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Abstract
Rationale Central aspects of alcohol use disorder (AUD) are the irresistible desire for alcohol and impaired control over its 
intake. According to the triadic neurocognitive model of addiction, this arises from aberrant functioning of different neural 
and cognitive systems: an impulsive system, a reflective system, and the abnormal dynamics between both systems based 
on an insular-dependent system.
Objectives In this study, we examined the effects of a single dose of nalmefene on resting-state functional connectivity 
(rsFC) patterns within and between these addiction-related neural systems in AUD.
Methods Non-treatment seeking participants with AUD (N = 17; 19–66 years, 6 female) took part in a randomized, placebo-
controlled, double-blind, crossover study and received either a single dose of 18 mg nalmefene or a placebo. Using seed-based 
correlation analyses on resting‐state functional magnetic resonance imaging data, we examined the effects of nalmefene on 
key nodes related to the (1) impulsive system; (2) reflective system; (3) salience network; and (4) default mode network.
Results Under nalmefene, participants showed reduced rsFC between components of the impulsive system (Nucleus accum-
bens–putamen/pallidum/insula). Reduced rsFC was found between elements of the reflective system and impulsive sys-
tem (orbitofrontal cortex–insula/putamen/pallidum), salience network (orbitofrontal cortex–insula/inferior frontal gyrus), 
and default mode network (lateral prefrontal cortex–precuneus/cuneus). Components of the salience network showed both 
increased (anterior cingulate cortex) and decreased (insular cortex) rsFC to elements of the reflective system.
Conclusion A single dose of nalmefene impacts rsFC and alters the interaction between key nodes of addiction-related 
neural systems in non-treatment seeking participants with AUD. Nalmefene may normalize rsFC patterns by weakening the 
impulsive system while strengthening the reflective system.
Trial registration: clinicaltrials.gov: NCT02372318.

Keywords Alcohol use disorder · Pharmacotherapy · Nalmefene · Resting-state functional connectivity · Impulsive system · 
Reflective system · Salience network · Reduced drinking

Introduction

Alcohol is associated with a multitude of social- and health-
related damages (Lim et al. 2012; Shield et al. 2020) that 
result in high alcohol-related morbidity and mortality (Kraus 
et al. 2015). Nevertheless, health-care studies show that 
many patients with alcohol use disorder (AUD), who require 
treatment, do not receive appropriate therapy (Rehm et al. 
2015; Hasin and Grant 2015). One reason for this treatment 
gap may be the therapeutic goal of life-long abstinence—a 
feat that is unattainable for many patients (SAMHSA 2014). 
An alternative could be the targeted reduction of alcohol 
consumption (Mann et  al. 2017; Henssler et  al. 2021) 
with the pharmacological support of the opioid receptor 
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antagonist nalmefene (Selincro®, H. Lundbeck A/S, Valby, 
Denmark).

In the course of AUD, the initial hedonic effects dimin-
ish while consumption becomes increasingly habitual and 
ultimately compulsive (Volkow et al. 2016). Resting-state 
functional connectivity (rsFC) can provide new insights 
into aberrant functioning of the neural circuits of the brain. 
It allows the identification of functional connectivity (FC) 
patterns at rest, i.e., consistent patterns of organized and 
continuous intrinsic activity over space and time (Biswal 
et al. 1995; Fox et al. 2005; Friston 1994).

Individuals with AUD show network-specific anoma-
lies in their FC patterns, which differ from healthy con-
trols (HC) in spatial extent and strength, as well as in 
their dynamic interaction with other networks (Müller-
Oehring et al. 2015). Thus, AUD can be associated with 
dysregulation of the interaction between and within well-
defined brain networks, such as the Default Mode Net-
work (DMN), the Reward Network (RN), the Executive 
Control Network (ECN), and the Salience Network (SN; 
Sutherland et al. 2012; Camchong et al. 2013a; Weiland 
et al. 2014; Kohno et al. 2017; Chanraud et al. 2011; 
Fede et al. 2019). Taken together, AUD appears to cause 
an imbalance between the neural systems for reward and 
those of cognitive control, possibly leading to deficits 
in the regulation of craving and, thus, contributing to 
relapses (Kohno et al. 2017).

According to the triadic neurocognitive model of 
addiction (Noël et al. 2013), “weak willpower” associ-
ated with drug addiction can be described by abnormal 
functioning of three neural and cognitive systems: (1) an 
impulsive system, which mediates habitual and automatic 
behavior; (2) a reflective system, which is important for 
self-regulation, impulse control, and decision-making; 
and (3) an insular-dependent system, which translates 
interoceptive signals into conscious emotional states 
(such as craving), and in turn decisively modulates the 
dynamics between the other two systems. In this regard, 
Zhu and colleagues investigated rsFC in patients with 
AUD as compared to HC in a model-free approach. They 
identified differential connectivity patterns within and 
between resting-state networks (RSN) associated with 
the triadic neurocognitive model of addiction: an amyg-
dala–striatum network, as the impulsive system; the ECN 
and orbitofrontal cortex network (OFCN), summarized as 
the reflective system; the SN involving the insula; and the 
DMN (Zhu et al. 2017).

Additionally, several other studies investigate how 
altered rsFC can be interpreted in terms of treatment 
success. A review by Wilcox and colleagues shows that 
increasing connectivity within the ECN and between the 
ECN and SN, as well as higher anti-correlation between 
ECN and DMN, leads to better treatment outcomes in 

substance use disorders (SUD; Wilcox et  al. 2019). 
Patients with AUD, who have not successfully com-
pleted treatment, displayed greater rsFC between stria-
tum–insula, ECN–amygdala, and SN–striatum/insula/
precuneus as well as weaker frontostriatal connectiv-
ity between striatum and dorsolateral prefrontal cortex 
(dlPFC) compared to completers. Interestingly, for AUD 
patients who did not complete treatment, increased crav-
ing is associated with striato-limbic rsFC. In completers, 
on the other hand, craving is associated with cortico-stri-
atal rsFC (Kohno et al. 2017). Furthermore, long-term 
abstainers show progressively higher resting-state syn-
chronicity within ECN, which is associated with improved 
cognitive flexibility, whereas synchronicity decreases 
within the RN (Camchong et al. 2013b). Altered FC pat-
terns may be seen as an important treatment goal that 
could reduce the risk of relapse and improve clinical out-
comes. Thus, relapse-prevention agents could be used to 
restore neural circuit function. However, there are few 
studies to date that investigate the effects of treatment on 
rsFC (Wilcox et al. 2019).

