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Integrating random walk and binary
regression to identify novel miRNA-disease
association
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Abstract

Background: In the last few decades, cumulative experimental researches have witnessed and verified the
important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid
growth both in the availability of miRNA-related data and the development of various analysis methodologies, up
until recently, some computational models have been developed to predict human disease related miRNAs,
efficiently and quickly.

Results: In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-
Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with
restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease
associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out
three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and
Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD
v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent
experimental reports. To simulate new disease without known related miRNAs, the information of known Breast
cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were
confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of
RWBRMDA based on the association records in HMDD v1.0 database.

Conclusions: We anticipated that RWBRMDA could benefit the future experimental investigations about the
relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and
significantly reducing the effort and cost of identification works.
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Background
MicroRNAs (miRNAs) are one category of small
single-stranded non-coding RNA molecule (containing
20~25 nucleotides), which function in regulation of
gene expression at the posttranscriptional level [1, 2].
Generally, miRNAs could cause mRNAs degradation by
binding to the 3′ untranslated regions (UTRs) of their
target mRNAs [1–5]. Since the first discovery of
miRNA about 20 years ago, a plenty variety of miRNAs

have been discovered so far, ranging from nematodes to
humans [6–10]. With the in-depth biology research
about miRNAs, a vast amount of studies have explicitly
shown that miRNAs played important roles in many
fundamental biological processes, such as cell growth,
proliferation, metabolism, differentiation, apoptosis,
signal transduction and so forth [11–15]. In last de-
cades, it was found that the dysregulation of miRNAs
could lead to many maladjusted cell behaviors [16],
which made miRNAs increasingly be recognized as key
regulatory players in gene expression process. There-
fore, it’s interpretable that many miRNAs have been
reported to be related with the development of enor-
mous complex human diseases, including cancers,
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neurological disorders and so on [17–19]. For example,
Kliese et al. found that miRNA-145 was downregulated
in atypical meningiomas and negatively functioned by
regulating the proliferation and motility of meningioma
cells [20]. Besides, it was found that in the breast can-
cer patient, the expression level of miRNA-141 was sig-
nificantly higher than normal group [21]. What’ s more,
Zhao et al. discovered that miRNA-106a could be seen
as an independent biomarker in glioblastoma patients
[22]. In addition, compared with normal lymph cells,
the expression level of miRNA-19a in canine lymphoid
cell lines was obviously increased [23]. Therefore, it’s
meaningful and uncontroversial to regard disease-re-
lated miRNAs as potential biomarkers, which could not
only significantly contribute to comprehending the dis-
eases mechanisms, but also benefit the detection, prog-
nosis, diagnosis, treatment and prevention of human
complex diseases [24–27]. Nevertheless, the intrinsic
disadvantage of traditional experimental method made
the identification process of disease-miRNA associa-
tions costly and time consuming. Considering the
massive increases in the reliability and volume of
miRNA-related data based on the accumulated re-
searches about miRNAs, it became necessary and do-
able to develop effective computational models for
predicting potential miRNA-disease associations, which
could further enhance the understanding of disease de-
velopment in miRNA level. More importantly, the
promising prediction results of computational ap-
proaches could also offer convenience for the follow-up
validation experiment by biologic or biomedical re-
searchers [28, 29].
Indeed, having the verified miRNA related data in one

hand and the assumption that functionally similar miR-
NAs are more likely to be associated with phenotypically
similar diseases and vice versa in the other, many com-
putational methods have been proposed to predict the
underlying miRNA-disease associations in aspect of net-
work science, combinatorial optimization, machine
learning, system biology and so on [9, 30–38]. For ex-
ample, Jiang et al. [24] proposed a computational model
based on hypergeometric distribution to predict novel
miRNA-disease associations. They firstly constructed
some classic network models, such as disease phenotypical
similarity network, miRNA functional similarity network
and known phenome-miRNAome network according to
multi-source biological data. Then they integrated all the
networks to finally prioritize the human miRNAs for dis-
eases of interest. However, the strong dependence on the
miRNA-target interactions resulted in a high rate of false
positive result of the method. Xu et al. [39] investigated
the expression profiles of miRNAs and proposed a com-
putational model, in which they constructed miRNA
target-dysregulated network to extract pivotal feature

vectors for miRNAs. Support vector machine (SVM) was
then conducted in their model to distinguish positive
disease-related miRNAs from negative ones. However, the
difficulty of obtaining negative disease-related miRNAs
made the model have very narrow applications. Differing
from traditional local network similarity measures, Chen
et al. [40] utilized the global network similarity measures
and proposed the Random Walk with Restart for
MiRNA–Disease Association (RWRMDA) model. In this
model, they constructed the global miRNA functional
similarity network, on which they further implemented
random walk with restart. Based on the stationary state of
the random walk dynamic process, namely the association
probability of each disease-miRNA pair, authors finally
prioritized candidate miRNAs for diseases investigated.
Likewise, focusing on the functional connections between
miRNA targets and disease genes in protein-protein inter-
action (PPI) networks, Shi et al. [41] identified potential
miRNA-disease associations by performing random walk
on the PPI network. Meanwhile, Mørk et al. [42] proposed
the computational model of miRPD (miRNA-Protein-Di-
sease), in which they did network analysis on both of the
known protein-miRNA associations and the text mined
disease-protein associations to infer miRNA–disease asso-
ciations. However, these models also strongly relied on the
interactions of miRNA and target with a high rate of
false-positive results. MirAI model was proposed by Pas-
quier et al. [43] in which they represented different types
of miRNA-related data, such as miRNA-disease
associations information, miRNA-neighbor associations
information, miRNA-target associations information,
miRNA-word associations information and miRNA-family
associations information, into a high-dimensionality vector
space to further predicted the potential disease-miRNA
association information. Obviously, the suitable choice of
dimensionality was of great importance for the prediction
performance. However, in their model there was no opti-
mal dimension given. Recently, Chen et al. [44] proposed
a Bipartite Network Projection for MiRNA–Disease Asso-
ciation prediction (BNPMDA) model based on integrated
miRNA and disease similarity and the known miRNA–
disease associations. They firstly defined the preference
degree for miRNAs and diseases with the bias ratings.
Then, bipartite network-based recommendation algorithm
was implemented based on resource allocation process be-
tween miRNAs and diseases to predict the potential
miRNA–disease associations.
Meanwhile, there also some other machine

