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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected
over 40 million people worldwide, with over 1 million deaths as of October 2020 and
with multiple efforts in the development and testing of antiviral drugs and vaccines
under way. In order to gain insights into SARS-CoV-2 evolution and drug targets, we
investigated how and to what extent the SARS-CoV-2 genome sequence differs from
those of other well-characterized human and animal coronavirus genomes, as well as
how polymorphic SARS-CoV-2 genomes are generally. We ultimately sought to identify
features in the SARS-CoV-2 genome that may contribute to its viral replication, host
pathogenicity, and vulnerabilities. Our analyses suggest the presence of unique
sequence signatures in the 39 untranslated region (39-UTR) of betacoronavirus lineage
B, which phylogenetically encompasses SARS-CoV-2 and SARS-CoV as well as multiple
groups of bat and animal coronaviruses. In addition, we identified genome-wide pat-
terns of variation across different SARS-CoV-2 strains that likely reflect the effects of
selection. Finally, we provide evidence for a possible host-microRNA-mediated interac-
tion between the 39-UTR and human microRNA hsa-miR-1307-3p based on the results
of multiple computational target prediction analyses and an assessment of similar
interactions involving the influenza A H1N1 virus. This interaction also suggests a pos-
sible survival mechanism, whereby a mutation in the SARS-CoV-2 39-UTR leads to a
weakened host immune response. The potential roles of host microRNAs in SARS-CoV-
2 replication and infection and the exploitation of conserved features in the 39-UTR as
therapeutic targets warrant further investigation.

IMPORTANCE The coronavirus disease 2019 (COVID-19) outbreak is having a dramatic
global effect on public health and the economy. As of October 2020, SARS-CoV-2
has been detected in over 189 countries, has infected over 40 million people, and is
responsible for more than 1 million deaths. The genome of SARS-CoV-2 is small but
complex, and its functions and interactions with human host factors are being studied
extensively. The significance of our study is that, using extensive SARS-CoV-2 genome
analysis techniques, we identified potential interacting human host microRNA targets
that share similarity with those of influenza A virus H1N1. Our study results will allow
the development of virus-host interaction models that will enhance our understanding
of SARS-CoV-2 pathogenesis and motivate the exploitation of both the interacting viral
and host factors as therapeutic targets.

KEYWORDS SARS-CoV-2, human microRNA, influenza A H1N1, virus 39 untranslated
region, COVID-19

The coronavirus (CoV) disease 2019 (COVID-19) outbreak is having a dramatic effect
not only on public health but also on the global economy. The acute respiratory

distress associated with severe acute respiratory syndrome CoV-2 (SARS-CoV-2), the
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pathogen responsible for COVID-19 illness, was first reported in 2019 (1, 2). As of
October 2020, SARS-CoV-2 has been detected in over 189 countries, has infected over
40 million people, and has been responsible for more than 1 million deaths (3; Johns
Hopkins Coronavirus Resource Center, https://coronavirus.jhu.edu/map.html). The ge-
nome of SARS-CoV-2 is small but complex, encoding structural proteins and regulatory
elements whose functions and interactions with host factors have been studied exten-
sively (4, 5). However, many of these studies have, justifiably, focused on one or
another aspect of the SARS-CoV-2 genome, such as the structural proteins that it enco-
des (6), its relationships to other viruses (7), and its diversity across the locations in
which people have been infected (8). This leaves room for broader, more integrated
approaches for the analysis of the SARS-CoV-2 genome focusing on, e.g., noncoding
elements, which may yield insights missed by studies with a singular focus.

The SARS-CoV-2 pathogen is a coronavirus, and CoVs are members of the family
Coronaviridae. Coronaviridae are divided into four genera based on phylogeny:
alphaCoV, betaCoV, gammaCoV, and deltaCoV. CoVs have been detected in a diverse
group of hosts, from humans, wild mammals (e.g., bats, pangolins, camels, civets), and
birds to farm animals and poultry (9, 10). The betaCoVs are further divided into four lin-
eages: A, B, C, and D. SARS-CoV-2 belongs to betaCoV lineage B and shares moderate
genetic similarity with two human-pathogenic members, SARS-CoV (lineage B, ;79%)
and Middle East respiratory syndrome (MERS) CoV (lineage C, ;50%), which were re-
sponsible for outbreaks of severe respiratory diseases in humans in 2002 to 2003 and
2012, respectively (11). Unlike SARS-CoV-2, SARS-CoV, or MERS CoV infection, human
infection by other CoVs causes mild, common-cold-like symptoms. For example, the
pathogens 229E and NL63, which belong to the alphaCoV, and pathogens OC43 and
HKU1, which are within betaCoV lineage A, cause mild symptoms in humans. This sug-
gests that genetic differences between SARS-CoV-2 and related viruses may explain its
exceptional infectivity, pathogenicity, and elusiveness to effective vaccine and pharma-
cological mitigation strategies (12, 13).

Many noncoding elements of the SARS-CoV-2 genome have begun to receive atten-
tion as potentially informative with respect to the origins and vulnerabilities of the vi-
rus. For example, the genomic terminals of CoVs reflect noncoding 59 and 39 untrans-
lated regions (59- and 39-UTRs) and encode conserved RNA secondary structures that
have unique gene regulatory functions, as reviewed by Yang et al. (14). The UTRs are
shared by both genomic and subgenomic RNAs and have been suggested to play im-
portant roles in viral replication and transcription. The UTRs can also recruit and inter-
act with a range of host and viral protein factors and may provide long-range RNA-
RNA or RNA-protein interactions through circularization of the genome. MicroRNAs
(miRNAs) are evolutionarily conserved noncoding RNAs which can repress gene
expression posttranscriptionally via partial sequence matches primarily to the 39-UTRs
of the target RNAs. In this light, human miRNAs can target viral RNAs and modulate dif-
ferent stages of the viral replication life cycle, positively or negatively (15). An example
of human miRNA providing a positive influence on viral replication can be found in the
hepatitis C virus (HCV), in which human-liver-specific miR-122 stabilizes the 59-UTR of
HCV, leading to the promotion of viral replication (16). Antisense oligonucleotides act-
ing as inhibitors of miR-122 have been developed as antiviral drugs to reduce viral
loads in patients (17). There are also examples of human miRNAs having the opposite
effect. For example, a human miRNA showing a negative influence on viral replication
(i.e., a positive effect for the host) has been reported for the influenza A virus (IAV)
H1N1. Five human miRNAs that are highly expressed in respiratory epithelial cells tar-
geting multiple gene segments have been shown to have inhibitory effects on IAV rep-
lication both in vitro and in vivo (18).