Nalmefene is used as medication on demand in the 
treatment of AUD to reduce alcohol consumption. It binds 
selectively to opioid receptors, whereby an antagonistic 
effect at the μ- and δ-receptor has been demonstrated, as 
well as a partial agonistic effect at the κ-opioid-receptor 
(Bart et al. 2005). Endogenous opioids released by alco-
hol are directly and indirectly involved in the modulation 
of mesolimbic dopaminergic activity. Accordingly, dopa-
mine activity in the Nacc is directly regulated by δ-opioid 
receptors. In addition, stimulation of μ-opioid receptors 
suppresses inhibition of GABA interneurons, which indi-
rectly triggers dopamine release in the ventral striatum 
(Devine et al. 1993). κ-opioid receptors (or dynorphin 
system) also regulate dopamine release through their 
direct action on dopamine neurons but are associated 
with the negative components of drug use (Koob 2009; 
Ciccocioppo 2002). Thus, nalmefene could potentially 
help rebalance the dysfunctional reward system through 
its modulatory effect on opioid receptors.

In fact, a study on non-treatment seeking individuals with 
AUD showed that a single dose of nalmefene significantly 
reduced neural activity in the striatum during monetary reward 
anticipation under the influence of alcohol (Quelch et al. 2017). 
In a recent study by Karl et al. (2021), nalmefene appeared 
to reduce reactivity to alcohol stimuli in the ventral but not 
the dorsal striatum, which was associated with significantly 
lower self-reported craving. In addition, nalmefene seemed 
to increase neural activity in brain regions mainly associated 
with empathy and social cognition in individuals with AUD 
(Vollstädt-Klein et al. 2019). To the best of our knowledge, no 
study exists, which investigates the influence of nalmefene on 
rsFC in non-treatment seeking individuals with AUD.
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Therefore, we seek to address this gap by investigating 
whether nalmefene leads to changes in rsFC in neural sys-
tems associated with “weakened willpower” in the context 
of AUD. In this regard, we concentrate on the neural sys-
tems of the triadic neurocognitive model of addiction (Noël 
et al. 2013) and the RSNs found in the study by Zhu et al. 
(2017). The aim of this work was to use seed-based cor-
relation analysis (SCA) to investigate rsFC patterns under 
18 mg nalmefene between components of the following 
addiction-related networks: (1) Impulsive System–Nucleus 
accumbens (Nacc); (2) Reflective System–lateral prefrontal 
cortex (lPFC) and orbitofrontal cortex (OFC); (3) Salience 
Network–insular cortex and anterior cingulate cortex (ACC); 
and (4) Default Mode Network–medial prefrontal cortex 
(mPFC) and posterior cingulate cortex (PCC).

Methods

The Ethics Committee of the Medical Faculty Mannheim at 
the University of Heidelberg, Germany, approved this study 
(registration at clinicaltrials.gov; NCT02372318). All clini-
cal trials were conducted in accordance with the Declaration 
of Helsinki.

The target group consisted of non-treatment seeking 
participants between 18 and 70 years with a diagnosis of 
AUD according to the Diagnostic Statistical Manual of 
Mental Disorders (DSM-5; American Psychiatric Asso-
ciation 2013). This meets the criteria of the dated term 
“dependence” (Dawson et al. 2013) and those of the ICD-
10. Only heavy drinkers were considered (< 60 g alcohol/
day for men; < 40 g alcohol/day for women; at least 5 days 
per week). A detailed listing of all inclusion and exclusion 

criteria can be found in the Supplementary Information 
(Table S1).

The study was conducted as placebo-controlled, double-
blind, crossover design. A sample size of 15 participants 
was estimated to be sufficient to detect a large effect size 
of f = 0.4 (nalmefene vs. placebo) with at least 80% power 
(repeated measures ANOVA within factors, estimation 
with the software G*Power [http:// www. gpower. hhu. de]). 
Due to the double-blind study design, the randomization 
plan was prepared externally in advance for a total of 40 
subjects (to ensure sufficient size in case of dropouts etc.) 
and consisted of blocks of four, resulting in ten blocks. 
At the baseline screening, participants were informed in 
detail about the study procedure and possible risks of the 
fMRI examination or possible side effects of the drug. Par-
ticipants signed a written declaration of consent. Sociode-
mographic data, as well as history of somatic illnesses, 
mental, or neurological disorders, and current medica-
tion, was recorded. In addition to a medical examination 
(alcohol breath test, urine test for drugs or pregnancy), 
various neurological tests, questionnaires, and interviews 
were conducted. The interval between the two examination 
days, T1 and T2, was 1 week. After a medical examina-
tion and review of all inclusion and exclusion criteria, the 
study medication (nalmefene or placebo) was administered 
orally. With this form of administration, nalmefene reaches 
the highest plasma concentration after about 1 to 1.5 h 
(Kyhl et al. 2016). fMRI measurement was performed 2 h 
after administration. During resting-state, the participants 
were instructed to close their eyes without falling asleep, 
not to think of anything specific, and to let their thoughts 
wander. After a final medical check-up, participants were 
discharged. Please see Fig. 1 for details.

Fig. 1  Detailed overview of study design and procedure. During fMRI measurement, participants worked on a cue-reactivity task for alcohol-
associated stimuli (Karl et al. 2021) and an emotional faces processing task (Vollstädt-Klein et al. 2019)
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fMRI acquisition

The scan was conducted on a Siemens MAGNETOM 3 
Tesla whole-body-tomograph (MAGNETOM Trio, TIM 
technology, Siemens, Erlangen, Germany) equipped 
with a 12-channel head coil. For the 6-min resting-state 
fMRI measurement, T2*-weighted echo-planar images 
(EPI) were recorded with a transversal orientation of 30° 
clockwise to the anterior commissures–posterior com-
missures (AC-PC)–line. For each subject, 240 images 
were acquired (repetition time [TR] = 1.5 s, echo time 
[TE] = 28 ms, flip angle = 80°, number of slices = 24, 
slice thickness = 4  mm, gap = 1  mm, voxel dimen-
sions = 3 × 3 × 5  mm3, field of view (FOV) = 192 × 192 
 mm2, 64 × 64 in-plane resolution). We, additionally, 
acquired T1-weighted data (3D Magnetization Pre-
pared Rapid Acquisition Gradient Echo [MPRAGE], 
sequence 192 sagittal slices, slice thickness = 1  mm, 
voxel dimensions = 1 × 1 × 1  mm3, FOV = 256 × 256 
 mm2, TR = 2300  ms, TE = 3.03  ms, TI = 900  ms, flip 
angle = 9°).

