication bias

Following Egger *et al*⁵⁷ we explored publication bias due to study size. First, we plotted the effect estimator versus the precision of the estimate (defined as the inverse of the standard error $(1/SE_i)$) to explore publication bias due to study size. An asymmetry of this funnel plot indicates publication bias.⁵⁷ Second, we tested the funnel plot asymmetry by a linear regression approach on the natural logarithm scale of the effect estimator. In this method the standard normal deviate (SND), defined as the effect estimate divided by its standard error, is regressed against the precision. The intercept provides a measure of asymmetry-the larger its deviation from zero, the more pronounced the asymmetry.⁵

Table 2 Pooled estimates of bladder cancer among hairdressers: stratified analysis

		Pooled es	timators	Homogeneity		
Stratified analysis Set of studies	No of studies	SRR	95% CI	χ ²	p Value	
All studies	42	1.34	1.21 to 1.48	39.88	0.52	
Gender						
Data for female hairdressers ^{16 18 23 24 26 28 31 33 37 38 40 43 44 49 51 53 55}	17	1.25	1.05 to 1.50	15.55	0.48	
Data for male hairdressers ¹⁵⁻¹⁷ ¹⁹ ²² ²⁴⁻²⁹ ³²⁻⁴⁰ ⁴² ⁴⁴ ⁴⁶⁻⁴⁹ ⁵¹⁻⁵⁶	32	1.52	1.34 to 1.72	36.14	0.24	
Study period*						
Ascertainment of cases $< 1979^{15}$ ¹⁷ ¹⁸ ²⁷ ⁻³⁴ ³⁶ ³⁸ ⁻⁴⁰ ⁴³ ⁴⁷ ⁴⁹ ⁵³	19	1.37	1.19 to 1.58	12.35	0.83	
Ascertainment of cases 1980-1989 ^{16 19 22 35 37 42 44 46 48 52 54}	11	1.24	1.00 to 1.53	7.15	0.71	
Ascertainment of cases $> 1990^{20}$ ²¹ ²³⁻²⁵ ⁴⁵ ⁵⁰ ⁵¹ ⁵⁵ ⁵⁶	10	1.42	1.16 to 1.75	13.82	0.13	
Study area †						
USA/Canada ¹⁵⁻²⁴ 26-28 31 32 34 37 41 47 51	20	1.28	1.08 to 1.52	10.69	0.93	
Europe/Nordic countries ^{25 29 30 33-35 38-40 42-46 48-50 52-54 56}	20	1.34	1.19 to 1.52	21.20	0.33	
Adjusted data						
Adjusted for smoking ^{15 17-25 27 34 35 37 39 41 45 46 48 50 54-56}	23	1.35	1.13 to 1.61	28.81	0.19	
No adjustment ^{16 26 28-33 36 38 40 42-44 47 49 51-53}	19	1.33	1.18 to 1.50	14.05	0.78	
Study quality level						
High quality ^{15–25}	11	1.35	1.03 to 1.77	4.77	0.91	
Moderate quality ²⁶⁻⁵⁶	31	1.34	1.20 to 1.49	35.11	0.24	

*Two studies^{26 41} were excluded because study period was not presented in the original study. †Two studies from New Zealand^{35 55} were excluded from this analysis.

RESULTS

Studies identified and assessment of study quality

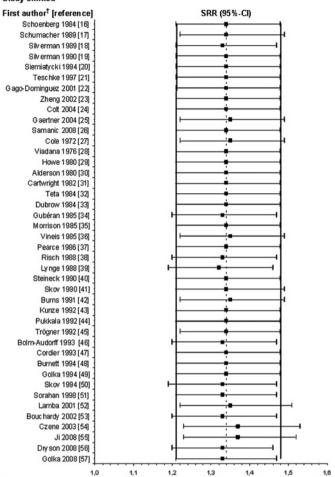
We identified 309 abstracts from the database search and 27 were added from references (n=336). Two hundred and fifty-eight were excluded, because they did not meet the inclusion criteria. Of these excluded studies, 29 were published in other languages than English or German, but 26 provided an English abstract. These abstracts were screened and 24 of them were excluded because they did not meet the inclusion criteria. The information of two abstracts was insufficient to decide on inclusion or exclusion. This means that we excluded five studies because of language issues alone. Finally, 78 studies needed to be reviewed as full-text articles and 42 articles met the inclusion criteria (figure 1).