We pursued a systematic gene-by-gene comparative analysis, assessing sequence
conservation in each region and element of the SARS-CoV-2 genome, including the 59-
and 39-UTRs. We did this to see if conservation and polymorphism analyses could iden-
tify novel functional elements worth consideration in vaccine and therapeutic
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development. We determined whether each of these regions and elements were
broadly conserved across the CoV family or unique to sublineages of CoVs. We also
identified mutation hot spots, characterized the likely functional significance of natu-
rally occurring amino acid substitutions, and assessed evidence for coevolving muta-
tions across the genome that may impact the stability of the SARS-CoV-2 genome as a
whole. Finally, we identified a unique genomic signature residing in an evolutionarily
conserved element in the 39-UTR which may be involved in host miRNA-mediated
interactions and innate immunity response. These findings reveal unique viral and host
conserved elements associated with the SARS-CoV-2 genome and warrant further
investigation into their possible functional roles during infection as well as potential
therapeutic targets.

RESULTS
Conserved sequence features of the coronavirus family. To identify conserved

and potentially functional features in the CoV family, Coronaviridae, we compared each
of the annotated genes and UTR features of the SARS-CoV-2 reference genome (NCBI
RefSeq genome accession no. NC_045512.2) against 109 selected CoV family genomes
(see Table S1 in the supplemental material). The SARS-CoV-2 reference isolate carries
26 processed peptides and open reading frames (ORFs), as well as two UTRs based on
NCBI RefSeq annotation. The CoV family genomes that we studied were collected from
four coronavirus genera (alpha, beta, gamma, and delta), including seven human CoVs
(SARS-CoV-2, SARS-CoV, MERS, OC43, HKU1, 229E, and NL63), a number of mammalian
CoVs (e.g., bats, pigs, pangolins, ferrets, and civets), and avian CoVs (e.g., chicken and
fowls). The SARS-CoV-2 sequence features were mapped to the CoV family genome
sequences through both nucleotide and amino acid sequence alignments using BLAST
(19), independently of any CoV family genome annotation (Fig. 1).

The functional element-based conservation analysis results suggested that the 28
total genomic features (i.e., 26 processed peptides and ORFs plus two UTRs) can be
broadly classified into two groups, those that were conserved across all CoV genera
(cross-CoV feature group) and those that were conserved only within the betaCoV line-
age B (betaCoV lineage B-specific feature group), which includes human SARS-CoV-2
and SARS-CoV, and animal CoVs from bats, pangolins, and civets. The cross-CoV feature
group showed moderate levels of protein sequence identity across all genera and
included nsp3-10, nsp12-16 (RNA-dependent RNA polymerase, helicase, 39-to-59 exo-
nuclease, endoribonuclease, and 29-O-ribose methyltransferase), and the structural
proteins spike (S), membrane (M), and nucleocapsid (N) (Fig. 1). The betaCoV lineage B-
specific feature group mapped uniquely to betaCoV lineage B, with no sequence simi-
larity detected in other genera at the nucleotide or protein sequence level. The
betaCoV lineage B-specific feature group included nonstructural proteins nsp2 and
nsp11, accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10, the structural
envelope (E) protein, and the 59- and 39-UTRs (Fig. 1). Among these, the five most con-
served features between SARS-CoV-2 and the betaCoV lineage B isolates in descending
order of average nucleotide sequence identity were the 39-UTR, the E gene, ORF10, the
59-UTR, and nsp10, with 97.4, 95.1, 93.8, 91.1, and 89.7% sequence identity, respectively
(Table S2). A short stretch (;30 nucleotides [nt]) of the SARS-CoV-2 39-UTR also shared
high sequence similarity with specific groups of deltaCoVs (from pigs and birds; 97%)
and gammaCoVs (from chicken and fowls; 94%) (see the next section). Taken together,
these results showed that the nucleotide sequence of both genomic terminals (39-UTR
and 59-UTR) are exceptionally conserved and unique within the betaCoV lineage B iso-
lates and therefore suggest that they are of likely functional significance for SARS-CoV-
2 replication, life cycle, or sustenance.

Notable signatures in the UTRs of SARS-CoVs and related genomes. To investi-
gate the extent of sequence conservation within the genomic terminals of SARS-CoV-2
and related isolates, we performed a multiple-sequence alignment (MSA) analysis on
620 nearly full-length betaCoV lineage B genomes collected from the NCBI Nucleotide
database, which included 361 SARS-CoV-2, 113 SARS-CoV, 75 animal CoV (e.g., bats,
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pangolins, civets), and 71 laboratory isolates (Table S1). The 59-UTR (SARS-CoV-2, nt 1
to 265) was defined as the 59 terminus, and both ORF10 and the 39-UTR together (nt
29558 to 29903) were used for the 39-terminal analysis. ORF10 was included in the 39-
terminal analysis because ORF10 was a predicted ORF immediately upstream of the 39-
UTR, but no ORF10 expression was detected, as reported in a comprehensive SARS-
CoV-2 transcriptome analysis (20). Here, we will refer to the 39-UTR as a 39 genomic ter-
minus including both ORF10 and the 39-UTR, and all genomic coordinates will follow
the SARS-CoV-2 reference isolate (NCBI RefSeq genome accession no. NC_045512.2)
unless otherwise noted.

FIG 1 Coronavirus family genome diversity and conserved features. The coronavirus family whole-genome phylogeny, with different genera and sublineages
represented, is provided on the left. Each row corresponds to a different coronavirus family member annotated with host, genus, collection location, year, and
the isolate name. The CoV names are color coded to indicate host species (red, human; blue, bat, civet, camel; green, bird). The columns on the right
correspond to gene products and UTR features along the length of the coronavirus genomes, with each feature normalized to the same column width. The
color intensities indicate the degree of nucleotide and amino acid conservation (i.e., sequence identity) with respect to the SARS-CoV-2 reference genome
(NCBI RefSeq genome accession no. NC_045512.2).

Chan et al.

