
RESEARCH ARTICLE

Metabolic profiles among COPD and controls

in the CanCOLD population-based cohort

Damien ViglinoID
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Abstract

A high prevalence of intermediate cardiometabolic risk factors and obesity in chronic

obstructive pulmonary disease (COPD) has suggested the existence of pathophysiological

links between hypertriglyceridemia, insulin resistance, visceral adiposity, and hypoxia or

impaired pulmonary function. However, whether COPD contributes independently to the

development of these cardiometabolic risk factors remains unclear. Our objective was to

compare ectopic fat and metabolic profiles among representative individuals with COPD

and control subjects and to evaluate whether the presence of COPD alters the metabolic

risk profile. Study participants were randomly selected from the general population and pro-

spectively classified as non-COPD controls and COPD, according to the Global Initiative for

Chronic Obstructive Lung Disease classification. The metabolic phenotype, which consisted

of visceral adipose tissue area, metabolic markers including homeostasis model assess-

ment of insulin resistance (HOMA-IR), and blood lipid profile, was obtained in 144 subjects

with COPD and 119 non-COPD controls. The metabolic phenotype was similar in COPD

and controls. The odds ratios for having pathologic values for HOMA-IR, lipids and visceral

adipose tissue area were similar in individuals with COPD and control subjects in multivari-

ate analyses that took into account age, sex, body mass index, tobacco status and current

medications. In a population-based cohort, no difference was found in the metabolic pheno-

type, including visceral adipose tissue accumulation, between COPD and controls. Discrep-

ancies between the present and previous studies as to whether or not COPD is a risk factor

for metabolic abnormalities could be related to differences in COPD phenotype or disease

severity of the study populations.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0231072 April 10, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Viglino D, Martin M, Piché M-E, Brouillard
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Introduction

Cardiometabolic diseases are at the forefront of comorbidities in the Chronic Obstructive Pul-

monary Disease (COPD) population [1]. It has been reported that individuals with COPD

have a 2- to 5-time higher risk of cardiovascular disease compared with controls, indepen-

dently of shared risk factors such as age and smoking [2,3]. Understanding the nature of the

link between COPD and co-existing metabolic conditions/comorbidities may provide person-

alized treatment strategies and identify new mechanistic pathways to be targeted.

The relationship between COPD and its comorbidities is complex and studies having

reported a high prevalence of metabolic syndrome and obesity in patients with COPD [4–7]

have suggested the existence of pathophysiological links between hypertriglyceridemia and

hypoxia [8,9], obesity and hypoxia [10–12], or visceral adiposity and pulmonary function [13–

16]. Various phenotypes of COPD have emerged, some of which being defined by the adipos-

ity and metabolic profile of the patients [17–20]. In a previous investigation [21], we found

that the degree of visceral adiposity with its associated hypertension and diabetes correlated

with the severity of COPD [Global initiative for Obstructive Lung Disease (GOLD) grade].

Several potential confounders (tobacco exposure, dietary habits, sedentarity) may, however,

complicate the establishment of a link between COPD and metabolic abnormalities.

In the present investigation based on the above-mentioned cohort, we aimed to further

explore whether COPD is linked to established metabolic variables (insulin resistance [22–26],

lipid control [27] and visceral adiposity [28,29]) in a well-phenotyped cohort representative of

the general population. We hypothesized that if there is causal and self-sustaining links

between COPD and metabolic abnormalities, then differences in metabolic risk factors should

emerge between individuals with COPD and control subjects. The present study was embed-

ded in the Canadian Cohort Obstructive Lung Disease Study (CanCOLD), a prospective longi-

tudinal study of COPD with random population sampling [30].

Methods

Participants

The study was approved by the local ethics committee (Comité d’éthique du centre de recher-

che de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, IRB N˚ 20690,

Study N˚ 2012–1359). CanCOLD (ClinicalTrials.gov: NCT00920348) steering and scientific

committees approved the sub-study protocol. All study participants signed written consent

before inclusion.