Of the included studies, 28 used a case-control design and 14 studies used a retrospective cohort design. RCTs or prospective cohort studies were not identified. The effect estimate for bladder cancer among hairdressers varied between 0.40 and 17.84, and the studies included from one up to 138 cases in hairdressers. Eleven studies were assessed as being high-quality studies; all of these studies had been case-control studies. Thirty-one studies were assessed as being of moderate quality, with 17 of these studies having a case-control design and 14 having a retrospective cohort design (table 1).

Results of the overall meta-analysis

The meta-analysis of all included studies (n=42) showed a significantly increased SRR of 1.34 (95% CI 1.21 to 1.48) and the χ^2 showed no evidence of heterogeneity (χ^2 39.88, p=0.52) (table 2). Visual examination of the funnel plot to assess publication bias reveals no systematic relation between study size and magnitude of the estimator (OR/SMR) (funnel plot not shown). The statistical test applied did not show significant funnel plot asymmetry either (intercept 0.37; 95% CI -0.14 to 0.88).

Sensitivity analysis


Sensitivity analysis by exclusion of each study in turn did not modify the results of the meta-analysis and showed robust results. The SRR ranged from 1.33 to 1.37 and all SRRs were statistically significant (figure 2).

Stratified analysis

Figure 3 illustrates the forest plot of case-control studies and cohort studies. The SRR calculated for case-control studies was 1.41 (95% CI 1.51 to 1.74) and for cohort studies 1.32 (95% CI 1.17 to 1.48). Both plots showed a good overlap of the confidence interval and no evidence of heterogeneity (case-control studies: χ^2 29.86, p=0.32; cohort studies: χ^2 9.73, p=0.72). Drawing the funnel plot of case-control studies (intercept 0.66; 95% CI -0.46 to 1.78) and cohort studies (intercept 0.37; 95% CI -0.52 to 1.27) separately did not reveal asymmetry (funnel plot not shown).

Significantly increased risks and no evidence of heterogeneity were also found for stratified analysis shown in table 2. Small differences were found between studies stratified by gender: the risk for male hairdressers (SRR 1.52, 95% CI 1.34 to 1.72) was slightly higher than the risk for female hairdressers (SRR 1.25, 95% CI 1.05 to 1.50). Significant increased risks, but no trend with time, were found for the set of studies stratified by study period. The SRR for studies with ascertainment of cases \leq 1979 was 1.37 (95% CI 1.19 to 1.58), the SRR for studies with ascertainment of cases between 1980 and 1989 was 1.24 (95% CI 1.00 to 1.53) and the SRR for studies with ascertainment of cases \geq 1990 was 1.42 (95% CI 1.16 to 1.75). Nearly no difference in risk was found between studies from the USA/Canada and Europe/Nordic countries as well as between studies with smoking-adjusted data and studies with no adjustment. Also, no difference in the risk

Study omitted

Figure 2 Forest plot showing the influence of excluding each individual study on the summary risk ratio (SRR) obtained using all studies for bladder cancer among hairdressers. Vertical dashed line=SRR obtained using all studies, vertical solid lines=95% CI of the SRR using all studies, block with line=SRR with 95% CI obtained by omitting the mentioned study. [†]For convenience reasons only the first author is given.

was shown between studies assessed as being high-quality studies or as being moderate-quality studies (table 2).

Duration of job held

The risk of bladder cancer increased with the duration of employment as a hairdresser and all analyses showed no evidence of heterogeneity in all three strata. The SRR calculated for studies with data for hairdressers who were ever registered for employment (n=19) showed a risk of 1.30 (95% CI 1.15 to 1.48). The SRR calculated for studies with stratified data for job as a hairdresser held for \geq 5 years (n=3) showed an increased, but not significant risk of 1.52 (95% CI 0.79 to 2.93) and the SRR calculated for studies with stratified data for job held \geq 10 years (n=6) showed an increased and significant risk of 1.70 (95% CI 1.01 to 2.88) (figure 4).