November/December 2020 Volume 5 Issue 6 e00754-20 msphere.asm.org 4

https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://msphere.asm.org


The MSA analysis of the 39- and 59-UTRs revealed near-perfect sequence identity of
the regions across the betaCoV lineage B genomes. Across the nucleotide positions
where most genomes (.99%) have sequence alignments (i.e., ignoring positions near
both ends of the genome, where many genomes do not have sequences), 94% of the
39-UTR positions (234 out of 249) and 84% of the 59-UTR positions (151 out of 179)
exhibited identical nucleotides among 99% of the genomes aligned. Within these con-
served regions, a high level of nucleotide diversity was observed at specific positions
across the sequence alignments, with 13 and 25 hypervariable positions identified in
the 39- and 59-UTRs, respectively (Fig. 2). These 38 positions altogether showed distinct
nucleotide profiles for subclades of the betaCoV genomes, and we refer to them as the

FIG 2 UTR signatures of betaCoV lineage B genomes. Variant positions in the SARS-CoV-2 59- and 39-UTRs and their presence in related SARS-CoV
genomes (middle section). Base positions are color coded by the four nucleotides and depicted in their genomic locations for the 39-UTR (top) and 59-UTR
(bottom) sequence coordinates. For each panel, the data tracks are SNV (single-nucleotide polymorphism [SNP]) frequency in SARS-CoV-2 genomes based
on 18,599 GISAID genomes analyzed, SNV positions with a .0.5% mutation frequency, UTR signature positions, conserved sequence motifs, predicted
stem-loops, and predicted complementary base pairings. The numbers of betaCoV genomes (# Genomes) carrying each unique signature are shown in a
bar plot to the right with the following color codes for host species: red, human; blue, bat; green, laboratory; and orange, civet. The 241C.T SNV is
indicated with an asterisk (*) and has an observed frequency of 70.2% (outside the frequency scale shown). The 29553G.A SNV is upstream of the 39
terminus, with no ORF annotation showing a moderately high mutation frequency at 1.42%. s2m, coronavirus 39 stem-loop II-like motif; TRS, transcription
regulatory sequence.
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UTR “signatures.” A total of 15 major UTR signatures, as well as their frequency distribu-
tion, were identified from the 620 betaCoV genomes (Fig. 2). Based on nucleotide iden-
tities, the UTR signatures could be clustered into two distinct groups represented by
the SARS-CoV-2 (Wuhan-Hu-1) and SARS-CoV (Tor2) isolates, respectively, which har-
bored 76% nonidentical nucleotides (29 out of 38 positions at the UTR signature posi-
tions). The UTR signature of the SARS-CoV-2 clade was shared by bat CoV isolates
(RaTG13, ZC45, and ZXC21) and pangolin CoV isolates (MP789, GX-P4L, and GX-P1E),
and that of the SARS-CoV clade was shared by a different group of bat CoVs (HKU3-1,
Rf1, YNLF_31C, and Rs672) (Fig. 2).

Overlaying the UTR signatures with predicted RNA secondary structures revealed
that a majority of the signature positions (71%; 27 out of 38) were located on stem-
loop structures and that 10 positions were involved in complementary base pairings.
Interestingly, we noted that the last three positions (nt 29732, 29758, 29769) of the 39-
UTR signature carried distinct nucleotide combinations for each group of the SARS-
CoV-2 (CTC), SARS-CoV (TGT), and bat CoV (CGT) isolates (Fig. 2). Notably, these three
positions overlapped a conserved RNA motif, S2m (coronavirus 39 stem-loop II-like
motif Rfam RF00164) previously identified in coronavirus and astrovirus (21, 22). In our
analysis, the highly conserved S2m RNA element was also detectable using nucleotide
searches among avian and animal CoVs belonging to the gamma and delta genera
(Fig. 1). In summary, these results show that the 39- and 59-UTRs of SARS-CoV-2, SARS-
CoV, and bat CoV isolates carry unique signatures involving predicted RNA secondary
structures with likely functional and/or regulatory roles.

UTR stability and variant sites within the SARS-CoV-2 genome. To investigate
SARS-CoV-2 genomic stability, we analyzed genome-wide nucleotide variants among
isolates collected from the ongoing global outbreak. We performed single-nucleotide
variant (SNV) discovery by pairwise whole-genome alignments using Nucmer on
18,599 whole-genome sequences available from the GISAID resource (as of 29 May
2020; https://www.gisaid.org) (Fig. S1, Table S3) and a set of stringent filtering criteria
to identify high-confidence SNVs (see Materials and Methods). Variant analysis identi-
fied 87 variant (SNV) positions, with frequencies of .0.5% (or, equivalently, occurring
in at least 93 genomes). Inspection of the UTR signature positions showed that 37 out
of 38 positions were relatively stable within SARS-CoV-2 isolates, with variations
detected in ,0.11% genomes (i.e., 20 isolates or fewer) (Fig. 2). One exception was the
variant g.241C.T, which represented one of the signature positions and was originally
discovered using 361 SARS-CoV-2 genomes in the betaCoV lineage B analysis above. In
this expanded analysis using 18,599 SARS-CoV-2 genomes, the variant g.241C.T was
detected at a high prevalence of 70.2%. In addition, six variants were identified at
five sites in the 39-UTR (g.29700A.G, g.29711G.T, g.29734G.C, g.29742G.T,
g.29742G.A, g.29870C.A) and three in the 59-UTR (g.36C.T, g.187A.G, g.241C.T)
(Fig. 2). Setting g.241C.T aside, the UTR variants were detected at a low frequency,
between 0.62 and 1.05%. A very recent paper by Mishra et al. identified two variant
positions corresponding to two found in this analysis in the 59- and 39-UTRs, respec-
tively (i.e., g.241C.T, g.29742G.A/T) (23). In our study, all UTR variants were located
on predicted stem-loop structures, with the exception of g.36C.T in the 59-UTR. We
note that position 29742 was located within the conserved RNA motif S2m and carried
two alternate alleles, making it a triallelic site (Fig. 2; see Discussion). The alternate al-
lele g.29742G.T was observed with a frequency of 1.05%, and the second alternate al-
lele g.29742G.A was observed at a frequency of 0.67%. Based on whole-genome phy-
logeny analysis, the g.29742G.T and g.29742G.A variants appeared to have arisen in
two distinct clades; the g.29742G.T variant was found predominantly in Asia (43% of
G.T isolates), and g.29742G.A was almost equally split between Asia and North
America (40.0 and 39.5%, respectively, of G.A isolates).

The observed SARS-CoV-2 variants were presumably the result of the evolution of
the virus and potential selection pressures on those variants during the pandemic,
given their likely functional impact on some aspect of the virus. Imposing a variant
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frequency threshold of 0.05% or higher (or, equivalently, with the variant occurring in
10 or more genomes) identified 769 SNVs (Table S4). By considering the number of var-
iant positions per kilobase across gene features, we found that both terminal regions
(39-UTR, ORF10, N, and 59-UTR) and ORF3a harbored the highest number of variant