Participants in two CanCOLD study centres (Montreal and Quebec City, Quebec, Canada)

were recruited between February 2012 and December 2015 for this sub-study. CanCOLD is a

longitudinal cohort study based on the characterization of COPD among a random sample of

the population in 9 Canadian cities [30]. Subjects had to be 40 years or older to participate in

the CanCOLD study. Further details concerning the CanCOLD study design and eligibility

criteria have been previously described [30]. Study participants underwent the standard Can-

COLD assessment procedures, which provide information about patients’ characteristics (age,

gender, smoking history), medical history and current medications, body weight and height,

and pulmonary function. Although no sleep studies were done in CanCOLD, the presence of

sleep apnea was documented based on the use of continuous airway positive pressure (CPAP)

and on standardized questionnaires, including the Pittsburg Sleep Quality Index [31]. Addi-

tional pre-specified measures were done including measurements of waist and hip circumfer-

ences, blood sampling to determine glucose and lipid profiles, and a computed tomography

(CT) abdominal scan at 4th/5th lumbar vertebrae level (L4-L5) to quantify body fat distribution
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[21]. Participants were divided according to the pulmonary function testing results as follows:

1) control subjects with a post-bronchodilator forced expiratory volume in 1 second (FEV1)>

80% predicted value and FEV1/forced vital capacity (FVC) ratio > 0.7; 2) patients with COPD

with a post-bronchodilator FEV1/FVC ratio < 0.7 were further classified according to the

Global Initiative for Chronic Obstructive Lung Disease (GOLD) airflow limitation classifica-

tion scheme into GOLD 1, with an FEV1� 80% predicted, and GOLD 2+ with an FEV1<80%

predicted. All COPD subjects were invited to be enrolled in the final CanCOLD cohort,

whereas some of the healthy subjects were enrolled to serve as controls with a control/COPD

ratio of 1 to 1 [30]. Patients with a pulmonary restrictive profile were excluded from the

analysis.

Procedures

Body fat distribution and visceral adipose tissue assessment. L4-L5 CT scan images

were analyzed without knowledge of the clinical status of the subjects. Abdominal fat distribu-

tion was assessed using the specialized software Tomovision SliceOMatic (v4.3 Rev-6f, Mon-

treal, Quebec, Canada). The detailed method used for image analysis has been previously

reported [32, 33]. The middle of the muscle wall surrounding the abdominal cavity was delin-

eated to determine the visceral adipose tissue (VAT) area. Abdominal adipose tissue areas

were computed using an attenuation range of –190 to –30 Hounsfield units (HU). Body fat dis-

tribution parameters were obtained with methodology commonly applied in our Core Lab,

with high levels of intra and inter-observer agreement [32].

Blood sample and biochemical analysis. Blood samples were collected in the morning,

after a 12-hour fast to determine levels of glucose, insulin, total cholesterol, LDL-cholesterol,

HDL-cholesterol and triglycerides. All analyses were carried-out in plasma or whole blood

using automated techniques (Roche Diagnostics). Glucose, total cholesterol (TC), HDL-cho-

lesterol, LDL-cholesterol, and triglycerides were measured by enzymatic in vitro tests. Insulin

was determined using electrochemiluminescence immunoassay (ECLIA). Insulin resistance

was assessed using the homeostatic model assessment for insulin resistance (HOMA-IR), cal-

culated using the following formula: insulinemia × glucose/22.5 (glucose units mmol/L) [34].

Data analysis

Continuous data are presented as median and interquartile range (IQR) or mean and 95%

confidence interval in case of normal distribution, and categorical data as frequency and per-

centage. Continuous variables were analysed using a Mann-Whitney test and categorical data

and proportions were analysed using the Fisher exact tests. Metabolic phenotypes were com-

pared between COPD and controls by using four complementary strategies: 1) univariate com-

parisons of adiposity and metabolic parameters (triglycerides, total/HDL cholesterol ratio, and