Structural and functional data were pre-processed and 
analyzed using the CONN-toolbox (Whitfield-Gabrieli 
and Nieto-Castanon 2012). The standard pre-process-
ing pipeline includes the following: motion correction/
realignment and unwarping (Andersson et  al. 2001); 
slice-timing correction (Henson et  al. 1999); outlier 
identification; unified segmentation and normalization 
(Ashburner and Friston 2005); and smoothing, using 
spatial convolution with a Gaussian kernel of 8  mm 
full width half maximum (FWHM). Within-subject dif-
ferences in mean framewise displacement values were 
compared between sessions (for more details, please see 
Fig. S1 in the Supplementary Information). For denois-
ing, the anatomical component-based noise correction 
method (aCompCor) was used, which included five 
noise components from cerebral white matter and cer-
ebrospinal areas (Chai et al. 2012), 12 estimated subject-
motion parameters (Friston et al. 1996), and scrubbing 
(Power et al. 2014) as well as constant and first-order 
linear session effects (Whitfield-Gabrieli and Nieto-
Castanon 2012). Temporal frequencies below 0.01 Hz 

or above 0.09 Hz were removed from the BOLD signal 
(Hallquist et al. 2013).

First-level analysis of the rsFC data was performed by 
using SCA (e.g., Fox et al. 2005; Greicius et al. 2003). A 
priori atlas regions (CONN default atlas combines FSL 
Harvard–Oxford atlas for cortical and subcortical areas 
and AAL atlas for cerebellar parcellation) were defined 
as seed regions from which the reference time course is 
formed, and which are correlated with the time courses 
of all other voxels in the brain. Thus, an FC map was 
generated for each individual, taking into account both 
positive and negative correlations. The seeds consisted 
of spheres with a diameter of 10 mm and are already 
implemented in the CONN toolbox (Whitfield-Gabrieli 
and Nieto-Castanon 2012). Since most intrinsic net-
works are lateralized (Agcaoglu et al. 2015), each hemi-
sphere was examined separately (with the exception of 
midline structures). A schematic representation of the 
examined seeds and their coordinates is shown in Fig. 2.

For the second-level analysis, General Linear Model 
(GLM) analyses were performed. Between-subjects con-
trast (group variable: nalmefene/placebo vs. placebo/
nalmefene [1, 0; 0, 1]) and within-subjects contrast 
(nalmefene > placebo or nalmefene < placebo; [1, -1] or 
[-1, 1]) were defined, resulting in a two-way ANOVA with 
main treatment effect (F-test). To control for multiple 
statistical testing, only results surviving multiple whole-
brain corrections using FDR (p < 0.05) are reported. A 
voxel-threshold (p < 0.01) in combination with cluster-
threshold (p < 0.05) was used. Further analysis of the 
questionnaires as well as the recording of side effects 
was conducted using the Statistical Package for the Social 
Sciences (SPSS) version 24.0 for Windows.

Results

From 131 screened persons, 23 were eligible to partici-
pate. Participants were randomized either to group (1) 
nalmefene–placebo (n = 11) or group (2) placebo–nalme-
fene (n = 12). A total of 18 participants successfully 

Fig. 2  Schematic display of examined neural systems with corre-
sponding nodes. Impulsive System (violet): Nucleus accumbens left 
(− 9.5, 12, − 7), Nucleus accumbens right (9, 12, − 7); Reflective 
System (green): lateral prefrontal cortex left (− 43, 33, 28), lateral 
prefrontal cortex right (41, 38 30), orbitofrontal cortex left (− 30, 

24, − 17), orbitofrontal cortex right (29, 23, − 16); Salience Network 
(yellow): anterior cingulate Cortex (0, 22, 35), insular cortex left 
(− 36, 1, 0), insular cortex right (37, 3, 0): Default Mode Network 
(blue): medial prefrontal cortex (1, 55, − 3); posterior cingulate cortex 
(1, − 61, 38)
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completed both sessions; however, one person could 
not be included in the analyses due to poor data quality. 
The enrollment process and dropouts are displayed in 
the CONSORT flow diagram (Fig. 3). The final study 

sample consisted of 17 participants, 65% male (n = 11) 
aged from 19 to 66 years (M = 51.3, SD = 13.7). For a 
comprehensive list of sample characteristics, please see 
Table 1.

Fig. 3  Enrollment process

Psychopharmacology (2022) 239:2471–2489 2475
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Tolerability of nalmefene

Of all 23 participants, a total of 10 persons (33%) reported 
side effects after taking the study medication. They experi-
enced between two and 11 symptoms (M = 5.8, SD = 2.7), 
e.g., Insomnia (n = 5), vertigo (n = 5), or nausea (n = 4). 
For details, please see Table  S2 in the Supplementary 
Information.

Resting‐state functional connectivity

For a schematic overview of the effects of nalmefene on the 
rsFC in key nodes of the neural systems, please refer to Fig. 4. 
The respective results relate to rsFC between the seed region 
and the rest of the brain after 18 mg nalmefene compared to 
placebo (contrast: nalmefene > placebo) and are reported for a 
voxel-wise-threshold of p < 0.01 combined with cluster-extent 
FDR-corrected p-value of p < 0.05. For the results that survive a 
more conservative voxel-wise-threshold of p < 0.001 or < 0.005, 
we refer to the Supplementary Information at the appropriate 
place. The rsFC brain maps for each condition separately are 
also included in the Supplemental Information (Fig. S2: nalme-
fene; Fig. S3: placebo). In addition, to show the change from 
placebo to nalmefene, rsFC was extracted from the significant 
clusters and presented in a line plot (please see Fig. 5).

The impulsive system

Compared to the placebo condition, the rsFC in the nalme-
fene condition showed reduced FC within elements of 

the impulsive system. There was decreased connectivity 
between the right Nacc and putamen, pallidum, caudate, 
thalamus, amygdala, and insula (Table 2; Fig. 6). The results 
also survived a more conservative voxel-wise threshold of 
p < 0.005 (please see Table S3; Fig. S4 in the Supplementary 
Information). No significant results could be detected for 
the left Nacc.