learning-based models be successively put forward later.
For example, Chen et al. [45] developed the model of Reg-
ularized Least Squares for MiRNA-Disease Association
(RLSMDA), which needed no negative samples resulting
from the characteristic of semi-supervised learning. It’s
worth pointing out that RLSMDA could be conducted for
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diseases without any known miRNA associations. Add-
itionally, Xuan et al. [46] proposed a HDMP method to
predict potential disease-miRNA associations based on
weighted k most similar neighbors. In this model, they fig-
ured out the miRNA family and cluster information and
recalculated miRNA functional similarity by endowing
higher weight to miRNAs in the same family or cluster.
However, the chosen number of neighbors would influ-
ence the prediction performance of the computational
model to some extent. Considering that the traditional
similarity-based k-nearest-neighbors (KNN) method was
lazy learning and not reliable enough, Chen et al. [47] pro-
posed a model of Ranking-based KNN for MiRNA-Dis-
ease Association prediction (RKNNMDA). In this model,
to solve the limitation of normal ranking method, they
firstly took use of SVM method via learning features from
training data. Then, based on Hamming loss metric, they
reranked the similarity-based sorted neighbors to obtain
better prediction results. Furthermore, Chen et al. [48]
proposed the first model that could infer the association
types of disease-miRNA associations, namely the compu-
tational model of Restricted Boltzmann Machine for Mul-
tiple types of MiRNA-Disease Association prediction
(RBMMMDA). It’s no doubt that the biology information
about the different types of disease-miRNA associations
obtained from RBMMMDA could benefit the understand-
ing about the mechanism of diseases in the level of miR-
NAs. To further enhance the prediction performance,
Chen et al. [49] then developed the model of Within and
Between Score for MiRNA-Disease Association prediction
(WBSMDA). This model was aimed to predict potential
miRNAs related with plethora of human complex diseases
by integrating the miRNA and disease Gaussian inter-
action profile kernel similarity, miRNA functional similar-
ity, disease semantic similarity and also the known
miRNA-disease associations. WBSMDA could also be uti-
lized for new diseases and new miRNAs without any
known relation information. Soon after, by integrating the
biological dataset involved in WBSMDA into a heteroge-
neous graph, Chen et al. [50] further proposed another
method named Heterogeneous Graph Inference for
MiRNA-Disease Association prediction (HGIMDA).
HGIMDA calculated the disease-miRNA association pos-
sibility by investigating all the 3-length paths in the con-
structed heterogeneous graph. HGIMDA obtained better
prediction performance in terms of cross validation com-
pared with most of previously mentioned models.
Recently, Li et al. [51] presented a model of Matrix Com-
pletion for MiRNA-Disease Association prediction
(MCMDA) using matrix completion algorithm to predict
the potential miRNA-disease associations. In this model,
they constructed initial matrix according to known
miRNA-disease associations. Singular value threshold
(SVT) algorithm was then implemented in the matrix

completion process. The prediction scores were immedi-
ately calculated after they finished the matrix completion.
By maximizing network information flow of the
phenome-microRNAome network, Yu et al. [52] designed
a combinatorial prioritization algorithm and proposed an
computational model named MaxFlow to discover new
disease-miRNA associations. Nowadays, Chen et al. [53]
presented a model named Extreme Gradient Boosting
Machine for MiRNA-Disease Association prediction
(EGBMMDA), which was the first decision tree learning-
based model for predicting novel miRNA–disease associ-
ation. In this model, they constructed informative feature
vector to train a regression tree under the gradient boost-
ing framework built on the graph theoretical measures,
statistical measures and matrix factorization outcomes for
all the miRNA-disease pairs. Lately, in the literature re-
view by Chen et al. [54] about miRNA-disease association
prediction, 20 state-of-the-art in silico models were intro-
duced from different perspectives. The authors summa-
rized the existing difficulties in potential disease-miRNA
association prediction task and pointed out five feasible
and meaningful research schemas for further development
of computational model designment in this field.
In this work, we presented a Random Walk and Binary