FIG 3 SARS-CoV-2 SNV properties. There was a total of 769 SNVs detected at a 0.05% mutation frequency of 18,599 GISAID genomes. (A) SNV counts and
density (per kilobase of a feature’s length) across genes and UTRs. (B) SNV density is shown by selected base change types: C.T/G.A, A.G/T.C, and
G.T/C.A. A full set of SNV distributions across all 12 base change types is shown in Table S4 in the supplemental material. (C) Amino acid mutation bias
comparing expected (potential) and observed SNVs for each gene or UTR feature.
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positions (Fig. 3A). We analyzed two aspects of the 769 SARS-CoV-2 SNVs by classifying
them into types of observed base changes (i.e., A.T, A.G, A.C, etc.) and amino acid
consequences (i.e., missense, synonymous, and nonsense) across the SARS-CoV-2
genes and UTRs. By assigning SNVs into different base change categories, we observed
a predominance of C.T mutations out of all 12 possible base changes. The C.T muta-
tion bias in SARS-CoV-2 has previously been suggested to be associated with human
host RNA-editing activities and the subsequent fixation of the edited nucleotides in
the viral RNA genome (24). The study by Di Giorgio et al. (24) pointed to C.T/G.A
and A.G/T.C variants as base modification outcomes of the human APOBEC and
ADAR deaminase family activities, respectively. Results from our gene-by-gene analysis
confirmed the study’s observations that (i) C.T variants were the most abundant base
change across almost all gene features and that (ii) C.T variants were biased toward
the positive-sense RNA strand (Fig. 3B). Specifically C.T variants were more abundant
than the complementary G.A variants, which would have been the complementary
base change if C.T variants were to occur in the negative-sense RNA strand.
Importantly, our results further revealed that the two above-mentioned properties did
not hold for the 39-UTR. In the 39-UTR, we observed that C.T and G.A variants were
more or less equally frequent and that G.T instead was the most dominant base
change, followed by G.A and C.T. These results may indicate that selection pressure
or regulation of the 39-UTR was different from that of other parts of the genome. In
addition, our analyses also detected G.T as the second most prominent base change
type when the entire genome was considered. The gene features showing the highest
density of G.T mutations were ORF3a, ORF6, the N gene, and the 39-UTR, all of which
were located in the last third of the genome. We determined that the average G.T
variant density in the last third of the genome (downstream of ORF1ab) was three
times higher than that in the first two-thirds of the genome (entire length of the
ORF1ab) (Fig. 3B) (Fisher’s exact test, P=2.6e–09). In summary, G.T variants are more
enriched toward the 39 end of the genome.

To investigate whether there are any biases in terms of amino acid substitutions
(i.e., missense, synonymous, and nonsense), we first determined that if an SNV occurs
randomly at any given nucleotide along the genome, the chances that it results in mis-
sense, synonymous, and nonsense mutations would be 73, 22, and 5%, respectively.
We also determined that such a distribution remained the same across all 26 protein-
coding gene features (Fig. 3C). By analyzing the observed proportions of amino acid
substitutions of the 769 SNVs, we detected fewer than expected nonsense and mis-
sense variants across all genes, with the exception of ORF8. This result likely suggested
purifying selection across the protein-coding genes but not on ORF8. Furthermore, we
observed that the deviations of the observed proportions from the expected values
varied widely across genes (Fig. 3C). In ORF8, for example, the proportions of missense,
synonymous, and nonsense variants were 76.9, 15.4, and 7.7%, respectively, which
were similar to what we expected. In contrast, for the processed peptide nsp9 (whose
putative function is in dimerization and RNA binding), the corresponding proportions
were 18.2, 81.8, and 0%, respectively, revealing fewer missense and nonsense variants
than expected. These results suggest that there is likely greatly varying selection and
evolutionary pressure on individual SARS-CoV-2 genes. In the nonsense amino acid set-
ting, only a single nonsense variant out of the 769 SNVs analyzed was detected. The
variant was located in ORF8 (p.Q18*). Previous studies have identified multiple variant
forms of ORF8 in SARS-CoV and SARS-CoV-related human and animal isolates (25),
including a 29-nt ORF8 deletion variant that had arisen during the late-phase human
transmission of SARS-CoV (26). In summary, the characterization of SARS-CoV-2 variants
suggests nonrandom selection pressure, may point to undiscovered driving forces of
viral genome evolution originating from the hosts or the virus, and may shed light on
the identification of mutations with functional or regulatory roles.

Analysis of SARS-CoV-2 variant combinations. We performed linkage disequili-
brium (LD) analysis on SNVs from 18,599 GISAID genomes collected in May 2020 using
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Haploview and identified a total of 34 coevolving variant (CEV) groups with a 0.1% or
higher genome frequency (Table S3). Notably, we identified two CEV groups that
involved the UTRs as well as other gene features, which may motivate testable hypoth-
eses about functional dependencies or interactions of the genomic elements or
regions harboring the variants. The first CEV group (CEVg1) was 59-UTR associated,
detected in 69.5% of SARS-CoV-2 genomes, and comprised of four variants that were
located in the 59-UTR (g.241C.T), nsp3 (g.3037C.T, synonymous), the RNA-dependent
RNA polymerase (g.14408C.T, p.P323L), and the spike protein (g.23403A.G, p.D614G)
(Fig. 4). In terms of geographic distribution by continent, CEVg1 was detected predom-
inantly in South America (88.2%), Africa (86.8%), Europe (79.6%), and North America
(66.6%), followed by Oceania (41.6%) and Asia (32.6%) (Fig. S2, Table S4). CEVg1 has
shown a dramatic increase from 12.2% to 93.4% between a 3-month period from
February to May 2020. The increase of CEVg1 was observed both globally and for each
region by continent (Fig. S2). It has been shown that the spike protein D614G muta-
tion, one of the variations implicated in CEVg1, is able to infect human cells more effi-
ciently and therefore enhances transmission (6). Another CEV group (CEVg5) was 39-

FIG 4 SARS-CoV-2 coevolving SNVs. (A) SNV frequencies are plotted by their positions in the SARS-CoV-2 genome. The relative
positions of common SNVs (.0.5%) and 9 representative coevolving variant (CEV) groups and amino acid consequences are
shown. (B) Nine representative CEV groups showing different genome frequencies. Three CEV groups involved UTR variants (shown
in red). syn, synonymous; RdRP, RNA-dependent RNA polymerase; exoN, 39-to-59 exonuclease; endoU, endoRNase; methylT, 29-O-
ribose methyltransferase; n.a., not applicable. *, this SNV was associated with other SNVs in CEVg5 in the 29 May 2020 data set but
was no longer associated in the 5 October 2020 data set.
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UTR associated and detected in 0.9% of the genomes, and it involved six variants that
resided in the leader protein or nsp1 (g.490T.A, p.D75E), nsp3 (g.3177C.T,
p.P153L), the exonuclease (g.18736T.C, p.F233L), the spike protein (g.24034C.T,
synonymous), the membrane protein (g.26729T.C, synonymous), and the 39-UTR
(g.29700A.G) (Fig. 4). CEVg5 was detected in a small proportion of genomes collected
in North America (2.4%), Oceania (2.3%), and Europe (0.1%) but not in other regions
(Fig. S2, Table S4). CEVg5 remained a minor group in March and April 2020, at 1.2 and
0.53%, respectively.