HOMA-IR) between COPD subjects, GOLD 1 subjects, GOLD 2+ subjects and controls

(Mann-Whitney test); 2) univariate linear regression with coefficient of determination (R2)

and analysis of covariance (ANCOVA) to study the relationships between metabolic parame-

ters (triglycerides, total/HDL cholesterol ratio, HOMA-IR) and indices of adiposity (body

mass index (BMI), waist-to-hip ratio and VAT area) according to COPD status; 3) multivariate

linear regression models to detect possible interactions between the COPD status and the vari-

ous metabolic parameters studied. A logarithmic transformation (Ln) was performed on each

non-log-linear variable of interest. These models took into consideration (variable entry) all

potential confounders available, including age, sex, smoking status, BMI, waist-to-hip ratio,

corticosteroid treatment, hypolipidemic and hypoglycemic agents. Final models were selected

with backwards elimination, with COPD status as a forced variable and keeping only the

PLOS ONE Metabolic profiles in COPD

PLOS ONE | https://doi.org/10.1371/journal.pone.0231072 April 10, 2020 3 / 14

shared among members of the group. This does

not alter our adherence to PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0231072


significant variables at p<0.05; and 4) multivariate logistic regressions to estimate the odds

ratio of having hypertriglyceridemia (triglyceride >1.5 mmol/L), increased total /HDL choles-

terol ratio>4 [35], and insulin resistance (HOMA-IR>3) [22–26] in the presence of COPD

(all COPD and COPD GOLD2+ only) compared to non-COPD controls. These models were

adjusted for potential confounders (age, sex, smoking status, BMI, corticosteroid treatment

and ongoing pharmacological treatment related to the parameter studied, namely hypolipi-

demic drugs or hypoglycemic drugs). The odds ratio of having visceral obesity (L4-L5 VAT

cross-sectional area>75th percentile of the whole population by sex) in the presence of COPD

(all COPD and COPD GOLD2+ only) in comparison to non-COPD controls was analysed by

multivariate logistic regression including age, smoking status and inhaled corticosteroid treat-

ment as known confounding factors. In these multivariate logistic regressions, continuous var-

iables were entered as quartiles. Missing data were not replaced. All statistical analyses were

performed using IBM SPSS v.23 software (IBM statistics, USA) and GraphPad Prism v6.05

(GraphPad Software, USA).

Results

This CanCOLD sub-study included 263 participants having a median age of 65 [59–71] years

and of whom two thirds were males. Based on pulmonary lung function, subjects were divided

into control subjects with normal lung function (n = 119), and individuals with COPD

(n = 144, 70 GOLD 1 and 74 GOLD 2+). No missing data in variables of interest have to be

reported. There was no statistically significant between-group difference for age, sex, BMI,

waist-to-hip ratio, and use of hypolipidemic and oral hypoglycemic agents (Table 1).

Metabolic profiles according to COPD status are provided in Fig 1. There was no signifi-

cant difference between groups in triglyceride levels (Fig 1A), total/HDL cholesterol ratio (Fig

1B), and insulin resistance (HOMA-IR) (Fig 1C). The median VAT levels in control subjects

(146.4 cm2 [106.2–222.6]) was not different compared to COPD subjects (155.7 cm2 [108.9–

233.9], p = 0.59), and to GOLD 1 or GOLD 2+ COPD (Fig 1D). No significant difference was

observed between COPD and controls in univariate analysis stratified by BMI for any meta-

bolic parameter (S1 Fig).

Triglycerides, total/HDL cholesterol ratio and HOMA-IR were positively associated with

the three indices of adiposity (BMI, waist-to-hip ratio and VAT area) in individuals with

COPD and controls. (Fig 2, all regression lines with a p<0.05). However, the slopes of the

regression lines were similar for both groups (p>0.05 for all comparisons) suggesting that the

relationships between metabolic markers and adiposity were not modified in the presence of

COPD.

In linear multivariate analyses, the COPD status was not significantly associated with tri-

glyceride levels, total/HDL cholesterol, insulin resistance (HOMA-IR) or VAT area (Table 2).

A higher BMI was associated with an increase in triglycerides, total/HDL cholesterol, and

HOMA-IR levels, and current smokers with one third of additional VAT. No significant inter-

action was observed between the COPD status and any characteristic tested.