Regression-based MiRNA-Disease Association predic-
tion (RWBRMDA) method to predict underlying
miRNA-disease associations. Specifically, we constructed
an integrated miRNA similarity network based on
miRNA functional similarity and miRNA Gaussian simi-
larity. Then we implemented random walk with restart
on the integrated miRNA similarity network for every
miRNA in turn. Thirdly, we extracted feature vector for
every miRNA according to the results of the random
walk and the known miRNA-disease associations. Next,
considering the field information about known disease-
miRNA associations, we labelled 1 to those miRNAs
with known associations with currently investigated dis-
ease, otherwise 0. Finally, we employed binary logistic
regression method based on the feature vectors and label
information to predict miRNAs for diseases of interest
(See Fig. 1). Furthermore, we implemented Leave-one--
out cross validation (LOOCV) for RWBRMDA. As a re-
sult, RWBRMDA obtained AUC value of 0.8076. What’s
more, we carried out three different patterns of case
studies in this work. Generally, in three types of case
studies, we respectively evaluated the prediction per-
formance of RWBRMDA for complex human diseases
with miRNA associations recorded in HMDD v2.0 data-
base [55], new diseases without any known related miR-
NAs and known diseases with miRNA associations
recorded in HMDD v1.0 database [19]. By validating the
prediction results based on other two important data-
bases, miR2Disease [56] and dbDEMC [57], RWBRMDA
obtained high confirmation ratios of the predicted
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miRNAs in all three ways of case studies. Therefore, it
showed the effectivity of RWBRMDA in predicting po-
tential miRNA-disease associations for various categories
of diseases.

Results
Performance evaluation
Leave-one-out cross validation (LOOCV) is often uti-
lized to evaluate the prediction performance of compu-
tational model. In this work, LOOCV was implemented
as follows: for an investigated disease, based on the re-
cords in HMDD v2.0 [55] database, each known
disease-related miRNA was left out in turn as test sam-
ple and the other known disease-related miRNAs were
regarded as seed samples. Then, current test sample and
candidate samples, namely the miRNAs without known
association with the investigated disease would be
ranked according to the prediction score of the model. If
the test sample was ranked above the given threshold,
the model would be considered to successfully predict
this miRNA–disease association. Further, Receiver oper-
ating characteristics (ROC) curve could be drawn by
plotting the true positive rate (TPR) versus the false
positive rate (FPR) at different thresholds. Generally, the
area under the ROC curve (AUC) is calculated and uti-
lized to evaluate the prediction performance. Specifically,
AUC = 1 means the best prediction performance and
AUC = 0.5 indicates a random performance. As a result,
RWBRMDA obtained the AUC value of 0.8076, which

was higher than some previously mentioned computa-
tional models (RLSMDA: 0.6953 [45], HDMP:0.7702
[46], MCMDA:0.7718 [51], RWRMDA:0.7891 [40], Max-
Flow:0.7774 [52], MirAI:0.6299 [43]) as shown in Fig. 2.
It should be mentioned that we repeated all the 6 com-
parison methods based on the same HMDD v2.0 database,
drew the corresponding ROC curves and compared the
AUC values. In particular, the AUC value of MirAI
seemed relatively small because the collaborative filtering
technology utilized in this model was influenced by the
sparsity problem of the biological data. Therefore, to some
extent, RWBRMDA obtained better performance in the
prediction of potential miRNA-disease associations.

Case studies
As mentioned before, we carried out three different pat-
terns of case studies in this work. Specifically, one ap-
proach was that we implemented RWBRMDA for disease-
miRNA associations prediction based on the known
diseases-miRNAs associations recorded in HMDD v2.0
database [55], then we verified the prediction results based
on another two important miRNA-disease association da-
tabases, miR2Disease [56] and dbDEMC database [57].
The second approach was that we removed all the original
miRNA associations information of the investigated dis-
ease, and then we verified the prediction results of the dis-
ease based on HMDD v2.0 database, miR2Disease and
dbDEMC database. This method aimed to test the predic-
tion performance for a new disease without any known

Fig. 1 Flowchart of potential disease-miRNA association prediction based on the computational model of RWBRMDA
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associations. The third approach was that we used the
diseases-miRNAs associations recorded in HMDD v1.0
database [19], then we verified the prediction results of
some complex diseases based on HMDD v2.0 database,
miR2Disease, and dbDEMC database. This approach
aimed to assess the prediction robustness on different
datasets of the computational model.
Case studies on Esophageal cancer and Prostate can-

cer were implemented in the first way. Esophageal can-
cer is a kind of cancer arising from the esophagus and
it was reported as the sixth deadly cancers and the
eighth most common cancer worldwide [58]. Statistical
analysis showed that it was three to four times more
common in male than female [59]. The treatment on
esophageal cancer is strongly dependent on the cancer’s
stage. There was clinic research showing that the sur-
vival rate could increase to 90% if the tumors could be
diagnosed at an early stage [60]. Therefore, it’s obvious
that the early detection of esophageal cancer is vital to
cancer treatment [61, 62]. Some miRNAs have been
confirmed to be related with esophageal cancer. For ex-
ample, the relative expressions of miRNA-155, miRNA-
183, and miRNA-20a in esophageal tissue were found
to be significantly associated with increased risk for
esophageal cancer [63]. In the case study for esophageal
cancer, candidate miRNAs, namely miRNAs without
known association with esophageal cancer in HMDD
v2.0 database, were prioritized according to the scores
obtained from RWBRMDA. As a result, 10 out of top
10, 47 out of top 50 were confirmed by recent experi-
mental results recorded in miR2Disease and dbDEMC
(See Table 1).