The reflective system

Under nalmefene, reduced rsFC between the right lPFC and 
a cluster consisting of the precuneus, and occipital regions 
was observed (Supplementary Information: Table  S4; 
Fig. S5). No significant results could be detected for the left 
lPFC. The left OFC displayed reduced rsFC bilaterally to the 
insula and frontal regions (inferior frontal gyrus, precentral 
gyrus, and rolandic operculum) as well as the superior tem-
poral gyrus. It also showed reduced rsFC to limbic regions, 
e.g., right putamen and pallidum. Increased connectivity was 
observed between the left OFC and two bilateral parietal/
occipital clusters, consisting of posterior cingulate gyrus, 
precuneus, and cuneus. In addition, the left OFC showed 
increased connectivity to the right inferior and superior 
parietal lobule (Table 3; Fig. 7). For a more conservative 
voxel-wise threshold of p < 0.001, please see Table S5 and 
Fig. S6 in the Supplementary Information. The right OFC 
also showed a reduced FC to the insula and to frontal regions 
(inferior frontal gyrus, precentral gyrus, rolandic operculum) 
as well as to the postcentral gyrus (Supplementary Informa-
tion: Table S6, Fig. S7).

Table 1  Sample characteristics

1 Alcohol consumption within the last 90 days collected by form 90 interview (Scheurich et al. 2005); 2num-
ber of standard drinks (12 g alcohol). ADS, alcohol dependence scale (Skinner and Allen 1982); AUDIT, 
alcohol use disorders identification test (Bohn et al. 1995); FTND, Fagerström test for nicotine dependence 
(Heatherton et al. 1991).

N (%) Min Max M SD

Age 17 19 66 51.29 13.74
Sex
Male 11 (64.7)
Female 6 (35.3)
Smokers 9 (52.9)
Alcohol  consumption1

Drinks /  day2 17 0.71 15.12 6.49 4.44
Pure alcohol (g) / day 17 8.49 181.43 77.92 53.30
Drinking days 16 16 90 69.63 23.03
Drinks / day on drinking  days2 16 1.48 15.29 8.24 4.41
Pure alcohol (g) / day on drinking days 16 17.77 183.50 102.47 52.98
Number of fulfilled DSM-5 criteria 15 4 8 6.33 1.35
ADS 17 1 15 8.65 4.44
AUDIT 17 10 28 17.24 5.78
FTND (only smokers) 9 3.44 3.01

Psychopharmacology (2022) 239:2471–24892476
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The salience network

Under nalmefene, the insular cortex showed reduced con-
nectivity to a cluster of frontal (medial frontal and superior 
frontal gyrus) and paralimbic brain regions (anterior cingu-
late gyrus and dorsal ACC; Table 4; Fig. 8). Under nalme-
fene, the ACC showed an elevated rsFC to the right angular 
gyrus as well as middle temporal gyrus, superior temporal 
gyrus, inferior temporal gyrus, and parahippocampal gyrus 
(Table 5; Fig. 9).

The default mode network

Under nalmefene, no significant changes in the rsFC between 
the PCC and the rest of the brain were found compared to the 
placebo. However, a significantly reduced FC between the 
mPFC and a frontal cluster consisting of the insula, inferior 
frontal gyrus, precentral gyrus, and rolandic operculum was 
observed (Table 6; Fig. 10). For a more conservative voxel-
wise threshold of p < 0.001, please see Table S7, Fig. S8 in 
the Supplementary Information.

Discussion

The aim of this study was to investigate the effects of a 
single dose of nalmefene on rsFC in non-treatment seek-
ing participants with AUD. The intrinsic rsFC is discussed 
as a potential biomarker for the understanding of addiction 
(Pariyadath et al. 2016; Wilcox et al. 2019). Moreover, 
rsFC could potentially be targeted with interventions, such 
as nalmefene, and thus contribute to the development of 
effective therapeutic treatments (Wilcox et al. 2019). In this 
study, key elements from rsFC networks were selected that 
are known to be compromised in AUD (Fox and Greicius 
2010; Zhang and Volkow 2019; Zhu et al. 2017) and are 
also related to the triadic neurocognitive model of addiction 
(Noël et al. 2013): the impulsive system (Nacc), the reflec-
tive system (lPFC, OFC), and the salience system (insular 
cortex, ACC), as well as the DMN (mPFC, PCC). The pre-
sent study was the first to show that a single dose of nalme-
fene appears to affect rsFC in components of these particular 
networks (see Fig. 4).

The impulsive system

In AUD, behavior is controlled by drug-associated informa-
tion, which can trigger automatic substance-related behavior 
through Pavlovian and instrumental learning mechanisms 
(Koob and Volkow 2010). These impulsive, fast, and ill-
conceived reactions are thought to be related to a striatum-
amygdala system (Noël et al. 2013; Zhu et al. 2017). In our 
study, nalmefene appears to reduce rsFC in components of 

this impulsive system and seems to down-regulate neural 
activity within the striatum. Our results show a significantly 
reduced FC between the right (but not the left) Nacc and the 
putamen, pallidum and caudate as well as the amygdala and 
insula. Interestingly, patients with AUD showed higher FC 
compared to healthy controls exactly within this impulsive 
amygdala striatum network (Zhu et al. 2017; Kohno et al. 
2017). Increased FC within this impulsive system in AUD 
could represent the alcohol-induced increase in baseline 
sensitivity of the reward system. This sensitization could 
reflect an altered incentive salience for alcohol-associated 
stimuli (Sutherland et al. 2012) and, thereby, trigger craving 
and drug-seeking behavior. Interestingly, another part of the 
same study provided behavioral evidence that administration 
of nalmefene decreased alcohol craving. Thus, participants 
in the nalmefene condition showed both significantly lower 
subjective cue-induced craving (as measured by the Alco-
hol Urge Questionnaire) and attenuated reactivity to alcohol 
stimuli in the ventral striatum (Karl et al. 2021).

The insula plays an essential role in interoceptive pro-
cesses and the representation of body states associated 
with drug effects (Naqvi et  al. 2014). This representa-
tion of interoceptive drug body states is thought to reach 
the Nacc, where it affects the initiation of motivated and 
habitual action, which could lead to drug-seeking behavior 
(Naqvi and Bechara 2009). Cue-reactivity studies support 
this assumption, in which alcohol consumption is associated 
with greater activation in the striatum and insula (Myrick 
et al. 2004; Schacht et al. 2013). Our findings underpin the 
use of nalmefene to reduce alcohol consumption when con-
fronted with alcohol-associated stimuli and are consistent 
with reward centered addiction models (Nestler 2005; Koob 
and Volkow 2010).