Lastly, a triglyceride level above 1.5 mmol/L, a total/HDL cholesterol ratio above 4 or a

HOMA-IR above 3 were respectively observed in 54 (37.5%), 36 (25%) and 58 (40.3%) of

COPD patients and in 37 (31.1%), 33 (27.7%) and 54 (45.4%) of control subjects. In multivari-

ate analysis, the COPD status (or COPD 2+) was not associated with triglyceride >1.5 mmol/

L, total/HDL cholesterol ratio >4, HOMA-IR>3, or VAT area>75th percentile. Only the

COPD 2+ status was associated with a VAT area>75th percentile (OR = 2.27, CI95% 1.00;

5.15, p = 0.05). Complete regression models are available in supplementary S1–S8 Tables.
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Discussion

In a population-based cohort consisting of individuals with mild to moderate COPD and con-

trol subjects, we found metabolic profiles (lipid profile, HOMA-IR, and VAT accumulation)

Table 1. Baseline characteristics by group.

Control subjects (n = 119) COPD (n = 144) P value

Age, years 65 [59–71] 65 [59–71] 0.88

Male, n (%) 73 (61.3) 93 (64.6) 0.61

BMI, kg/m2 26.5 [23.5–29.7] 26.6 [23.7–29.4] 0.96

Waist-to-hip ratio, mean (95% CI) 0.93 (0.92–0.94) 0.94 (0.93–0.95) 0.14

Waist circumference, cm 96 [87.8–103] 98 [89–106] 0.20

Current smokers, n (%) 12 (10.1) 39 (27.1) <0.001

Former smokers, n (%) 70 (58.8) 74 (51.4) 0.26

Never smokers, n (%) 37 (31.1) 31 (21.5) 0.09

Pack/year 11 [0–28] 27 [0–50] <0.001

Comorbidities

Hypertension, n (%) 32 (26.9) 53 (36.8) 0.11

Diabetes, n (%) 10 (8.4) 14 (9.7) 0.83

Dyslipidemia, n (%) 31 (26.1) 41 (28.5) 0.68

Coronary artery disease, n (%) 6 (5.0) 14 (9.7) 0.17

Stroke, n (%) 1 (0.8) 9 (6.3) 0.02

Sleep apnea, n (%) 4 (3.4) 9 (6.3) 0.39

Pulmonary Function, post BD

FEV1, L 2.88 [2.37–3.48] 2.14 [1.55–2.99] <0.001

FEV1, % predicted 101 [92–110] 79 [65–93] <0.001

FVC, L 3.79 [3.09–4.52] 3.63 [2.75–4.69] 0.48

FVC, % predicted 120 [112–132] 118 [103–135] 0.21

FEV1/FVC, % 76.8 [73.4–79.9] 62.3 [55.7–66.5] <0.001

PEF, mean L/sec (95% CI) 7.42 (6.98–7.86) 7.42 (7.02–7.82) <0.001

FEF 25–75, L/sec 1.60 [0.96–2.41] 1.58 [0.95–2.41] <0.001

GOLD 1, n (%) - 70 (48.6) -

GOLD 2, n (%) - 61 (42.4) -

GOLD 3–4, n (%) - 13 (9.0) -

GOLD A, n (%) - 91 (63.2) -

GOLD B, n (%) - 40 (27.8) -

GOLD C, n (%) - 3 (2.1) -

GOLD D, n (%) - 10 (6.9) -

Medications at baseline

Short-acting BD, n (%) 2 (1.7) 24 (16.6) <0.001

Long-acting BD, n (%) 1 (0.8) 1 (0.7) 1

Inhaled CS, n (%) 3 (0.3) 33 (22.9) <0.001

Statins, n (%) 28 (23.5) 38 (26.4) 0.67

Other hypolipidemic drugs, n (%) 4 (3.3) 3 (2.1) 0.70

Insulin, n (%) 1 (0.8) 0 (0) 0.45

Oral hypoglycemic agents, n (%) 9 (7.6) 10 (6.9) 1

Values are median [IQR] if not stated otherwise. COPD: chronic obstructive pulmonary disease; BMI: body mass index; CI: confidence interval; BD: bronchodilator;

FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; BD: bronchodilator; CS: corticosteroids; GOLD: global Initiative for obstructive lung disease

classification.

https://doi.org/10.1371/journal.pone.0231072.t001
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that were not influenced by the presence of COPD. The well-established relationships between

triglycerides, total/HDL cholesterol ratio, and HOMA-IR to indices of adiposity [36,37], which

were confirmed here, were not modified in the presence of COPD. Univariate and multivariate

analyses showed an absence of association between COPD and metabolic disorders or visceral

adiposity. Therefore, based on this thorough statistical approach, we conclude that COPD

does not emerge as an independent risk factor for metabolic disorders and visceral adiposity in

a cohort that can be considered representative of the entire population.

Numerous studies have explored possible physiopathological links between COPD, asthma

or sleep apnea and cardiometabolic components [38]. In those respiratory diseases, several

bidirectional mechanisms have been proposed to enhance the risk of hypertriglyceridemia,

adipose tissue accumulation and insulin resistance, including hypoxia [8–12] and hypercapnia

[39]. Activation of lipolysis in adipose tissue in the presence of hypoxia led to the "adipose tis-

sue hypoxia" concept [11]. Adipose tissue would then appear to play a central role in the devel-

opment of chronic inflammation, macrophage infiltration, and would also be responsible for

increasing circulating free fatty acids [8,10,11]. In addition, fat-induced systemic inflammation

involving adipokines [38,40–42], insulin and its receptor, has been implicated in lung injury

and airway responsiveness [38,43,44], causing a deleterious pathophysiological loop.

Fig 1. Metabolic parameters according COPD status. COPD: chronic obstructive pulmonary disease; HDL: high density lipoprotein; HOMA-IR:

homeostasis model assessment of insulin resistance; VAT CSA: visceral adipose tissue cross-sectional area on L4-L5. p>0.05 for all between-group

comparisons.

https://doi.org/10.1371/journal.pone.0231072.g001
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In light of the above potential pathophysiological links between chronic respiratory diseases

and cardiometabolic risk factors, it was deemed legitimate to propose that COPD may contrib-

ute to the development of metabolic abnormalities. In one of the most large-scale studies in

the field, Leone et al. [13] found an association between lung function impairment and “classi-

cal” components of the metabolic syndrome. This result was obtained in a heterogeneous pop-

ulation (obstructive and restrictive ventilatory defects), and a sub-analysis restricted to

individuals with an obstructive ventilatory defect failed to find an association between glucose

or lipid levels and lung function impairment, in line with our present results as well as previous

ones [45,46].

The phenotypic heterogeneity of COPD patients and many confounding factors must be

considered when comparing the interaction between COPD and metabolic variables across

studies. The prevalence of obesity in COPD is highly variable between studies and countries

[47]. Some populations showed higher prevalence of obesity [48] with an over-representation

Fig 2. Relationships between metabolic parameters and BMI, waist-to-hip ratio and VAT CSA in individuals with COPD and controls. COPD: chronic obstructive

pulmonary disease; BMI: body mass index; HDL: high density lipoprotein; HOMA-IR: homeostasis model assessment of insulin resistance; VAT CSA: visceral adipose

tissue cross-sectionnal area on L4-L5. All coefficients of determination (R2) are<0.3; All regression line slopes were significantly different from 0 (p<0.05); however,

none of the regression lines couples (COPD vs. controls) were significantly different (p>0.05 for all comparisons).