DISCUSSION

We found significantly increased risks for bladder cancer among hairdressers in all but one analyses. To our knowledge this is the first meta-analysis approach covering bladder cancer in hairdressers that tested between-study comparability by evaluation of heterogeneity and that tested for publication bias. Furthermore the duration of employment as a hairdresser was considered for the first time and a predefined quality assessment tool was used.

Study [†] [reference]		inverse variance, fixed model
Case-control studies	•	
Schoenberg 1984	[16]	
Schumacher 1989	[17]	
Silverman 1989	[18]	<u> </u>
Silverman 1990	[19]	+
Siemiatycki 1994	[20]	
Teschke 1997	[21]	
Gago-Dominguez 2001	[22]	+
Zheng 2002	[23]	
Colt 2004	[24]	+
Gaertner 2004	[25]	
Samanic 2008	[26]	_
Cole 1972	[27]	
Viadana 1976	[28]	
Howe 1980	[29]	
Cartwright 1982	[31]	
Morrison 1985	[35]	
Vineis 1985	[36]	
Risch 1988	[38]	
Steineck 1990	[40]	
Burns 1991	[42]	
Kunze 1992	[43]	
Trögner 1992	[45]	
Bolm-Audorff 1993	[46]	
Cordier 1993	[47]	
Golka 1994	[49]	
Sorahan 1998	[51]	+
Dryson 2008	[56]	
Golka 2008	[57]	<u> </u>
SRR (95%-Cl): 1.41 (1.	.15-1.74)	•
Heterogeneity: Chi ² =2		0.05 0.2 1 5 20
Retrospective cohor	t studies including registry	data
Alderson 1980	[30]	
Teta 1984	[32]	
Dubrow 1984	[33]	
Gubéran 1985	[34]	
Pearce 1986	[37]	
Lynge 1988	[39]	
Skov 1990	[41]	
Pukkala 1992	[44]	
Burnett 1994	[48]	←→
Skov 1994	• •	
	[50]	L
Lamba 2001	[52]	
Bouchardy 2002	[53]	
Czene 2003	[54]	<u>†</u> =-
Ji 2008	[55]	+
SRR (95%-CI): 1.32 (1	.17-1.48)	*

Figure 3 Forest plot of studies by study design. Block=risk estimates (size displays weight), line=95% Cl. [†]For convenience reasons only the first author is given.

0.05 0.2

20

Relevant literature and publication bias

Heterogeneity: Chi2=9.73, p=0.72

We found 42 studies which met the inclusion criteria. Reulen *et al*⁸ found 29 studies which analysed this association. Even though the risk of bladder cancer among hairdressers is methodologically best observed in RCTs or prospective studies, our meta-analysis had to rely on observational studies, because RCTs or prospective studies were not found.

Another point is that the results of a meta-analysis might be affected by publication bias. Publication biases result from the probability that studies with a significant effect are more likely to be published in journals indexed in databases such as MEDLINE than studies which found no effect. In order to avoid such publication bias, we included also studies which were published in German and studies which were not published in indexed journals (eg, results of dissertations⁴⁴ and reports from federal institutes).⁴⁵ In addition, publication biases can also result from language bias, because studies published in other languages than English or German were not included in our meta-analysis. In order to assess potential language bias in our meta-analysis we checked the amount of studies published in other languages found by our search strategy and, if provided, the English abstract for inclusion criteria. Finally, if we had not applied our language restriction, five additional studies would have been included in our meta-analysis. Furthermore we formally tested for publication bias but did not find an indication for asymmetry of the funnel plot and consequently for publication bias.