However, no significant results could be detected for the 
left Nacc. There is evidence that the right and left Nacc 
exhibit different rsFC patterns, with the right hemisphere 
being more connected to the insula, parahippocampal gyri, 
uncus, subcallosal regions, and cerebellum (Cauda et al. 
2011). Other results indicate that left ventral striatum may 
be more involved in linking attentional responses to inter-
nally directed processes, whereas right ventral striatum 
contributes to attention directed to external behavioral 
contingencies, i.e., more sensitive to external conditioned 
cue stimuli (Zhang et al. 2017; Oberlin et al. 2016, 2015). 
The asymmetric lateralization of dopamine release in the 
Nacc is possibly caused by a functional regulatory role 
of the cerebellum. Thus, stimulation of cerebellar dentate 
nucleus was able to trigger dopamine release in the Nacc 
of the contralateral hemisphere, which was significantly 
greater in the right Nacc compared with the left (Hol-
loway et al. 2019). High expression of μ-receptors and 
low expression of δ- and κ-opioid receptors were found 
in the human cerebellum (Peng et al. 2012). Therefore, 

Psychopharmacology (2022) 239:2471–2489 2477



1 3

nalmefene could block opioid receptors in the cerebel-
lum; indirectly affect dopamine transmission in the right 
Nacc; and, thus, reduce cue-induced craving and approach 
behavior. Interestingly, nalmefene significantly attenu-
ated not only BOLD responses in the striatum but also in 
the cerebellum during reward expectancy (Quelch et al. 
2017), and naltrexone reduced activation in the right 
ventral striatum in response to alcohol-related stimuli 
(Schacht et al. 2017; Myrick et al. 2008). This also shows 
that the impulsive system is by no means limited to a 

striatum-amygdala-insula system. The extent to which 
other regions influence this circuit, and how nalmefene 
may affect them, requires further investigation. In addition, 
further investigation is needed to examine how the effects 
of nalmefene on rsFC driven by the relative involvement 
of different opioid receptors in the regulation of dopamine 
release and its influence on aversive and rewarding moti-
vational aspects. For example, a recent study by Shokri-
Kojori et al. (2021) showed that a naloxone-induced aver-
sive and stressful state was associated with a dopamine 
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increase in the dorsal, but not ventral, striatum. The effects 
of rsFC in the striatum and insula may also be influenced 
by direct physiological effects, as opioid receptor antago-
nists are known to affect not only dopamine release but 
also relative cerebral blood flow (CBF) for example in the 
insula and putamen (Shokri-Kojori et al. 2021). There-
fore, future studies investigating the effects of nalmefene 
on rsFC could additionally combine this with dopamine 
and opioid receptor positron emission tomography (PET) 
and arterial spin labeling (ASL) or 15O-water PET for 
measuring CBF.

The reflective system

While the impulsive system drives habitual and impulsive 
action, the reflective system should precisely control these 
impulses and suppress them if necessary (Noël et al. 2013). 
This ability to look beyond the immediate moment and 
incorporate long-term consequences in decision-making is 
a valuable skill, which individuals with SUD seem to lack. 
AUD patients are found to have significantly increased rsFC 
within the reflective system consisting of the left ECN and 
the OFCN compared with HC (Zhu et al. 2017). Interest-
ingly, our study demonstrated significantly reduced rsFC 
between the right lPFC and the precuneus as well as occipi-
tal brain regions under nalmefene.

The precuneus represents a core region of the posterior 
DMN, which is seen to be involved in focusing attention 
on internal states (Leech and Sharp 2014), episodic mem-
ory, and conscious perception (Fletcher et al. 1995; Kjaer 
et al. 2001). In AUD, brain activity during the presentation 
of alcohol-related stimuli correlates with the degree of 
craving (Park et al. 2007) and the severity of dependence 
(Courtney et al. 2014). Alcohol stimuli may trigger visual 
memories of alcohol consumption, which are processed 
in the precuneus and may act as a conditioned stimulus 
(Park et al. 2007). Disturbed ECN–DMN connectivity 
could impair the ability to divert attention from internal 
rumination and craving (Zhang and Volkow 2019). In 
addition, higher anti-correlation between ECN and DMN 
lead to better treatment outcomes (Wilcox et al. 2019). 
The occipital cortex and cuneus have also been associ-
ated with cue-reactivity in addiction. Pathological gam-
blers showed increased activity in occipital regions (e.g., 
cuneus) but also in the dlPFC when exposed to sensory 
gambling cues. This has been associated with increased 
craving (Crockford et al. 2005). Individuals with AUD 
showed greater and extended dlPFC connectivity with the 
cuneus, which correlated with impairments in visuospatial 
working memory, possibly indicating a functional com-
pensation mechanism due to alcohol-related impairments 
in the ECN and the visual network (Müller-Oehring et al. 
2015). Based on this assumption, individuals with AUD 
may be unable to muster the necessary resources needed 
for cognitive control because of their inefficient strategies 
(Wang et al. 2018).

No significant results could be detected for the left hemi-
sphere. According to a comprehensive study by Agcaoglu 
et al. (2015), the frontal networks are the most lateralized, 
with two right (inferior frontal and middle frontal gyrus) and 
two left components (inferior frontal gyrus). The seed of the 
network implemented in the CONN-Toolbox encompasses 
the coordinates of the middle frontal gyrus, which could 
explain the right lateralization. Other studies also show that 
dlPFC seems to be right lateralized (Nielsen et al. 2013). 
Interestingly, cue-induced alcohol craving appears to con-
sistently activate areas of the left hemisphere, with the great-
est asymmetry involving the left dlPFC. Evidence suggests, 
that a well-functioning right hemisphere is a protective fac-
tor against drug seeking behavior (Gordon 2016).