Three additional CEV groups found in more than 5% of the genomes were identi-
fied across gene features among those genomes available as of May 2020 (Fig. 4). The
first of these three, CEVg2, was detected entirely within the N protein in 22.1% of the
genomes. CEVg2 consisted of three consecutive variants, g.28881G.A, g.28882G.A,
and g.28883G.C, which together led to two amino acid substitutions, p.R203K and p.
G204R, and the change from one to two positively charged residues. We predicted the
functional impact of the two amino acid substitutions (p.R203_G204delinsKR) using

FIG 4 (Continued)
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PROVEAN, a prediction tool that we previously developed to determine the likely dele-
terious impact of amino acid substitutions and indels (i.e., nonsynonymous [Ns] coding
variants) on the function of an encoded protein (27). The PROVEAN score of 22.856
suggested a deleterious effect on the protein function as a result of the two amino
acid substitutions. These residues were located within a previously identified region
(28) referred to as the nucleocapsid linker region (LKR; residues 182 to 247 of SARS-
CoV). The LKR was identified as a flexible region joining the N- and C-terminal modular
regions and included one of three intrinsically disordered regions found in the N pro-
tein; it may be involved in phosphorylation, oligomerization, and N-to-M protein inter-
action (28). Among the 18,599 SARS-CoV-2 genomes, the N protein also harbored the
highest number of SNV counts per gene feature (i.e., 12, including coevolving and sin-
gle SNVs), of which 8 were found to reside within the LKR. CEVg2 was detected in
approximately one-third of the genomes collected in Europe (34.7%) and in South
America (28.9%) and was also found in from 3.7 to 14.0% of the genomes in other
regions. The prevalence of CEVg2 has increased in Europe (February to May 2020; 31.9
to 58.9%) and South America (February to April 2020; 0 to 36.5%) but has decreased in
Asia and Africa (Fig. S2, Table S4).

The second additional CEV group, CEVg3, included two variants located in nsp4
(g.8782C.T, synonymous) and ORF8 (g.28144T.C, p.L84S) and was found in 11.0% of
the genomes (Fig. 4). It has previously been reported by other groups (29, 30). CEVg3
showed geographic and temporal profiles different than those described above.
CEVg3 appeared predominantly in North America (23.7%), Oceania (18.7%), Asia
(17.0%), and other regions and showed a declining trend from 32.3 to 13.4 to 1.3% in
January, March, and May, respectively (Fig. S2, Table S4).

The third additional CEV group, CEVg4, consisted of three variants, two in the heli-
case (g.17747C.T, p.P504L; g.17858A.G, p.Y541C) and one in the exonuclease
(g.18060C.T, synonymous), and was detected in 6.0% of genomes (Fig. 4). Both amino
acid substitutions in the helicase were predicted to be highly deleterious using
PROVEAN (p.P504L score, 28.2; p.Y541C score, 28.9). Most of the genomes harboring
CEVg4 SNVs (92%, 1,036 out of 1,124) were detected in North America. The per-month
occurrence of CEVg4 decreased from 8.6% in February to 3.3% in April 2020 (Fig. S2,
Table S4).

In addition, the processed nsp2 peptide with an unknown function carried the high-
est number of SNV counts (i.e., 10) after that of nucleocapsid. A moderately prevalent
nsp2 mutation was detected in 22.9% of genomes (g.1059C.T, p.T85I), with a pre-
dicted deleterious functional outcome (PROVEAN score of 24.09) (Table S4). We also
noted that a deletion of three consecutive nucleotides (g.1605_1607delATG), resulting
in an amino acid deletion in nsp2 (p.D268del), was predicted to be deleterious
(PROVEAN score of 26.370) (Table S4). This deletion of 3 nt, although identified only in
a small group of 453 genomes (2.4% global collection), appeared to be highly localized
in Europe (95%; 428 out of 453 positive genomes), with only a few occurrences
detected in North America (7 genomes) and Oceania (14 genomes). A total of 383
genomes were collected from the following proximal regions: England (124), Netherlands
(115), Scotland (102), Northern Ireland (31), and Wales (11). The prevalence of the deletion
variant peaked around March in Europe (5.6%) and tapered off in April (2.2%) and May
(0.7%) (Fig. S2). In all, our survey of variant positions across 18,599 SARS-CoV-2 genomes
collected in May 2020 suggests that coevolving and single variants with likely functional
impact on viral fitness or pathogenicity were identified across both the UTRs and func-
tional elements throughout the genome.

In October 2020, over 86,450 high-quality GISAID SARS-CoV-2 genomes became
available after our initial analyses were pursued. We have therefore updated our
coevolving variant group analysis for the 86,450 genomes during the time that our
research was reviewed, which is over four times the size of the first data set of 18,599,
analyzed in May 2020 (Table S4, Fig. S3 and S4). A comparison of the frequencies of
the CEV groups between the May and October 2020 data sets provided new insights
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into the SARS-CoV-2 comutation sites. First, we confirmed the global dominance of
CEVg1, which carries the D614G mutation in the spike protein, and observed an
increase from 69.53% to 84.77% between May and October 2020. Second, we noted
the gradual disappearance (a decrease in genome frequencies) of CEVg3 and CEVg4
around July. Third, we identified two new groups of emerging coevolving mutations
(CEVg6 and CEVg8) among other new groups. These two groups showed rapid
increases in frequency specifically on only one continent within a short period of time
and did not appear on other continents. CEVg6 emerged and increased in Oceania and
increased in frequency from 0% in April to 96% in July 2020, whereas CEVg8 in Europe
increased in frequency from 0% in June to 36% in September 2020. Interestingly,
CEVg6 and CEVg8 each carries a new mutation in the spike protein, S477N and A222V,
respectively. The A222V mutation was previously reported in a SARS-CoV-2 strain asso-
ciated with a confirmed reinfection episode (31).