Results of the meta-analysis and study quality

The SRR for all studies included in our meta-analysis was 1.34. Furthermore, we conducted a sensitivity analysis to evaluate the importance of each study in the overall meta-analysis and we found no evidence for a disproportionate influence of individual studies. In their meta-analysis, Reulen *et al*⁸ also found a significant but slightly lower risk of 1.24 (no test for heterogeneity or publication bias). In addition, in the review of La Vecchia⁷ the observed (O) and expected (E) cases of seven cohort studies were summarised and a risk of 1.4 was calculated by dividing O/E (no test of significance).

We pooled the data separately for case-control and cohort studies, because the study design has an impact on the methodological quality of studies. We found nearly the same risk for case-control and cohort studies with a statistically significant SRR of 1.3 and 1.4, respectively, and no evidence of heterogeneity as well as no indication of publication bias. Reulen *et al*⁸ also found nearly no difference between case-control and cohort studies, but with significant SRRs around 1.2, the risk was slightly lower (no test for heterogeneity or publication bias).

In addition, we assessed the quality and the risk of bias of the included studies, because irrespective of the study design there might be other issues of interest in terms of study quality. A number of checklists and indexes have been proposed, but none of these seemed to be suitable for our study question.¹⁰ ¹³

Study [†] [reference]		inverse variance, fixed model	
Ever registered for em	ployment		
Schumacher 1989	[17]		_
Teschke 1997	[21]		•
Gago-Dominguez 2001	[22]		
Colt 2004	[24]		
Gaertner 2004	[25]	_ 	
Howe 1980	[29]		•
Alderson 1980	[30]		
Cartwright 1982	[31]		
Dubrow 1984	(33)		
Morrison 1985	[35]		
Pearce 1986	[37]	·	•
Lynge 1988	(39)		
Steineck 1990	[40]	·	
Skov 1990	[41]	-0-	
Pukkala 1992	[44]	•	
Skov 1994	[50]		
Sorahan 1998	[51]		
Czene 2003	[54]		
Ji 2008	[55]		
SRR (95%-Cl): 1.30 (1.14 Heterogeneity: Chi ⁺ =13.		0.05 0.2 1 5 20	ł
Job held≥5 years			
Colt 2004 [2	24]		_
Viadana 1976	28]		
Teta 1984 [3	32]		
SRR (95%-Cl): 1.52 (0.79			
Heterogeneity: Chi'=0.2	4, p-value=0.89	0.05 0.2 1 5 20	1
		0.05 0.2 1 5 20	
Job held ≥ 10 years			_
Schumacher 1989	[17]	· · ·	
Siemiatycki 1994	[20]	+	
Gago-Dominguez 2001	[22]		
Zheng 2002	[23]		
Gaertner 2004	[25]		
Samanic 2008	[26]		
SRR (95%-Cl): 1.70 (1.01	1-2.88)	•	
Heterogeneity: Chi ² =4.6		0.05 0.2 1 5 20	1

Figure 4 Forest plot of studies by duration of job held as a hairdresser. Block=risk estimates (size displays weight), line=95% Cl. ¹For convenience reasons only the first author is given. Studies ^{17 18 26 33 35 37} ^{41 42 44-48 51 52 55 56} with no definition or unsuitable definition for job held were excluded form this analysis. Therefore in concordance with the literature and on the basis of recommendations for systems to rate the quality of observational studies⁹⁻¹³ we developed a quality assessment tool adapted for our study question. This tool has not been validated but it turned out to be suitable for our purposes.

However, following our assessment tool we found only casecontrol studies and no retrospective cohort studies for the highquality level. This is not surprising because registry data have a number of limitations; these were also mostly the reasons for downgrading the study quality. First, information on occupation is not fully registered.⁴⁷ Second, registry data contain no additional information on occupation, for example, about duration of job held.^{47 51 52} And third, information on potential confounders such as smoking is often missing. But well-designed studies based on registry data might also have benefits. They are routinely collected, provide a big amount of data with very little data missing and the data can be determined for several causes of death or diseases.⁴⁷ Therefore registry data can provide important information to some potential health problems, especially for occupational health problems. This is also shown by a comparison study.⁴⁷ The ability of death certificate data was compared with the ability of data of a population-based case-control study to identify high-risk occupations for bladder cancer. In this comparison the rate of agreement was 62%.