In addition, we observed reduced rsFC of the OFC 
between subcortical regions (e.g., striatum and insula); fron-
tal brain regions (e.g., the inferior frontal gyrus); and pari-
etal regions. In AUD, increased rsFC was observed within 
the OFCN and between the OFCN and the impulsive amyg-
dala-striatum network, the latter did not survive correction 
for multiple comparisons (Zhu et al. 2017). This is consist-
ent with findings in heroin addicts showing increased rsFC 
both within the medial OFC and between medial OFC and 

Fig. 4  Effects of 18 mg nalmefene on the functional connectivity in 
key nodes of the neural systems. a Overview of the effects of nalme-
fene on resting-state functional connectivity (rsFC). Increased (red 
arrow) and decreased (blue arrow) functional connectivity between 
key nodes of the impulsive system (purple); reflective system (green); 
salience network (yellow); default mode network (gray). b Schematic 
representation explained from left to right: Increased rsFC between 
elements of the reflective system and ACC, which enhances inhibi-
tory control. The ACC is responsible for conflict monitoring and 
error detection and reports to the dlPFC how much cognitive con-
trol is required. Reduced rsFC between the left insula and parts of 
the reflective system (insula–dlPFC; OFC–insula). This may prevent 
the embodied drug states represented in the insula from overpower-
ing and hijacking the cognitive control system. Reduced coupling 
between the mPFC and the insula-IFG-network to strengthen inhibi-
tory control. Reduced rsFC between right Nacc and the insula to 
reduce craving and may prevent the representation of interoceptive 
drug body states from affecting the Nacc, which could lead to drug-
seeking behavior. Reduced rsFC within the striatum. By downregu-
lating the impulsive system and possibly thereby normalizing the 
hypersensitized reward system, attentional bias and craving may 
be reduced. Decreased rsFC between OFC and Nacc to prevent the 
OFC from influencing the Nacc by presenting a high drug value or an 
incentive representation (wanting), which in turn can lead to a sali-
ence value of alcohol-related stimuli and promote approaching behav-
ior. Increased rsFC between OFC and precuneus, which strengthens 
positive emotionality. Decreased rsFC between OFC and IFG, whose 
coupling is associated with anxiety. Reduced rsFC between right 
lPFC and precuneus, whose extended and excessive connectivity in 
AUD is associated with lack of inhibitory control and craving

◂
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Nacc (Ma et al. 2010). The OFC encodes sensory stimuli by 
assigning them a certain value, both pleasant and unpleasant 
(Kringelbach 2005; Berridge and Kringelbach 2013). This 
modulation of reward values occurs possibly by regulating 
dopamine release in the striatum (Volkow et al. 2007; Wallis 
2007). Our results indicate that nalmefene might normalize 
increased rsFC between the OFC and striatum, which could 

attenuate the higher salience level of alcohol-associated 
stimuli in individuals with AUD, reduce craving, and pre-
vent approach behavior.

Furthermore, our results indicate that nalmefene may 
reduce rsFC between OFC and insula. Compared to social 
drinkers, individuals with AUD showed increased FC 
between the insula and medial OFC, possibly leading to 

Table 2  Impulsive system: 
resting-state functional 
connectivity with the 
seed region “right nucleus 
accumbens” after 18 mg 
nalmefene compared to placebo

Second level SCA results: resting-state functional connectivity between the seed region right Nucleus 
accumbens and the rest of the brain after 18 mg nalmefene compared to placebo (contrast: nalmefene > pla-
cebo). Combined voxel-wise-threshold (p < 0.01) and cluster-extent threshold k > 460 Voxel, corresponding 
to pFDR < 0.05; MNI, Montreal Neurological Institute.

Side Brain areas Size MNI coordinates tmax Cluster
pFDR

Peak
p-unc

x y z

L Putamen, pallidum, caudate 578  − 20 00 14  − 5.22 0.0004  < 0.0001
L Insula

Thalamus
Claustrum

R Putamen, pallidum 460 26 04  − 10  − 5.39 0.0011  < 0.0001
R Thalamus
R Amygdala

Fig. 5  Changes in resting-state functional connectivity between placebo and nalmefene. t-values from the significant clusters (local maximum) 
reported in the results (FC placebo vs. nalmefene). MNI, Montreal Neurological Institute
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impaired behavioral decision-making (Halcomb et al. 2019). 
Alcohol-related environmental stimuli could reactivate rep-
resentations of the interoceptive effects of alcohol consump-
tion in the insula (Naqvi and Bechara 2009). This “drug 
memory” could influence and override the OFC in its deci-
sion-making. It has been shown that the altered OFC activity 
in AUD leads to the inability to opt for long-term positive 
results (Boettiger et al. 2009). Nalmefene could reduce rsFC 
between OFC and insula and, thus, influence dysfunctional 
decision-making. This normalizing effect has already been 
demonstrated for naltrexone (Boettiger et al. 2009).

Moreover, our results show reduced rsFC between OFC 
and inferior frontal gyrus under nalmefene. Anxiety states 
caused by environmental stressors have been associated with 
a link between OFC, IFG, and amygdala; which in turn have 
been related to impaired goal-directed behavior in addiction 
(Gold et al. 2015; Ieong and Yuan 2017). By reducing FC 
between these brain regions, nalmefene may prevent anxi-
ety states from affecting decision-making and goal-directed 
behavior.

Under nalmefene, our results also show increased 
rsFC between left OFC and parietal brain regions, which 
are attributed to the DMN (Andrews-Hanna et al. 2014). 
Interestingly, the personality trait “positive emotionality” 
is related to OFC activity and the corresponding cortical 
regions of the DMN (Volkow et al. 2011). In the context 
of SUD, positive emotionality is seen as a protective factor 

Fig. 6  Impulsive system: brain regions with decreased resting-
state functional connectivity between the seed region “right nucleus 
accumbens” and the rest of the brain after 18  mg nalmefene com-
pared to placebo (contrast: nalmefene > placebo, MNI coordi-
nates: − 20 00 14). Combined voxel-wise-threshold (p < .01) and clus-
ter-extent threshold k > 460 Voxel, corresponding to pFDR < .05

Table 3  Reflective system: resting-state functional connectivity with the seed region “left orbitofrontal cortex” after 18 mg nalmefene compared 
to placebo

Second level SCA results: resting-state functional connectivity between the seed region left orbitofrontal cortex and the rest of the brain after 
18 mg nalmefene compared to placebo (contrast: nalmefene > placebo). Combined voxel-wise-threshold (p < 0.01) and cluster-extent threshold 
k > 442 Voxel, corresponding to pFDR < 0.05; MNI, Montreal Neurological Institute.