Prostate cancer develops in the epithelial cells of pros-
tate, the cancer cells of which might spread from the
prostate to other parts of the body, particularly the
bones and lymph nodes [64]. Prostate cancer was re-
ported to be the second leading cause of cancer-related
death among men in developed countries [65]. Up to
now, lots of miRNAs have been confirmed to be related
to prostate cancer. For instance, it was reported that
miRNA-183 expression was significantly higher in pros-
tate cancer cells and tissues, compared with that in
matched normal prostate cells and tissues [66]. It meant
that the inhibition of miRNA-183 expression might be
therapeutically beneficial for prostate cancer treatment
[66]. Taking prostate cancer as a case study to imple-
ment RWBRMDA for potential miRNA-disease associ-
ation prediction, for the top 10 and top 50 potential
prostate cancer associated miRNAs, 10 and 45 of them
were respectively confirmed to have experimental litera-
ture evidences recorded in miR2Disease and dbDEMC
database (See Table 2). For example, miRNA-29b was
ranked the second by RWBRMDA and it was the highest
ranked miRNA, simultaneously confirmed by both miR2-
Disease and dbDEMC database. In fact, miRNA-29b was
down-regulated from research about miRNA expression
profiling of prostate cancer cell lines [67].
We conducted case study on Breast cancer by way of

the second case study method, in which we removed all
the related miRNAs information of breast cancer to
model the situation where a new disease without known
miRNA associations was investigated. Breast cancer is
known as the most leading type of cancer in women
worldwide, accounting for about 25% of all the female’s

Fig. 2 Performance comparisons between RWBRMDA and six state-of-the-art disease-miRNA association prediction models (RLSMDA, HDMP,
MCMDA, RWRMDA, MaxFlow and MirAI) in terms of ROC curve and AUC value on LOOCV based on the same database of HMDD v2.0. As a result,
RWBRMDA achieved AUC of 0.8076, which represented more outstanding prediction performance than the other mentioned models
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death cases all over the world [68]. Some researches on
breast cancer have confirmed that many miRNAs were
associated with breast cancer. For example,
microarray-based miRNA profiling on whole blood of
early stage breast cancer patients showed that
miRNA-106b was up-regulated in whole blood of breast
cancer patients [69]. What’s more, it was found that
downregulation of miRNA-140 promoted cancer stem
cell formation in basal-like early stage breast cancer [70].
We verified the predicted underlying breast cancer re-
lated miRNAs obtained by RWBRMDA. Consequently,
10 out of the top 10 and 49 out of the top 50 predicted
miRNAs were experimentally confirmed by HMDD v2.0,
miR2Disease and dbDEMC database (See Table 3).

Lymphoma often refers to a group of cancerous blood
cell tumors that developed from lymphocytes [71].
Worldwide, lymphoma was reported to be the
seventh-most common cancer and also be the
third-most common cancer in children [72]. Benefitting
from the development of deep sequencing technology,
several miRNAs have been discovered to be related with
lymphomas. For example, miRNA-155, miRNA-21 and
miRNA-221 were observed over-expressed in lymphoma
cell lines [73]. In order to test the prediction robustness
of RWBRMDA in different datasets, we conducted the
third way of case study on lymphoma, in which we only
used the known disease-related miRNAs recorded in
HMDD v1.0 database as training samples and used asso-
ciations in HMDD v2.0 database, miR2Disease, and
dbDEMC database as test datasets. As a result, 10 out of
the top 10 and 44 out of the top 50 predicted miRNAs
were confirmed based on the three test datasets (See
Table 4). For instance, miRNA-29c, which was the high-
est ranked miRNA confirmed by dbDEMC and HMDD
v2.0 databases, was reported to show down-regulation in
lymphoma cells [74] .
In conclusion, the promising results obtained from

LOOCV and case studies in three different ways have
demonstrated the reliable prediction performance of
RWBRMDA. Therefore, we further prioritized candidate
miRNAs for all the diseases recorded in HMDD v2.0
database. The predicted ranks of miRNAs for each dis-
ease were publicly released for further experimental val-
idation (Additional file 1). The potential disease-miRNA
associations with relatively high ranks were expected to
be confirmed by clinical observation or biological experi-
ments in the future.

Discussion
Several important factors contributed to the excellent
performance of RWBRMDA. Firstly, benefitting from
the valid and updated disease-miRNA association data
by abundant biology researches, RWBRMDA could
have more chance to obtain higher prediction accuracy.
Secondly, RWBRMDA took full advantage of the simi-
larity information of the miRNA functional similarity
and Gaussian interaction profile kernel similarity to ob-
tain integrated global similarity network for miRNAs.
Generally, the more similarity information was utilized,
the better prediction performance would be. Thirdly,
based on the previously mentioned similarity informa-
tion, RWBRMDA further implemented random walk
with restart, an effective and widely used method, to in-
vestigate global reachability between any pair of miR-
NAs. A higher stable probability meant a higher
reachability between two miRNAs or meant a higher
association probability with the same disease of these
two miRNAs. Then according to the random walk