Case-control studies might also have limitations and were therefore assessed as being of moderate quality. Reasons were mostly a relatively low response rate and missing stratification for the duration of employment. In addition, the control group of some case-control studies was hospital-based and sometimes the control group was not chosen with matching.

Nevertheless, we found nearly the same risks with a significant SRR around 1.35 for high-quality and moderate-quality studies. In summary, irrespective of the study design and the level of quality we found consistent risks with a significant SRR around 1.3–1.4. This corroborates the interpretation that there is a causal association between bladder cancer and job held as a hairdresser.

Stratified data

We found significantly elevated risks and no evidence of heterogeneity in all sets of studies. The pooled risk estimator for female and male hairdressers differed slightly with statistically significant SRRs of 1.25 for females and 1.52 for males. More or less the same results were found by Reulen *et al.*⁸ They also established a slightly higher risk in males than in females. Some authors who found higher risks for male than for female hairdressers conclude that the risk for bladder cancer is mainly caused by exposure with brilliantine, which was used in the past for hair grooming in men.^{24 53} But in contrast, other studies found a higher risk for female than for male hairdressers.^{26 51 55} Nearly no difference in risk was found between studies from the USA/ Canada and studies from Europe/Nordic countries. To our knowledge this comparison was not performed in other meta-analyses on bladder cancer among hairdressers.

Tobacco consumption is a well-established risk factor for bladder cancer.^{26 28 30 34 53} The pooled risk estimator for smokingadjusted data in our meta-analysis showed with 1.35 nearly the same risk as the pooled risk estimator for no adjustment for smoking (both statistically significant). Reulen *et al*⁸ found a significant risk of 1.29 for smoking-adjusted data among hairdressers and an elevated but not significant risk of 1.20 for no adjustment for smoking. This makes it likely that confounding by smoking is of minor importance even though its influence cannot be completely ruled out because quite a few studies (n=19) did not control for confounding.

Risk by duration of job held

To our knowledge, the association between the duration of job held as a hairdresser and the risk of bladder cancer was not tested before by meta-analysis. The risk of bladder cancer increased with the duration of job held, in particular for hairdressers with a duration of job held for ≥ 10 years. The pooled data for the duration of job held ≥ 5 years were also elevated, but the effect was not statistically significant. The lack of a significant effect may be due to limited study power as only three studies provided data for job held ≥ 5 years.

Duration of working as a hairdresser was used as exposure surrogate. Because of the different ways duration was assessed in the studies, it was not possible to create mutually exclusive exposure categories, for example, the lowest category 'ever registered as hairdresser' might also contain hairdressers who worked for more than 10 years. However, our results suggest that there is an association between the duration of job held, especially for hairdressers with job held for ≥ 10 years, and this lends additional weight to a suspected causal relationship.

Time aspects and the risk of bladder cancer

It remains an open question whether current occupational exposure to modern hair dyes and other hair products is still related to some excess bladder cancer risk among hairdressers. The data of none but one⁵³ study included in our meta-analysis are not eligible to analyse this association because the studies did not specify the calendar year during which exposure occurred.

In this respect, the year of case finding is of limited value when trying to distinguish different exposure periods. Because of the long latency times (30 or 40 years) even recently conducted analyses with bladder cancer cases ascertained after 1995^{23-25} or after 2000^{55} may observe risks caused by the exposure to aromatic amines included in hair products before 1980.

The analysis stratified for study period showed significant elevated risks, but no trend with time while Reulen *et al*⁸ found increasing risks with time in their meta-analysis. Risks of 1.18, 1.27 and 1.48 were found for ascertained bladder cancer cases in hairdressers before 1980, between 1980 and 1989, and after 1989, respectively.