Side Lobe Brain areas Size MNI coordinates tmax Cluster
pFDR

Peak
p-unc

x y z

L Insula 1208  − 50 06 20  − 5.84  < 0.0001  < 0.0001
L Frontal Inferior frontal gyrus, precentral gyrus, rolandic operculum
L Temporal Superior temporal gyrus, middle temporal gyrus
R Posterior cingulate gyrus, parahippocampal gyrus 569 18  − 64 20 5.58 0.0005  < 0.0001
R Parietal Precuneus

Occipital Cuneus, lingual gyrus, calcarine
R Insula 548 44 06 02  − 6.59 0.0005  < 0.0001
R Putamen, pallidum

Claustrum
R Frontal Inferior frontal gyrus, precentral gyrus, rolandic operculum

Temporal Superior temporal gyrus
Posterior cingulate gyrus 503  − 14  − 62 20 5.67 0.0007  < 0.0001

L Parietal Precuneus, superior parietal lobule, inferior parietal lobule
L Occipital Cuneus, superior occipital gyrus, middle occipital gyrus, calcarine
R Parietal Precuneus, angular gyrus, inferior parietal lobule, superior parietal 

lobule, supramarginal gyrus
442 50  − 44 48 5.36 0.0015  < 0.0001

R Occipital Cuneus, superior occipital gyrus, middle occipital gyrus
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(Wills et al. 2001) as it is associated with a tendency towards 
positive mood, motivated behavior, and high reward sensi-
tivity (Volkow et al. 2011)—characteristics that are affected 
by long-term drug use (Koob and Volkow 2010). Alcohol 
consumption is associated with an up-regulation of the 
k-receptor-dynorphin system in striatum, OFC, and dlPFC 
(Lindholm et al. 2007; Walker et al. 2012), which is mainly 
associated with dysphoria (Ciccocioppo 2002). This could 
lead to a depreciation of positive and hedonic states and 
an increase in negative affective states, impairing cognitive 
control and decision-making (Sirohi et al. 2012). Nalmefene 
seems to counteract this negative effect by binding to the 
k-receptors (Quelch et al. 2017). It is possible that nalmefene 
may, thus, increase rsFC in regions that contribute to posi-
tive emotionality.

The salience network

Regarding the SN, both reduced rsFC (insula) and increased 
(ACC) rsFC were found under nalmefene. The left insula 
showed reduced rsFC to frontal regions, which are part of 
the reflective system, as well as to paralimbic regions. Inter-
estingly, an increased rsFC between the SN, the ECN, and 
the amygdala-striatum-network has been demonstrated in 
AUD compared to HC (Zhu et al. 2017). The insula seems 
to contribute to the maintenance of addiction by translat-
ing interoceptive signals into a subjective and conscious 
feeling that individuals experience as craving. This highly 
embodied experience is thought to overpower the cognitive 
control system and may lead to drug-seeking or approach 
behavior (Naqvi and Bechara 2009). The insula could, thus, 
sensitize the activity of the impulsive system and simulta-
neously undermine the reflective system in its planning and 
decision-making processes. This is supported by the finding 
that impulsive decisions are associated with higher activ-
ity in the striatum, mPFC, and anterior insula (Lim et al. 
2017). Nalmefene may interrupt the coupling of the insula 
to brain regions, which are part of the reflective system. This 
could prevent interoceptive signals from hijacking the cog-
nitive resources that are important for decision-making or 

Fig. 7  Reflective system: brain regions with decreased and increased 
resting-state functional connectivity between the seed region “left 
orbitofrontal cortex” and the rest of the brain after 18 mg nalmefene 
compared to placebo (contrast: nalmefene > placebo, MNI coordi-
nates a − 50 06 20, MNI coordinates b 18 − 64 20). Combined voxel-
wise-threshold (p < .01) and cluster-extent threshold k > 442 Voxel, 
corresponding to pFDR < .05

Table 4  Salience network: resting-state functional connectivity with the seed region “left insular cortex” after 18 mg nalmefene compared to 
placebo

Second level SCA results: resting-state functional connectivity between the seed region left insular cortex and the rest of the brain after 18 mg 
nalmefene compared to placebo (contrast: nalmefene > placebo). Combined voxel-wise-threshold (p < 0.01) and cluster-extent threshold k > 388 
Voxel, corresponding to pFDR < 0.05; MNI, Montreal Neurological Institute.

Side Lobe Brain areas Size MNI coordinates tmax Cluster
pFDR

Peak
p-unc

x y z

L Anterior cingulate, dorsal anterior cingulate cortex 388  − 12 50 00  − 5.22 0.0198  < 0.0001
L|R Frontal Medial frontal gyrus, superior frontal gyrus, anterior 

prefrontal cortex
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inhibitory control. There were no significant results for the 
right insula. Studies show that the attentional network is also 
highly lateralized. In some cases, a primary right lateraliza-
tion of the SN was found (Nielsen et al. 2013), and in other 
cases, components that were strongly left or right lateral-
ized (Agcaoglu et al. 2015). The left hemisphere appears to 
be associated with approach or appetitive behavior. Studies 
show that craving and “wanting” triggered by cue stimuli 
more often activate left frontal areas. Thus, both lower left 
hemisphere activation for craving and stronger impulse con-
trol in the right hemisphere could serve as protective factors 
against drug use (Gordon 2016).

In addition, increased rsFC between the ACC and brain 
regions related to the reflective system was shown under 
nalmefene. Interestingly, a study on patients with AUD and 
attention deficit hyperactivity disorder (ADHD) showed 
impaired connectivity between ACC and PFC, compared 
to HC, which was associated with higher severity of AUD 
or ADHD. This may indicate impaired inhibition—a com-
mon feature of both disorders—and that comorbidity could 
exacerbate this impairment (Farré-Colomés et al. 2021). 
The ACC is thought to be involved in inhibitory control 
(Ma et al. 2010) via conflict monitoring (Ridderinkhof 
et al. 2004) and error detection (Carter et al. 1998). Indeed, 
top-down cognitive control appears to occur mainly in the 
dlPFC; however, the ACC is also crucial, as it communicates 
the degree of cognitive control currently required (Ma et al. 
2010). Therefore, higher cognitive control could result from 
closer coupling. Nalmefene could, thus, weaken one part of 
the salience system (insula) and strengthen the other part 
(ACC), which could partially normalize the dynamic inter-
action between the impulsive and reflective systems.

The default mode network

Deficiencies, both within the DMN and interaction with 
other networks, appear to cause affective and cognitive 
impairments that promote craving and relapse in SUD 
(Zhang and Volkow 2019). Contrary to our expectations, 
we could not detect any significant changes between the PCC 
and other regions of the brain. Regarding the anterior DMN, 
reduced rsFC between the mPFC and frontal regions, such 
as the insula and inferior frontal gyrus, was displayed under 
nalmefene.