Table 1 We implemented RWBRMDA on esophageal cancer for
potential disease-related miRNA prediction and conducted the
first pattern of case study, in which the disease-miRNA
associations recorded in HMDD v2.0 were used as training
samples and miRNAs without known associations with currently
considered diseases were regarded as test samples. According
to the prediction results, among the top 10 and 50 potential
esophageal cancer related miRNAs, 10 and 47 were confirmed
by miR2Disease and dbDEMC databases

miRNA Evidence miRNA Evidence

hsa-mir-29b dbDEMC hsa-mir-18a dbDEMC

hsa-mir-1 dbDEMC hsa-mir-221 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-7 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-15b dbDEMC

hsa-let-7e dbDEMC hsa-mir-106a dbDEMC

hsa-mir-29a dbDEMC hsa-mir-218 unconfirmed

hsa-let-7d dbDEMC hsa-mir-10b dbDEMC

hsa-mir-106b dbDEMC hsa-mir-132 dbDEMC

hsa-mir-146b dbDEMC hsa-mir-30c dbDEMC

hsa-mir-222 dbDEMC hsa-mir-429 dbDEMC

hsa-mir-24 dbDEMC hsa-mir-93 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-199b dbDEMC

hsa-mir-181b dbDEMC hsa-mir-124 dbDEMC

hsa-let-7f unconfirmed hsa-mir-107 dbDEMC, miR2Disease

hsa-mir-181a dbDEMC hsa-mir-133b dbDEMC

hsa-let-7i dbDEMC hsa-mir-23b dbDEMC

hsa-mir-9 dbDEMC hsa-mir-127 dbDEMC

hsa-let-7 g dbDEMC hsa-mir-206 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-20b dbDEMC

hsa-mir-17 dbDEMC hsa-mir-122 unconfirmed

hsa-mir-195 dbDEMC hsa-mir-224 dbDEMC

hsa-mir-142 dbDEMC hsa-mir-18b dbDEMC

hsa-mir-182 dbDEMC hsa-mir-27b dbDEMC

hsa-mir-30a dbDEMC hsa-mir-373 dbDEMC, miR2Disease

hsa-mir-125a dbDEMC hsa-mir-302b dbDEMC
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result we could extract more reliable feature vector for
every miRNA as the input of next binary logistic regres-
sion. More reliable and valuable feature vector would
be help for a better output of the binary logistic regres-
sion. In other words, integrating random walk and bin-
ary logistic regression was an innovative and efficient
research practice.
There were also some limitations in RWBRMDA.

Firstly, because we took use of binary logistic regres-
sion in the model, we needed prior association label
information for investigated miRNAs. If the known
association information was too little or none, the
AUC value of RWBRMDA might be a little lower.
Secondly, RWBRMDA partly depended on the param-
eters used in our model, such as the restart probabil-
ity in random walk and the length of the feature
vector of miRNA. Hence, a technical analysis for
selecting appropriate and optimized parameter values
was necessary when RWBRMDA was conducted
based on other biology dataset.

Conclusions
Identifying potential miRNA-disease associations was vi-
tally important for investigating the biomarker of disease
diagnosis at the miRNA level. Based on the fundamental
hypothesis that functionally similar miRNAs greatly
tended to be relevant to phenotypically similar diseases
and vice versa, in this work, we introduced a computa-
tional model named RWBRMDA to predict underlying
miRNA-disease associations. RWBRMDA was developed
mainly based on random walk with restart and binary lo-
gistic regression. The known miRNA-disease association
information in HMDD v2.0 database was utilized to as-
sign prior label to miRNAs for any disease we investi-
gated. Considering that the network modeling was a
primitive and intuitive way for modeling biological data,
we also took use of miRNA functional similarity,
Gaussian interaction profile kernel similarity for miR-
NAs and integrated similarity for miRNAs to map miR-
NAs to a weighted network. We complemented random
walk with restart on the constructed network for every

Table 2 We also conducted the first pattern of case study on prostate cancer by RWBRMDA. As a result, among the top 10 and 50
potential prostate cancer related miRNAs, 10 and 45 were confirmed by miR2Disease and dbDEMC databases