In order to determine whether occupational exposure to modern hair products is still related to a risk for bladder cancer, it would be useful to determine whether hairdressers working before 1980 and hairdressers working after 1980 have the same risk. A Swedish retrospective cohort study conducted by Czene *et al*⁵³ is the only study that distinguishes different exposure periods. Registry data with data of four exposure periods yielded declining SMRs: the risk for males registered as hairdressers between 1960 and 1969 was 2.56 (significant). The risk decreased to 1.35 for the period 1970–1979, to 1.25 for the period 1980–1989 and to 0.92 for the period 1990–1998 (all not significant). No increased risk estimate was found for female hairdressers, so the data were not presented.⁵³ It remains unsettled to which extent this decline is explained by different latency periods or by a real decline in risk.

CONCLUSION

All our results taken into account, we conclude that there is good evidence for an increased risk of bladder cancer among hairdressers, in particular for hairdressers in jobs held ≥ 10 years.

We included 42 studies in our meta-analysis: no indication of publication bias or heterogeneity was found. We found SRRs in the range from 1.25 to 1.70 which were positively associated with duration of employment, rendering a causal association between bladder cancer and job held as a hairdresser likely. The risks for smoking-adjusted data were more or less the same than for data with no adjustment. Potential for residual confounding cannot be ruled out but this risk seems small. It remains an open question whether hairdressers working after 1980 only, when aromatic amines with known mutagenic or carcinogenic effects were banned from hair dye ingredients in the European Union, still present an increased risk for bladder cancer.

Acknowledgements We wish to thank Dana Wendeler for her great support with the management of the literature.

Contributors All authors contributed equally to this work: AS has made substantial contributions to conception of the study, extraction of the data and interpretation of data. She has been involved in drafting the manuscript critically for important intellectual content. She has given final approval of the version to be published. GS has made substantial contributions to the extraction of data. She has been involved in revising the manuscript critically for important intellectual content. She has given final approval of data. She has been involved in revising the manuscript critically for important intellectual content. She has given final approval of the version to be published. MD has made substantial contributions to conception of the study. She has been involved in revising the manuscript critically for important intellectual content. She has given final approval of the version to be published. AN has made substantial contributions to conception and design, as well as to analysis and interpretation of data. He has been involved in drafting the manuscript. He has given final approval of the version to be published. MH has made substantial contributions to conception and design, extraction of data, as well as to analysis and interpretation of data. She has been involved in drafting the manuscript. She has given final approval of the version to be published.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

- Ames BN, Kammen HO, Yamasaki E. Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. *Proc Natl Acad Sci U S A* 1975;72:2423–7.
- Bolt HM, Golka K. The debate on carcinogenicity of permanent hair dyes: new insights. Crit Rev Toxicol 2007;37:521-36.
- Golka K, Schops W, Kierfeld G, et al. [Urothelial diseases as an occupational disease]. Versicherungsmedizin 1994;46:158–61.
- Weistenhofer W, Blaszkewicz M, Bolt HM, et al. N-acetyltransferase-2 and medical history in bladder cancer cases with a suspected occupational disease (BK 1301) in Germany. J Toxicol Environ Health A 2008;71:906-10.
- Bolt HM, Golka K. Occupational cancer—burdens of the past or actual threat? Dtsch Med Wochenschr 2007;132:133–4.
- Turesky RJ, Freeman JP, Holland RD, et al. Identification of aminobiphenyl derivatives in commercial hair dyes. *Chem Res Toxicol* 2003;16:1162–73.
- La Vecchia C, Tavani A. Epidemiological evidence on hair dyes and the risk of cancer in humans. Eur J Cancer Prev 1995;4:31–43.
- Reulen RC, Kellen E, Buntinx F, et al. A meta-analysis on the association between bladder cancer and occupation. Scand J Urol Nephrol Suppl 2008;(218):64–78.
- Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med 2007;4:e297.doi: 10.13771/journal.pmed.0040297.
- Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 2003;73:712–16.
- Higgens JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions 4.2.6. In: *The Cochrane Library*. Issue 4. Chichester, UK: John Wiley & Sons, 2006:79–165.
- West S, King V, Carey TS, et al. Systems to rate the strength of scientific evidence. Evid Rep Technol Assess (Summ) 2002;47:1–11.
- Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998;52:377–84.
- 14. **Dersimonian R**, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. *Contemp Clin Trials* 2007;**28**:105–14.
- Schoenberg JB, Stemhagen A, Mogielnicki AP, et al. Case-control study of bladder cancer in New Jersey. I. Occupational exposures in white males. J Natl Cancer Inst 1984;72:973-81.
- Schumacher MC, Slattery ML, West DW. Occupation and bladder cancer in Utah. Am J Ind Med 1989;16:89–102.
- Silverman DT, Levin LI, Hoover RN, et al. Occupational risks of bladder cancer in the United States: I. White men. J Natl Cancer Inst 1989;81:1472–80.
- Silverman DT, Levin LI, Hoover RN. Occupational risks of bladder cancer among white women in the United States. Am J Epidemiol 1990;132:453–61.
- Siemiatycki J, Dewar R, Nadon L, et al. Occupational risk factors for bladder cancer: results from a case-control study in Montreal, Quebec, Canada. Am J Epidemiol 1994;140:1061–80.
- Teschke K, Morgan MS, Checkoway H, et al. Surveillance of nasal and bladder cancer to locate sources of exposure to occupational carcinogens. Occup Environ Med 1997;54:443—51.
- 21. Gago-Dominguez M, Castelao JE, Yuan JM, et al. Use of permanent hair dyes and bladder-cancer risk. Int J Cancer 2001;91:575–9.