In patients with AUD, a trend towards increased rsFC 
between the anterior DMN and the left ECN was observed 
compared to HC (Zhu et al. 2017). Disturbed DMN suppres-
sion and impaired ECN–DMN connectivity is associated 
with poor cognitive functioning. Thus, the strong involve-
ment of the DMN during withdrawal appears to prevent the 
cognitive control mediated by the ECN (Zhang and Volkow 
2019). The insula, areas of the lPFC, and parietal regions 

Fig. 8  Salience network: brain regions with decreased resting-state 
functional connectivity between the seed region “left insular cortex” 
and the rest of the brain after 18 mg nalmefene compared to placebo 
(contrast: nalmefene > placebo, MNI coordinates: − 12 50 00). Com-
bined voxel-wise-threshold (p < .01) and cluster-extent threshold 
k > 388 Voxel, corresponding to pFDR < .05

Table 5  Salience network: resting-state functional connectivity with the seed region “anterior cingulate cortex” after 18 mg nalmefene compared 
to placebo

Second level SCA results: resting-state functional connectivity between the seed region anterior cingulate cortex and the rest of the brain after 
18 mg nalmefene compared to placebo (contrast: nalmefene > placebo). Combined voxel-wise-threshold (p < 0.01) and cluster-extent threshold 
k > 372 Voxel, corresponding to pFDR < 0.05; MNI, Montreal Neurological Institute.

Side Lobe Brain areas Size MNI coordinates tmax Cluster
pFDR

Peak
p-unc

x y z

R Parietal Angular gyrus 372 42  − 56 20 5.76 0.0205  < 0.0001
R Temporal Middle temporal gyrus, superior temporal gyrus, infe-

rior temporal gyrus, parahippocampal gyrus (9 V)
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form a unified task-activation ensemble (Seeley et al. 2007), 
which is often co-activated during cognitive tasks of atten-
tion and response selection (Menon et al. 2001). Reduced 
coupling between mPFC and the insula–IFG network could 
restore the anti-correlation of the two networks. For exam-
ple, naltrexone has also been shown to reduce FC between 
the ECN and DMN, which has been associated with reduced 
drug use (Kohno et al. 2019). Furthermore, studies identified 
a neural circuit, consisting of mPFC, insula, and Nacc, which 
mediates aversion-resistant alcohol seeking and compulsive 
alcohol consumption (Grodin et al. 2018; Seif et al. 2013). 

By reducing rsFC between the mPFC and insula, nalme-
fene may be able to enhance the cognitive resources that 
are important for inhibitory control of compulsive behavior.

Limitations

The selection of seeds in the present study was defined a 
priori, based on the triadic neurocognitive model of addic-
tion (Noël et al. 2013) and previous results (Zhu et al. 2017). 
However, the knowledge and information derived from the 
fcMap is limited to the selection of the seed region. SCA is, 
thus, susceptible to bias. To study FC patterns in the entire 
brain, model-free methods, such as ICA, are recommended 
(van den Heuvel and Hulshoff Pol 2010; Lv et al. 2018). 
In addition, the resting-state measurement was performed 
after two task-based experiments. The two tasks (cue-reac-
tivity and emotional processing) could have impacted rsFC 
fMRI. Although this is a placebo-controlled study, a com-
plete blinding must be questioned in view of the reported 
side effects. In order to achieve reliable blinding, an “active 
placebo” would be useful, which would only induce the cor-
responding side effects. However, due to ethical considera-
tions, active placebos are rarely used. Moreover, our within-
subject design does not allow to assess whether there is 
indeed a normalization of FC patterns by nalmefene. Based 
on the results of other studies, the change in FC seems to 
be in the right direction, but without a control group, “nor-
malization” cannot be assessed. Our sample consisted of 
mostly males and individuals who smoke. Both might reduce 
generalizability of the findings (e.g., Li et al. 2012; Filippi 
et  al. 2013; Weissman-Fogel et  al. 2010; Vergara et  al. 
2017). Overall, the sample size is quite modest and has a 
wide range in age and drinking. It would be appropriate to 
replicate the study with a larger sample and more stringent 
thresholds, considering possible differences between male 
and female participants.

Fig. 9  Salience network: brain regions with increased resting-state 
functional connectivity between the seed region “anterior cingulate 
cortex” and the rest of the brain after 18 mg nalmefene compared to 
placebo (contrast nalmefene > placebo, MNI coordinates: 42 − 56 20). 
Combined voxel-wise-threshold (p < .01) and cluster-extent threshold 
k > 372 Voxel, corresponding to pFDR < .05

Table 6  Default mode network: resting-state functional connectivity with the seed region “medial prefrontal cortex” after 18 mg nalmefene com-
pared to placebo

Second level SCA results: resting-state functional connectivity between medial prefrontal cortex and the rest of the brain after 18 mg nalmefene 
compared to placebo (contrast: nalmefene > placebo). Combined voxel-wise-threshold (p < 0.01) and cluster-extent threshold k > 369 Voxel, cor-
responding to pFDR < 0.05; MNI, Montreal Neurological Institute.

Side Lobe Brain areas Size MNI coordinates tmax Cluster
pFDR

Peak
p-unc

x y z

R Insula 369 50 00 10  − 4.82 0.0127 0.0002
R Frontal Inferior frontal gyrus (pars opercularis, triangularis, 

orbitalis), precentral gyrus, rolandic operculum
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Conclusion

Intrinsic rsFC has been proposed as a potential biomarker 
for understanding addiction; therefore, interest is increas-
ingly shifting towards the identification and therapeu-
tic modification of rsFC biomarkers. The present study 
indicates that nalmefene impacts RSN and could change 
the interaction between addiction-related neural systems 
in non-treatment seeking individuals with AUD. Nalme-
fene might normalize rsFC by weakening the impulsive 
system associated with ill-conceived impulsive behaviors 
and habits. Simultaneously, it might strengthen the reflec-
tive system, which is responsible for cognitive control. 
In this way, nalmefene could reduce craving, as well as 
automatic-approach behavior, and at the same time restore 
control over alcohol consumption. This could contribute 
to an effective reduction in drinking. Overall, the reduc-
tion of alcohol consumption using nalmefene is still in 
its infancy and further research is required to expand the 
range of treatments for AUD. Nevertheless, this study’s 
results provide the neurobiological basis of the mecha-
nisms of action and effectiveness of nalmefene.
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