miRNA Evidence miRNA Evidence

hsa-mir-146a miR2Disease hsa-mir-34a dbDEMC, miR2Disease

hsa-mir-29b dbDEMC, miR2Disease hsa-mir-34c dbDEMC

hsa-mir-1 dbDEMC hsa-mir-200b unconfirmed

hsa-mir-223 dbDEMC, miR2Disease hsa-mir-155 dbDEMC

hsa-mir-21 dbDEMC, miR2Disease hsa-mir-181b dbDEMC, miR2Disease

hsa-mir-126 dbDEMC, miR2Disease hsa-let-7f dbDEMC, miR2Disease

hsa-let-7a dbDEMC, miR2Disease hsa-mir-133a dbDEMC

hsa-let-7b dbDEMC, miR2Disease hsa-mir-181a dbDEMC, miR2Disease

hsa-mir-19b dbDEMC, miR2Disease hsa-mir-196a dbDEMC

hsa-mir-29c dbDEMC hsa-let-7i dbDEMC

hsa-let-7c dbDEMC, miR2Disease hsa-mir-9 dbDEMC

hsa-mir-16 dbDEMC, miR2Disease hsa-let-7 g dbDEMC, miR2Disease

hsa-mir-15a dbDEMC, miR2Disease hsa-mir-34b dbDEMC

hsa-mir-143 dbDEMC, miR2Disease hsa-mir-17 miR2Disease

hsa-let-7e dbDEMC hsa-mir-203 unconfirmed

hsa-mir-29a dbDEMC, miR2Disease hsa-mir-195 dbDEMC, miR2Disease

hsa-mir-199a dbDEMC, miR2Disease hsa-mir-205 dbDEMC, miR2Disease

hsa-mir-150 dbDEMC hsa-mir-142 unconfirmed

hsa-let-7d dbDEMC, miR2Disease hsa-mir-182 dbDEMC, miR2Disease

hsa-mir-106b dbDEMC hsa-mir-30a miR2Disease

hsa-mir-210 miR2Disease hsa-mir-101 dbDEMC, miR2Disease

hsa-mir-146b unconfirmed hsa-mir-200a dbDEMC

hsa-mir-222 dbDEMC, miR2Disease hsa-mir-19a dbDEMC

hsa-mir-24 dbDEMC, miR2Disease hsa-mir-125a dbDEMC, miR2Disease

hsa-mir-200c dbDEMC hsa-mir-18a unconfirmed
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miRNA to obtain the global feature vector of miRNA,
which was used for binary logistic regression with the
known prior label information to calculate the posterior
association probability of investigated disease-miRNA
pairs (See Fig. 1). Both cross validation result (AUC =
0.8076) and three different kinds of case study on
esophageal cancer (94%), prostate cancer (90%), breast
cancer (98%) and lymphoma (88%) have demonstrated
the reliable prediction ability of RWBRMDA. Therefore,
RWBRMDA was anticipated to be valuable for further
research on miRNA-disease associations and be benefi-
cial to human disease diagnosis, treatment, prevention
and prognosis.

Methods
Human miRNA-disease associations
In this study, we take use of human disease-miRNA as-
sociations in HMDD v2.0 database [55], which records
5430 known miRNA-disease associations with respect to
383 human diseases and 495 miRNAs. Technically, we

could construct the adjacent matrix A to clearly describe
the relation of each disease-miRNA pairs. Specifically, if
miRNA m(i) is confirmed to be related to disease d(j) in
the database, the entry A(i,j) is defined as 1, otherwise 0.
Finally, 5430 entries of matrix A are assigned 1, the rest
ones are assigned 0.

MiRNA functional similarity
Based on the basic assumption that miRNAs with simi-
lar function are more likely to be related to semantically
similar diseases and vice versa, miRNA functional simi-
larity have been calculated by Wang et al [32]. In our
study, owning to their relevant researches, we obtain the
miRNA functional similarity information from http://
www.cuilab.cn/files/images/cuilab/misim.zip. Further-
more, we construct the miRNA functional similarity
matrix FS to store the data, where the entry FS(i,j) de-
scribes the functional similarity between miRNA m(i)
and miRNA m(j).

Table 3 We conducted case study of breast cancer in the second way by RWBRMDA, in which we removed all the known breast cancer
related miRNAs to simulate a new disease without any known associations. Then we verified the prediction results based on HMDD v2.0
database, miR2Disease and dbDEMC database. As a result, among the top 10 and 50 potential miRNAs, 10 and 49 were confirmed

miRNA Evidence miRNA Evidence

hsa-mir-146a dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-146b dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-21 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-221 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-1 dbDEMC,HMDD v2.0 hsa-mir-210 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-29b dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-24 dbDEMC,HMDD v2.0

hsa-let-7a dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-200b dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-155 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-106b dbDEMC,HMDD v2.0

hsa-mir-145 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-18a dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-223 dbDEMC,HMDD v2.0 hsa-mir-181a dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-126 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-34c dbDEMC,HMDD v2.0

hsa-mir-19b dbDEMC,HMDD v2.0 hsa-mir-19a dbDEMC,HMDD v2.0

hsa-let-7b dbDEMC,HMDD v2.0 hsa-mir-181b dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-29a dbDEMC,HMDD v2.0 hsa-mir-200c dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-16 dbDEMC,HMDD v2.0 hsa-let-7f dbDEMC,miR2Disease,HMDD v2.0

hsa-let-7c dbDEMC,HMDD v2.0 hsa-mir-133a dbDEMC,HMDD v2.0

hsa-mir-17 miR2Disease,HMDD v2.0 hsa-mir-196a dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-15a dbDEMC,HMDD v2.0 hsa-let-7i dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-29c dbDEMC,miR2Disease,HMDD v2.0 hsa-let-7 g dbDEMC,HMDD v2.0

hsa-mir-34a dbDEMC,HMDD v2.0 hsa-mir-203 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-143 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-142 unconfirmed

hsa-let-7e dbDEMC,HMDD v2.0 hsa-mir-9 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-150 dbDEMC hsa-mir-195 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-199a dbDEMC,HMDD v2.0 hsa-mir-205 dbDEMC,miR2Disease,HMDD v2.0

hsa-mir-125b miR2Disease,HMDD v2.0 hsa-mir-92a HMDD v2.0

hsa-mir-222 dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-34b dbDEMC,HMDD v2.0

hsa-let-7d dbDEMC,miR2Disease,HMDD v2.0 hsa-mir-182 dbDEMC,miR2Disease,HMDD v2.0
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Gaussian interaction profile kernel similarity
Thanks to a kind of widely used Gaussian kernel func-
tion, which named Radial Basis Function (RBF), Gauss-
ian interaction profile kernel similarity could be
calculated and put into use for prediction task [75]. The
interaction profile of miRNA m(i) could be expressed
built on the adjacency matrix A. Specifically, based on
the binary vector IP(m(i)), namely the ith row of the ad-
jacency matrix A, Gaussian kernel similarity between
miRNA m(i) and m(j) could be obtained:

GM m ið Þ;m jð Þð Þ ¼ exp −γm IP m ið Þð Þ−IP m jð Þð Þk k2� �

ð1Þ

where rm is used to control bandwidth of the kernel,

GM is denoted as the Gaussian interaction profile kernel
similarity matrix for miRNAs. What’s more, rm could be
calculated by normalizing a new bandwidth parameter
r0m by the average number of known associations with
diseases per miRNA as follows:

γm ¼ γ0m
1
nm

Xnm

i¼1
IP m ið Þð Þk k2

� � ð2Þ

where nm is the number of all the miRNAs investigated. In
this article, r0m is set 1 based on previous studies [76, 77].