- Zheng T, Cantor KP, Zhang Y, et al. Occupation and bladder cancer: a populationbased, case-control study in Iowa. J Occup Environ Med 2002;44:685–91.
- Colt JS, Baris D, Stewart P, et al. Occupation and bladder cancer risk in a populationbased case-control study in New Hampshire. *Cancer Causes Control* 2004;15:759–69.
- Gaertner RR, Trpeski L, Johnson KC. A case-control study of occupational risk factors for bladder cancer in Canada. *Cancer Causes Control* 2004;15:1007–19.
- Samanic CM, Kogevinas M, Silverman DT, et al. Occupation and bladder cancer in a hospital-based case-control study in Spain. Occup Environ Med 2008;65:347–53.
- Cole P, Hoover R, Friedell GH. Occupation and cancer of the lower urinary tract. Cancer 1972;29:1250-60.
 Viedens E, Press ID, Heuten L, Cancer experience of man expected to inheletion.
- Viadana E, Bross ID, Houten L. Cancer experience of men exposed to inhalation of chemicals or to combustion products. *J Occup Med* 1976;18:787–92.
- Howe GR, Burch JD, Miller AB, et al. Tobacco use, occupation, coffee, various nutrients, and bladder cancer. J Natl Cancer Inst 1980;64:701-13.
- Alderson M. Cancer mortality in male hairdressers. J Epidemiol Community Health 1980;34:182-5.
- Cartwright R. Occupational bladder cancer and cigarette smoking in West Yorkshire. Scand J Work Environ Health 1982;8(Suppl 1):79–82.
- Teta MJ, Walrath J, Meigs JW, et al. Cancer incidence among cosmetologists. J Natl Cancer Inst 1984;72:1051–7.
- Dubrow R, Wegman DH. Cancer and occupation in Massachusetts: a death certificate study. Am J Ind Med 1984;6:207–30.
- Guberan E, Raymond L, Sweetnam PM. Increased risk for male bladder cancer among a cohort of male and female hairdressers from Geneva. Int J Epidemiol 1985;14:549–54.
- 34. Morrison AS. Advances in the etiology of urothelial cancer. *Urol Clin North Am* 1984;11:557–66.
- Vineis P, Magnani C. Occupation and bladder cancer in males: a case-control study. Int J Cancer 1985;35:599–606.
- Pearce NE, Howard JK. Occupation, social class and male cancer mortality in New Zealand, 1974–78. Int J Epidemiol 1986;15:456–62.
- Risch HA, Burch JD, Miller AB, et al. Occupational factors and the incidence of cancer of the bladder in Canada. Br J Ind Med 1988;45:361-7.
- Lynge E, Thygesen L. Use of surveillance systems for occupational cancer: data from the Danish National system. *Int J Epidemiol* 1988;17:493-500.
- Steineck G, Plato N, Gerhardsson M, et al. Increased risk of urothelial cancer in Stockholm during 1985-87 after exposure to benzene and exhausts. Int J Cancer 1990;45:1012–17.
- Skov T, Andersen A, Malker H, et al. Risk for cancer of the urinary bladder among hairdressers in the Nordic countries. Am J Ind Med 1990;17:217–23.