https://doi.org/10.1371/journal.pone.0231072.g002
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in patients with moderate airflow limitation [49,50], whereas in the worldwide population-

based BOLD study [47], obesity was less frequent in COPD than in non-COPD. The impor-

tance of BMI as a confounding factor in the observed link between COPD and metabolic

parameters is clearly illustrated in our data (S1 Fig, Table 2). In multivariate analyses, BMI

was the factor with the strongest association with the metabolic parameters studied. In the

same way, treatment with inhaled corticosteroids (present in only 23% of our COPD subjects)

could also confound the relationship between COPD, metabolism and adipose tissue accumu-

lation. Inhaled corticosteroids have been related to a 3-fold increase in the likelihood of having

a VAT > 75th percentile (S7 Table). Based on these considerations, it becomes obvious that

differences in population phenotypes across studies could at least partially account for incon-

sistent conclusions about COPD being a risk factor for altered metabolic status [5]. In this

regard, data obtained from clinical cohorts are unlikely to be generalizable to the populational

level where the majority of patients has only mild to moderate COPD.

Our study has some limitations. First, given the relatively small sample size, a lack of statisti-

cal power could be proposed to explain the absence of differences in endpoints between

COPD subjects and controls. However, the similitude in the distribution of metabolic variables

and obesity in the two groups studied makes this explanation unlikely. Second, the relatively

small size of our otherwise well phenotyped sample could have led to a lesser representative

image of the population than did the entire CanCOLD cohort. Despite this, the distribution of

study participants’ characteristics in this sub-study was very similar to that of the entire cohort

[51], with a majority of subjects with GOLD 1 and few GOLD 3 and 4 COPD. Furthermore,

Table 2. Multivariate linear regression models.

Effect (%) # p-value

Triglycerides

COPD +5.5 0.262

Age (years) -0.6 0.029

BMI Kg/m2 +3.8 <0.001

Total/HDL cholesterol

COPD +1.2 0.721

Sex (men) +10.3 0.005

BMI Kg/m2 +2.3 <0.001

Hypolipidemic (yes) -18.0 <0.001

HOMA-IR

COPD -1.8 0.858

Sex (men) +27.0 0.020

BMI Kg/m2 +12.0 <0.001

VAT CSA

COPD +1.1 0.866

Age (years) +1.0 0.007

Sex (men) +14.7 0.047

Current smoker (yes) -32.6 <0.001

Pack-years (n) +0.7 <0.001

Significant p-values are shown in bold.

#: effect on variable in %, per increase in variable. COPD: chronic obstructive pulmonary disease; BMI: body mass

index; HDL: High Density Lipoprotein; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; VAT

CSA: Visceral Adipose Tissue Cross-sectionnal Area. Only significant factors and COPD are kept in the model by a

backward selection.

https://doi.org/10.1371/journal.pone.0231072.t002
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only 30% of individuals with COPD in this sub-study were previously diagnosed with the dis-

ease, another similitude with other population-based cohorts [52], providing further reassur-

ance regarding how representative the present cohort is of the general population. That said,

despite all the care devoted to building a cohort of individuals representative of the general

population, some biases may still be present. For example, the most fragile or diseased subjects

would probably be less inclined to participate in a clinical study. Third, focusing on a represen-

tative and occidental population of COPD, our findings do not necessarily apply to individuals

with severe COPD or to those exhibiting particular phenotypes (inflammatory, underweight

or obese, with preponderant vascular comorbidities). Finally, physical activity, an important

confounder for cardiovascular risk, was not included in the analysis; also, sleep apnea, another

potential contributor, was underdiagnosed by far in this cohort when considering the reported

prevalence.

Conclusions

In our cohort randomly drawn from the general population in which individuals with COPD

mostly had mild-to-moderate airflow limitation, no difference in the distribution of metabolic

parameters appeared compared to control subjects. As such, COPD did not emerge as a spe-

cific risk factor for metabolic disorders or visceral adiposity. Although a strong mechanistic

rationale can be developed for the existence of physiopathological links between chronic respi-

ratory diseases and dyslipidemia, insulin resistance or visceral adiposity, their existence is

likely restricted to specific phenotypes or to the most severely affected patients who are not

widely represented in the general population.
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homeostasis model assessment of insulin resistance; VAT CSA: visceral adipose tissue cross-sec-

tionnal Area on L4-L5. p>0.05 for all between-group (COPD vs. controls) comparisons.

(TIF)

S1 Dataset. Anonymised data.

(XLSX)
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