SARS-CoV-2 UTRs and human miRNAs as potential therapeutic targets. Viral
UTRs and human microRNAs have been explored as therapeutic targets in HCV and
other viruses because of their essential roles in viral replication and many additional
functional phenomena (13). To gain insight into the possible interplay of the SARS-CoV
UTRs with host microRNAs in modulating infection pathogenesis, we searched for
human miRNAs sharing sequence identity with the UTR sequences of SARS-CoV-2 and
SARS-CoV. We used miRNA-specific criteria for BLAST analysis for this purpose (see
Materials and Methods) and identified a total of 8 and 7 human microRNAs from the
miRBase database (32), including sense and antisense sequences matching the 39- and
59-UTRs, respectively (Table S5A). All except one miRNA-matching region (14 out of 15
miRNA regions) were located on predicted stem-loop structures (Fig. S5). Sequence
matches to the human miRNAs hsa-miR-1307-3p and hsa-miR-1304-3p were located
within the broader conserved RNA motif S2m. In addition to providing BLAST results
tuned for miRNA searches, we provide miRNA target prediction results reported from
five additional tools, including TargetScan (33), psRNATarget (34), IntaRNA (35), RNA22
(36), and RNAhybrid (37) (Table S5B). These different prediction tools exploit a combi-
nation of techniques, from nucleotide sequence-based seed matching and comple-
ment matching to structural feature characterization and free energy estimation.
For miR-1307-3p, the predicted minimum energy values for RNA-RNA interactions
obtained from RNA22, RNAhybrid, and IntaRNA were 231.1, 237.6, and 220.7 kcal/
mol, respectively, all below the commonly considered acceptance threshold of
220 kcal/mol (Fig. 5). psRNATarget returned an expectation value (i.e., a penalty for
mismatches) of 4, which was below the default and recommended value of 5.
TargetScan returned no predictions for miR-1307-3p when considered against the 39-
UTR of SARS-CoV-2, as there is one base mismatch in the middle of the seed region.
However, we confirmed that there is a potential interaction between miR-1307-3p and
the 39-UTR by evaluating the target prediction for a 39-UTR variant (29744G.C). When
this base change of interest was introduced at the mismatched position in the wild-
type version of the 39-UTR, a predicted miRNA target of type 7mer-m8 was reported by
TargetScan. Furthermore, two recent publications reported results of in silico whole-ge-
nome scanning of SARS-CoV-2 to identify candidate human miRNA targets (38, 39).
Khan et al. (38) applied a combination of three miRNA target prediction tools (IntaRNA,
miRanda, psRNATarget) and identified a set of putative miRNAs, including miR-1307-
3p for the 39-UTR. The Khan et al. study provided additional support for a predicted tar-
get of human miR-1307-3p in the 39-UTR of the SARS-CoV-2 genome. Importantly, a
previous study of IAV H1N1 provided supporting functional evidence of hsa-miR-1307-
3p in mediating antiviral responses and inhibiting viral replication (40). We discuss
a possible similar role of human miR-1307-3p in SARS-CoV-2 infection below (see
Discussion).

We also examined the endogenous expression of the 15 identified miRNAs using
the human miRNA tissue atlas IMOTA (41), which provided categorized miRNA expres-
sion levels (i.e., high, medium, low, or not expressed) for 23 human tissues (Table S5C).
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Among the 8 miRNAs with expression data available, three miRNAs (hsa-miR-1307-3p,
hsa-miR-1304-3p, and hsa-miR-15b-5p) were reported to be expressed mostly at me-
dium level in all 23 tissues, including lung, heart, liver, kidney, and small intestine,
some of which tissues have been reported to be severely affected during the SARS-
CoV-2 infection (42, 43). The expression of miR-1307-3p upon SARS-CoV-2 infection
was obtained from the Wyler et al. study (44) using the human lung cell line Calu-3
(GEO accession no. GSE148729). From the raw read count data, we determined the
trimmed mean of M (TMM) value-normalized expression levels (45) of miR-1307-3p for
mock infection and postinfection to be 362.2 and 485.3 cpm, respectively (Table S5D).
The expression level of miR-1307-3p increased slightly by 1.3-fold across 4 to 24 h post-
infection compared to that after mock infection. Furthermore, we searched the
miRBase database to determine whether the 15 identified human miRNAs were con-
served in other organisms. While 6 miRNAs were not detected in other organisms, 9
miRNAs were found in a number of other mammalian species, with the number of
organisms ranging from 3 to 25 (Table S5E). The hsa-miR-1307-3p miRNAs, for example,
have been found in 12 other mammalian species in various taxonomic orders, such as
primates (e.g., orangutan, chimpanzee, baboon, aye-aye), Artiodactyla (e.g., pig, goat,
cow), and others (e.g., bat, dog, rabbit, horse, armadillo). SARS-CoV-2 viral sequences
have been detected in dogs from households with confirmed human cases, but the
dogs remained asymptomatic (46).

In summary, these results suggest that the noncoding UTRs of SARS-CoV-2 are
made up of sequences that, based on base pairing, complementarity, and interaction
analyses, may interact with microRNAs in humans or other species. Further functional

FIG 5 Putative human microRNA miR-1307 interaction with SARS-CoV-2. (A) Predicted base pairings between
hsa-miR-1307-3p and the SARS-CoV-2 39-UTR using blastn and search parameters for miRNAs. The base pairings
of miR-1307-3p against the H1N1 NS1 C112A mutant and the H1N1 NS1 wild-type sequences were based on
the work of Bavagnoli et al. (40). (B) Predicted miRNA-to-viral RNA interactions based on free energy estimates.
RNA22, RNAhybrid, and IntaRNA generated consistent predictions for the RNA-RNA interaction. The prediction
output from RNAhybrid is shown.
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assays are needed to delineate whether and how microRNAs are involved in the modu-
lation of viral replication and pathogenesis.

DISCUSSION

Our SARS-CoV-2 genome-wide analyses demonstrate that ultraconserved 59- and
39-terminal regions of SARS-CoV-2 are shared among betaCoV lineage B genomes,
including SARS-CoV and different groups of bat CoVs; however, genome-wide genetic
similarity may be as low as ;79%. Notable UTR variant signatures, including comple-
mentary base pairing positions with encoded secondary structures, were identified
from representative genomes. The high degree of primary sequence conservation of
the UTRs identified in this study and the predicted RNA secondary structures reported
in two recent studies (47, 48) provide strong evidence for conserved functions of the
UTRs in the betaCoV lineage B SARS family of viruses. The likely participation of UTRs
in long-distance RNA-RNA and/or RNA-protein interactions involving viral and host fac-
tors in the replication of CoVs has been proposed and is consistent with our study
results; it therefore deserves greater attention (14).

In addition, our gene-by-gene comparative analysis of the CoV family provided an
account of sequence conservation and dissimilarities in both nucleotide and amino
acid aspects across each functional unit (processed peptides, ORFs, and UTRs) of the
SARS-CoV-2 genome. The CoV family reference genomes were collected from multiple
sources, including NCBI RefSeq (49) and previous CoV studies (50, 51), and therefore
represent a broad collection of all CoV genera (alpha, beta, gamma, and delta), host
species (humans, mammals, and birds), and disease outcomes (human or farm animal
outbreaks or mild symptoms). We believe that our genome-wide sequence analysis is
complementary to conventional MSA and phylogenetic analyses (e.g., gene tree) (4) or
localized window-based analyses (e.g., Simplot) (2), which have been used to assess ge-
nome/gene sequence conservation. The cross-CoV conservation data generated in
this study will provide the basis for a range of follow-up studies, such as determining
the functional significance of highly conserved genes and domains (e.g., the E pro-
tein), designing vaccine candidates based on protein or RNA conservation, and devel-
oping lineage-specific diagnostic markers for community monitoring and interspe-
cies tracing.