- 41. **Burns PB**, Swanson GM. Risk of urinary bladder cancer among blacks and whites: the role of cigarette use and occupation. *Cancer Causes Control* 1991;**2**:371–9.
- Kunze E, Chang-Claude J, Frentzel-Beyme R. Life style and occupational risk factors for bladder cancer in Germany. A case-control study. *Cancer* 1992;69:1776–90.
- Pukkala E, Nokso-Koivisto P, Roponen P. Changing cancer risk pattern among Finnish hairdressers. Int Arch Occup Environ Health 1992;64:39–42.
- 44. Trögner A. Untersuchungen zur Epidemiologie des Harnblasenkarzinoms—Ergebnisse einer Falk-Kontrollstudie im Ruhrgebiet. Dissertation zur Erlangung des Grades eines Doktors der Medizin. Düsseldorf, Aus dem Medizinischen Institut für Umwelthygiene an der Heinrich-Heine-Universität Düsseldorf, 1991.
- Bolm-Audorff U, Jöckel KH, Kilguss B, et al. Bösartige Tumoren der ableitenden Harnwege und Risiken am Arbeitsplatz. In: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. ed. Dortmund: Wirtschaftsverlag NW, 1993.
- Cordier S, Clavel J, Limasset JC, et al. Occupational risks of bladder cancer in France: a multicentre case-control study. Int J Epidemiol 1993;22:403—11.
- Burnett CA, Silverman DT, Lalich NR. A comparison of analyses of occupational bladder cancer: death certificate vs. population-based case-control interview data. Am J Ind Med 1994;25:677–88.
- Golka K, Bandel T, Urfer W, et al. Berufliche Risikofaktoren f
 ür Tumoren der Harnblase und der Prostata. In: Bundesanstalt f
 ür Arbeitsschutz. ed. Bremerhaven: Wirtschaftsverlag NW, Verlag f
 ür neue Wissenschaft, 1994: 87.
- Skov T, Lynge E. Cancer risk and exposures to carcinogens in hairdressers. Skin Pharmacol 1994;7:94–100.
- Sorahan T, Hamilton L, Wallace DM, et al. Occupational urothelial tumours: a regional case-control study. Br J Urol 1998;82:25–32.
- Lamba AB, Ward MH, Weeks JL, et al. Cancer mortality patterns among hairdressers and barbers in 24 US states, 1984 to 1995. J Occup Environ Med 2001;43:250–8.
- Bouchardy C, Schuler G, Minder C, et al. Cancer risk by occupation and socioeconomic group among men—a study by the Association of Swiss Cancer Registries. Scand J Work Environ Health 2002;28 (Suppl 1):1—88.
- Czene K, Tiikkaja S, Hemminki K. Cancer risks in hairdressers: assessment of carcinogenicity of hair dyes and gels. Int J Cancer 2003;105:108–12.
- Ji J, Granstrom C, Hemminki K. Occupation and bladder cancer: a cohort study in Sweden. Br J Cancer 2005;92:1276–8.
- Dryson E, T'Mannetje A, Walls C, et al. Case-control study of high risk occupations for bladder cancer in New Zealand. Int J Cancer 2008;122:1340–6.
- Golka K, Heitmann P, Gieseler F, et al. Elevated bladder cancer risk due to colorants—a statewide case-control study in North Rhine-Westphalia. Germany J Toxicol Environ Health A 2008;71:851—5.
- Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.