Integrated similarity for miRNAs
Integrated miRNA similarity between miRNAs m(i) and
m(j) is calculated based on the miRNA functional simi-
larity and Gaussian interaction profile kernel similarity
for miRNA [49] as follows, and SM is defined as the in-
tegrated miRNA similarity matrix:

SM m ið Þ;m jð Þð Þ ¼ FS m ið Þ;m jð Þð Þ m ið Þ and m jð Þ has functional similarity
GM m ið Þ;m jð Þð Þ otherwise

�

ð3Þ

RWBRMDA
In this work, we propose a computational model of
RWBRMDA by integrating known miRNA-disease associ-
ations, miRNA functional similarity and Gaussian inter-
action profile kernel similarity for miRNAs (See Fig. 1)
motivated by study in [78, 79]. It’s known that random
walk could be used to rank the relation probability for the
nodes in a network. Binary regression could be used for
classification problems or prediction problems. We imple-
ment random walk with restart for every miRNA on the
integrated miRNA similarity network to obtain corre-
sponding feature vector of the investigated miRNA. Based
on the feature vectors of miRNAs and the known
miRNA-disease associations, we could assign the binary
label 0 or 1 to every miRNA for the given disease. Then
we utilize binary regression to predict the association
probability between the miRNA with label 0 and the cor-
responding disease of interest.
Technically, based on the known miRNA-disease asso-

ciations in HMDD v2.0, we have constructed the adja-
cent matrix A. According to the integrated similarity
matrix SM for miRNAs, we construct a weighted miR-
NAs relation network, which consists of 495 miRNA
nodes. The weight of pairwise miRNAs in the network is
assigned their integrated similarity value in the SM.
Random walk with restart is then implemented on the
weighted network, taking every miRNA node as start
node in turn. Specifically, every miRNA node is consid-
ered as seed node for one time of random walk with re-
start. Other miRNA nodes are considered as candidate

Table 4 Lymphoma was conducted as a case study in the third
way, in which we only used known disease-miRNA association
based on HMDD v1.0 database as test samples to assess the
robustness of the prediction model in the different datasets,
and then we verified the prediction results according to HMDD
v2.0 database, miR2Disease, and dbDEMC database. As a result,
among the top 10 and 50 potential lymphoma related miRNAs,
10 and 44 were confirmed

miRNA Evidence miRNA Evidence

hsa-mir-223 dbDEMC hsa-mir-200b dbDEMC,HMDD v2.0

hsa-mir-15b dbDEMC hsa-mir-199a dbDEMC

hsa-mir-29c dbDEMC,HMDD v2.0 hsa-mir-95 dbDEMC

hsa-mir-106a dbDEMC hsa-mir-183 dbDEMC

hsa-mir-146a dbDEMC,HMDD v2.0 hsa-let-7e dbDEMC

hsa-mir-99b dbDEMC hsa-mir-141 dbDEMC

hsa-mir-100 dbDEMC hsa-let-7c dbDEMC

hsa-mir-145 dbDEMC hsa-let-7a dbDEMC

hsa-mir-143 dbDEMC hsa-mir-128b unconfirmed

hsa-mir-155 dbDEMC,HMDD v2.0 hsa-mir-21 dbDEMC,HMDD v2.0

hsa-mir-222 dbDEMC hsa-mir-29b dbDEMC

hsa-let-7 g dbDEMC hsa-mir-34c unconfirmed

hsa-mir-101 dbDEMC,HMDD v2.0 hsa-mir-214 dbDEMC

hsa-mir-224 dbDEMC hsa-mir-127 dbDEMC

hsa-mir-34a dbDEMC hsa-let-7b dbDEMC

hsa-mir-146b unconfirmed hsa-mir-132 dbDEMC

hsa-mir-221 dbDEMC hsa-mir-137 dbDEMC

hsa-mir-125b unconfirmed hsa-mir-376c unconfirmed

hsa-let-7i dbDEMC hsa-mir-181b dbDEMC

hsa-mir-203 dbDEMC,HMDD v2.0 hsa-mir-139 dbDEMC,HMDD v2.0

hsa-mir-126 dbDEMC,HMDD v2.0 hsa-mir-122 dbDEMC,HMDD v2.0

hsa-mir-335 dbDEMC hsa-mir-31 dbDEMC

hsa-mir-196b unconfirmed hsa-mir-9 dbDEMC

hsa-mir-140 dbDEMC hsa-mir-181d dbDEMC

hsa-mir-191 dbDEMC hsa-mir-206 dbDEMC
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nodes. For a seed miRNA m(i), the initial probability
p(0) is the normalized ith row of matrix SM. Here we
define the restart probability of random walk at source
nodes as r (0 < r < 1) in every time step. Then a vector
p(t) could be defined in which the jth element meant the
probability of finding the walker at node j at step t. Finally,
the random walk process could be defined as follows:

p t þ 1ð Þ ¼ 1−rð ÞSMp tð Þ þ rp 0ð Þ ð4Þ

Random walk would finally reach the stable state after
some steps. We call the random walk reach the station-
ary stage if the change between p(t) and p(t + 1) is less
than a cutoff (here we chose 10− 6 as the cutoff ) mea-
sured by L1 norm. When the random walk reaches the
stable state, the candidate miRNAs for the seed miRNA
m(i) could be ranked built on the stable probability of
p∞(m(i)). Generally, after 495 times random walk on the
weighted miRNAs relation network, we could obtain the
corresponding ranked candidate miRNAs sequence or
list for every seed miRNA, which we call the global rela-
tionship information of every miRNA. In previous model
of RWRMDA [40], the author also uses random walk
with restart. While, there exists many differences be-
tween the implementation progress of our model and
the implementation progress of RWRMDA model. First,
the motivation of random walk is different. In
RWRMDA, random walk is used directly to predict
disease-related miRNAs, which means they aim to mine
the pair-wise relationship of miRNA and disease. In
current work of RWBRMDA, we utilize random walk to
seek the relationship between miRNAs, which is more
suitable because the random walk process is conducted
on the miRNA similarity network. Second, the choices
of seed nodes are different. In RWRMDA, they choose
known disease-related miRNAs as seed nodes, while in
this work we take every miRNA in turn as seed node,
which is more practical in cases where the field know-
ledge is short. In principle, the aims of random walk in
these two works were different.
Next, for an arbitrary disease d(j), the jth column of

adjacency matrix A is regarded as the binary label vector
of all the miRNAs with respect to disease d(j). Binary lo-
gistic regression is then conducted to calculate the pos-
terior association probability of those miRNAs with label
0 to d(j) as follows:

P y ¼ 1jxð Þ ¼ exp w∙xð Þ
1þ exp w∙xð Þ ð5Þ

P y ¼ 0jxð Þ ¼ 1
1þ exp w∙xð Þ ð6Þ

where y is the binary label, w is the weight vector, which

needs to be trained, w ∙ x is the inner product of vector
w and vector x.
Given a training set of T = {(x1, y1), (x2, y2),…(xN, yN)},

where xi ∈ R
n, yi ∈ {0, 1} and N is the number of samples,

we could train the parameter w by maximum likelihood
estimator. Likelihood function is calculated as follows:

YN

i¼1
π xið Þ½ �yi 1−π xið Þ½ �1−yi ð7Þ

where πðxiÞ ¼ Pðy ¼ 1jxiÞ ¼ expðw∙xiÞ
1þ expðw∙xiÞ , maximum likeli-

hood function means maximizing the following loga-
rithm function, namely

L wð Þ ¼
XN

i¼1
yi logπ xið Þ þ 1−yið Þ log 1−π xið Þð Þ½ �

ð8Þ
then we could obtain:

L wð Þ ¼
XN

i¼1
yi w∙xið Þ− log 1þ exp w∙xið Þð Þ½ � ð9Þ

w ¼ arg max L wð Þð Þ ð10Þ
Suppose the maximum likelihood estimation for w is

w∗, then the binary logistic regression model finally
becomes:

P y ¼ 1jxð Þ ¼ exp w�∙xð Þ
1þ exp w�∙xð Þ ð11Þ

P y ¼ 0jxð Þ ¼ 1
1þ exp w�∙xð Þ ð12Þ

Back to our prediction task for the novel
miRNA-disease associations, the jth column of matrix A
is regarded as the binary label vector of all the miRNAs
with respect to disease d(j). If we could find feature vec-
tor for every miRNA with respect to disease d(j), we
could then utilize binary logistic regression model to cal-
culate the association probability for miRNAs with label
0 to disease d(j). Certainly, previously descripted random
walk strategy is prepared for extracting feature vector
for miRNAs. Assume we have already performed ran-
dom walk with restart for miRNA m(i) on the weighted
integrated miRNAs network and gotten the global rela-
tionship information for miRNA m(i), namely the candi-
date miRNA ranks for seed miRNA m(i). Here to extract
feature vector of m(i), we consider the top K ranked can-
didate miRNAs according to the random walk result. In
this work, K is considered as 50, namely about 10% of
the total number of miRNAs. These top K ranked candi-
date miRNAs would be used to build feature vector of
m(i). For a disease d, the feature vector of m(i) with re-
spect to d is regarded as Vec(m(i)), as follows:

Vec m ið Þð Þ ¼ 1;∅i1;∅i0ð Þ ð13Þ
where the stable random walk probability of the top K
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ranked candidate miRNAs with label 1 respect to disease
d were added up as∅i1. Similarly, we added up the stable
random walk probability of the top K ranked miRNAs
with label 0 respect to disease d as ∅i0. Specially, the
element ‘1’ in the feature vector represents the constant
term. Then for disease d, we get the ternary feature vector
of every miRNA. Together with the binary label informa-
tion and feature vector of miRNA, we could easily take
use of binary logistic regression model to calculate the
posterior association probability for the given disease.

Additional file

Additional file 1: We prioritized corresponding candidate miRNAs for all
the diseases recorded in HMDD v2.0 database. The predicted results for
each disease were publicly released for further experimental validation.
The potential and promising disease-miRNA associations with relatively
high ranks were expected to be confirmed by biological experiments and
clinical observation in the future. (XLSX 4198 kb)
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