Our analyses also suggest that naturally occurring variants in the SARS-CoV-2 ge-
nome sequence were relatively low, with approximately 0.3% of sites exhibiting varia-
tions if one imposes a 0.5% or higher mutation frequency threshold. This is consistent
with a low mutation rate of the SARS-CoV-2 RNA-dependent RNA polymerase, which
likely possesses a proofreading function similar to that of SARS-CoV (52). The observa-
tion that the SARS-CoV-2 UTRs harbored higher frequencies of natural variations (39-
UTR, 2.6%; 59-UTR, 1.2%) than the overall genome-wide mutation rate of 0.3% was
likely due to lower evolutionary constraints present in the noncoding UTRs than in
genes in the protein-coding regions. A recent report suggesting the influence of
human RNA-editing activities on viral genome mutations has provided some explana-
tions for the overall mutation biases that we observed (i.e., the C.T substitution pre-
dominance) (24).

Identifying possible therapeutic targets in noncoding regions of a genome has
been pursued with other RNA viruses (13), and our investigations suggest possible
SARS-CoV-2 UTR interactions with human miRNAs. We used a bioinformatics approach
to identify genomic regions sharing strong sequence identity ($18 nt) to human
miRNAs as represented in miRBase (32). Because the mature miRNAs can recognize
and bind to a target RNA site through canonical or noncanonical matching positions,
our initial analyses used sequence identity as an all-inclusive guiding parameter for the
human miRNA screen. We have also attempted to generate predictions from five addi-
tional orthogonal miRNA target prediction tools utilizing seed matching, complement
matching, structural features, or free energy estimation and included additional sup-
porting evidence for predicted miRNA-virus interactions.
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We identified a putative hsa-miR-1307-3p binding site in the 39-UTR of SARS-CoV-2
with strong sequence identity that exhibits 16 nt of Watson-Crick base pairings out of
the first 18 nt of the miRNA (Fig. 5). The putative binding site spanned a conserved
RNA motif, S2m, which was also found in the 39-UTR of subsets of betaCoVs (e.g.,
SARS-CoV), gammaCoVs (e.g., infectious bronchitis virus from chicken), and deltaCoVs
(e.g., birds, pigs). The S2m motif had been previously identified as a conserved element
in other CoVs and astrovirus (21, 22). For some of the CoV genomes, due to a lack of
high-quality sequences available from the genomic terminals (i.e., nonambiguous
bases), the actual frequency or taxonomic distribution of the S2m and other conserved
RNA elements present in the UTRs may have been underestimated. Ongoing efforts to
collect and whole-genome sequence the repertoire of naturally occurring CoV isolates
from wild animals, including bats (53), should help to shed new light on the evolution
of CoV functional elements.

Previous studies have associated hsa-miR-1307-3p miRNA with cancer progression
as well as lung function. miR-1307 was originally discovered as a novel human miRNA
upregulated in Epstein-Barr virus (EBV)-positive nasopharyngeal carcinomas (54) and
was also suggested to be associated with the progression of prostate cancer (55). miR-
1307 expression has been shown to be dysregulated in newborns with chronic lung
disease (56). Importantly, the study by Bavagnoli et al. demonstrated a functional role
of miR-1307 in the regulation of viral replication in the influenza A virus H1N1, which
was the pathogen responsible for the 2009 H1N1 pandemic (40). Their study predicted
sequence complementarity of miR-1307 to H1N1 nonstructural protein 1 (NS1), which
functions to limit interferon and proinflammatory responses, thus allowing the virus to
evade host innate and adaptive immunity and replicate efficiently in infected cells. The
same study also showed that miR-1307 overexpression had regulatory effects on both
the virus and host cells. First, miR-1307 overexpression was able to reduce NS1 expres-
sion and inhibit wild-type H1N1 replication but had no effects on the NS1 C112A mu-
tant, which carried a nucleotide mismatch to the 59 region of miR-1307 (Fig. 5).
Second, the overexpression of miR-1307 (in a stably transfected lung cell line) was able
to induce genes involved in cell proliferation, apoptosis, and the regulation of inflam-
matory and interferon responses. Taken together, the study concluded that the C112A
variant was a viral escape mutation for miR-1307 regulation. Furthermore, the study
reported that the C112A mutant was significantly associated with the severe clinical
symptom acute respiratory distress syndrome and represented close to one-third of
influenza strains that circulated primarily locally in northern Italy during the 2010–2011
influenza season.

In SARS-CoV-2, it is notable that an interruption of base pairings from nt 29744 to
the 5th position of the miR-1307-3p sequence coincides with the location of the
C112A mutation in H1N1 (Fig. 5). It can be hypothesized that SARS-CoV-2 shares a
common host defense mechanism with H1N1, that this mechanism is mediated by
host cellular miRNA regulation, and that SARS-CoV-2 carries an allele whose regulation
is weakened by human miR-1307 because of the nucleotide mismatch. In support of
this hypothesis, our population analysis of SARS-CoV-2 variations identified two nearby
mutations at positions 29742 and 29734, which correspond to the 7th and 15th posi-
tions of miR-1307, respectively. Mutations that occurred at these two sites may pre-
sumably further disrupt the hypothesized base pairings with miR-1307 to escape from
binding and inhibition. So far, as of October 2020, the mutations were detected at a
low frequency (,1.2%) in the ongoing outbreak. In all, whether SARS-CoV-2 and
H1N1 infections have similar host defense mechanisms mediated by host miRNA
regulations or whether human population variations of hsa-miR-1307-3p are associ-
ated with the severity of clinical symptoms are presently not known and warrant
further investigation.

In summary, we utilized a comprehensive genomic analysis approach to assess
sequence variations of the SARS-CoV-2 genome with respect to the coronavirus family
as well as circulating strains during the current global outbreak collected via the
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GISAID repository. We pursued these analyses to gain insights into functional elements
within the SARS-CoV-2 viral genome. We identified distinct viral clades sharing
coevolving sequence variants and explored emergence and global spread by continent
and collection time. We identified possible interactions of the human microRNA miR-
1307-3p with the noncoding 39-UTR of the SARS-CoV-2 genome supported by in silico
predictions from this study, new analyses from other groups (38, 39), and extensive
functional assays that supported a biological role for miR-1307-3p in H1N1 influenza A
virus replication (40). Above all, because of the challenges of canonical and noncanoni-
cal properties of miRNA binding to targets, we note that important next steps are func-
tional experiments, such as miRNA-virus biochemical interaction assays, mutational
analysis, and miRNA overexpression assays to further investigate the biological signifi-
cance of miR-1307 in vitro and in vivo during SARS-CoV-2 replication and possibly the regu-
lation of host immune responses. Through this work, we provide evidence for and insights
into the possible involvement of miR-1307 in SARS-CoV-2 infection and, consequently,
new opportunities for exploring potential targets for antiviral interventions.

MATERIALS ANDMETHODS
Coronavirus family sequence conservation analysis. The SARS-CoV-2 NCBI RefSeq genome (NC

_045512.2) was used as the reference. For gene-by-gene analysis, each sequence of 28 annotated
genomic features (ORFs, processed peptides, and UTRs) of SARS-CoV-2 was searched against the 109
representative CoV genomes collected from four genera (alpha, beta, gamma, and delta) (Table S1)
using NCBI BLAST1 (blastn and tblastx; v2.9.0), with an E value threshold of 1e–3. The MSA of the 109
CoV family genome sequences was performed using Clustal Omega (v1.2.4) (57). The maximum likelihood
phylogeny tree was constructed using RAxML (v8.2.11), with 100 bootstraps under the GTRGAMMA model
(58). The tree was visualized using iTOL (59).

SARS-CoV-2 genomic terminal sequences. In the context of this study, the 59 terminus (nt 1 to
265) corresponded to the annotated 59-UTR. The 39 terminus (nt 29558 to 29903), which was also
denoted 39-UTR, corresponded to the annotated ORF10 and 39-UTR of the SARS-CoV-2 reference ge-
nome (NCBI RefSeq genome accession no. NC_045512.2).

Collection of betaCoV lineage B genomes and UTR analysis. A total of 693 betaCoV genome
sequences were initially collected from the NCBI Nucleotide database (as of 15 April 2020). Genome
sequences were collected using the entire SARS-CoV-2 genome sequence as the query for a blastn
search, which required that most of the query sequence length and both UTR regions be aligned suffi-
ciently for sequence comparison (i.e., that at least 85% of the query sequence was covered; an alignment
starting from nt 130 or a smaller nucleotide position exists, and an alignment ending at nt 29700 or a
higher nucleotide position exists). An MSA was performed on the collected 693 genome sequences,
including the SARS-CoV-2 reference genome, using Clustal Omega (v1.2.4). For the 39- and 59-UTR
regions, variable positions were defined as any positions where 5% or more of the genomes showed nucle-
otide differences from the reference (excluding ambiguous nucleotides, such as N nucleotides). Positions
near either end of the genome (i.e., nucleotides below position 87 or above position 29806) were excluded
since over 1% of the genomes do not have aligned sequences and therefore the MSA may not be of high
quality. Finally, after the genomes with ambiguous nucleotides in the defined variable positions in UTRs
were filtered out, 620 genomes were used as the final genome set for UTR signature analysis. Note that a
pangolin CoV (MT084071.1) was included in spite of its having ambiguous nucleotides because it appeared
to be one of likely close relatives of SARS-CoV-2 and also carried a unique UTR signature.

Prediction of the UTR secondary structure. RNA secondary structure prediction was performed
using the RNAfold Web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) with the default
basic option to calculate the minimum free energy (MFE) and partition function. The predicted SARS-CoV-2
59- and 39-UTR structures previously reported in reference 4 were used to adjust the prediction.

SARS-CoV-2 variant analysis. A total of 34,217 SARS-CoV-2 genome sequences and their associated
metadata were obtained from GISAID (https://www.gisaid.org/) on 29 May 2020. A data sanitization and
filtering step was performed, and it included removing gaps (dash and space characters), filtering out
genomes from a nonhuman host, and keeping only high-quality genomes (i.e., requiring a genome to
be longer than 29 kb and to contain ,1% Ns and no other ambiguous nucleotides, such as B and W).
Each of the remaining 18,599 high-quality genomes was aligned with the reference genome to identify
variants using the nucmer and show-snps functions of the MUMmer package (v3.23) (60). Sequence var-
iants identified within the poly(A) tail or near either end of the sequence (within 10 nt from either end)
were ignored. In addition, an MSA of the 18,599 genomes was built using MAFFT (v6.861b), which was
used for independent validations of major mutation positions (61). For each sequence variant, the muta-
tion effects on gene products (i.e., genic location and amino acid change, if applicable) were analyzed
using in-house scripts. The functional impacts of amino acid substitutions and indels were predicted
using PROVEAN (27). Linkage disequilibrium (LD) analysis was performed to identify coevolving variants
among SNVs with a frequency of 0.1% or higher using Tagger, implemented in Haploview (v4.2) (62),
and using the squared coefficient of correlation (r2) threshold of 0.8. Non-biallelic sites needed to be
excluded from the LD analysis, and a set of 140 genomes with rare mutations on the major mutable
sites, causing the sites to become non-biallelic, were also excluded. During the revision of the
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manuscript, we repeated the same analyses using an up-to-date (as of 5 October 2020) data set with
135,500 genomes. After the same filtering steps, 86,450 genomes were included for the analyses, and
the new findings in the coevolving variants group analysis were also reported.

Protein-coding SNV analysis. Each of the identified protein-coding SNVs was analyzed to deter-
mine its amino acid consequence (missense/synonymous/nonsense) using in-house scripts. For the esti-
mation of amino acid consequences under the assumption of random mutations (i.e., to enumerate all
potential SNVs given the sequence context of the SARS-CoV-2 genome), all 3 possible SNVs for every nu-
cleotide position on all coding sequences from the start codon to the last codon before the stop codon
were included in the analysis.

Identification of putatively interacting human microRNAs. The UTR sequences of SARS-CoV-2
and SARS-CoV were used to search against the miRBase mature RNA sequences (release 22.1) (32) using
blastn, with the following parameters set for short sequences: “-penalty -4 -reward 5 -gapopen 25
-gapextend 10 -dust no -soft_masking false.” For cross-species conservation analysis of other organisms,
we searched the miRBase database with a requirement of 18 or more bases matched with 100%
sequence identity. For the additional five miRNA target prediction tools, the results were obtained using the
following downloaded scripts or corresponding Web servers with the default parameters: TargetScan, http://
www.targetscan.org/vert_72/vert_72_data_download/targetscan_70.zip; psRNATarget, http://plantgrn.noble
.org/psRNATarget/analysis?function=3; IntaRNA, http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp;
RNA22, https://cm.jefferson.edu/rna22/Interactive/; and RNAhybrid, https://bibiserv.cebitec.uni-bielefeld
.de/rnahybrid.

Statistical analysis. To test for the significance of the G.T mutation bias toward the 39 end of the
genome, the proportions of G.T mutations out of summed gene lengths were compared between
ORF1ab (60 mutations out of 21,326 nt) and the remaining ORFs (66 mutations out of 7,974 nt) using
Fisher’s exact test implemented in the fisher.test function in the R stats package (v3.6.1).

Data availability. Genome sequence data are available through the NCBI and GISAID.
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