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Abstract
Objectives
Recently, the number of dinucleotide CA repeats in an intron of the STMN2 gene was reported
to be associated with an increased risk for amyotrophic lateral sclerosis (ALS). Therefore, we
sought to replicate this observation in an independent group of ALS patients and a much larger
control group.

Methods
Here, we used whole-genome sequencing and tested the STMN2 CA repeat in a case-control
cohort of the European genetic background and in genomes from various populations in the
gnomAD cohort to attempt to replicate this proposed association.

Results
We find that repeats well above the previously reported pathogenic threshold of 19 are com-
monly observed in unaffected individuals across different populations. Furthermore, we did not
observe an association between longer STMN2 CA repeats and ALS phenotype.

Discussion
In summary, our results do not support a role of STMN2CA repeats toward ALS risk. As TDP-
43 aggregation is central to ALS pathogenesis, lowered expression of STMN2 could be used as a
biomarker for ALS. Therefore, a variant associated both with the risk for ALS and the level of
STMN2 expression would be clinically useful. However, for a variant to be actionable, it must
be strongly replicated in independent cohorts and exceed the rigorous statistical thresholds
applied.
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Altered stathmin-2 (STMN2) expression has been implicated
in amyotrophic lateral sclerosis (ALS).1,2 On decrease of
TDP-43, the STMN2 transcript becomes truncated and pro-
duces a nonfunctional stathmin-2 protein. This dysfunction
results in altered neural response to cell damage and reduced
axonal regrowth.

Recently, an intronic dinucleotide CA repeat between exons 3
and 4 of STMN2 was reported to be associated with ALS.3

Specifically, alleles longer than 19 CA repeats were reported
to increase the risk for ALS, and those carrying a 24-repeat
allele alongside another long allele had the highest risk. In our
study, we observed carriers of STMN2 CA repeats well be-
yond the reported pathogenic repeat threshold in both case-
control and gnomAD cohorts, and we did not reproduce the
association between expanded STMN2 repeats and ALS. Al-
though STMN2 dysfunction may contribute to ALS, its di-
nucleotide repeat does not impart a significant risk to ALS.

Methods
We used the STREGA checklist.10

Samples and Sequencing
Patients and controls were recruited in clinics across Québec,
Canada. One hundred fifty-four patients (average age: 59.7 ±
11.7 years, male:female ratio 1.68) were included. Two hun-
dred sixteen controls (average age: 67.8 ± 13.3 years, male:
female ratio 0.56) were included. gnomAD was used as an
external data set.4 All individuals included gave written in-
formed consent.

Whole-genome sequencing (WGS) was performed on Illu-
mina HiSeq X-Ten and NovaSeq 6000 sequencers at the
Génome Québec Centre d’Expertise et de Services. Bio-
informatic analyses were performed on the Béluga cluster of
Compute Canada and Calcul Québec using DRAGEN Bio-IT
v3.8 (Illumina, Inc., San Diego, CA). After alignment to the
hg38 human reference genome, an average depth of 34.1X
was observed.

Estimation of STMN2 CA Repeat Length
ExpansionHunter v4.0.25 was used to calculate the number of
CA repeats.3 Options applied were ReferenceRegion: chr8:
79641628-79641672, VariantType: “Repeat,” and Locus-
Structure: “(CA)*.” The reported or imputed sex of individ-
uals was used as an input option.

Statistical Analyses
Statistical tests were performed using R v4.0.3. A Fisher exact
test (fisher.test) was used to test for differences between cases
and controls. A Cochran-Mantel-Haenszel (CMH) test
(mantelhaen.test) was used to incorporate the current results
with those of the previous Theunissen study.3 All reported p
values are uncorrected. Per-sample allele lengths are reported
in eTable 2 (links.lww.com/NXI/A735).

Data Availability
Raw data for genome sequencing used in the study are
available through Project MinE (projectmine.com/) or
available on request. Raw data for ExpansionHunter variant
calling are also available on request.

Results
STMN2 CA repeats were successfully genotyped by Expan-
sionHunter in 153 ALS and 207 controls. No allele combination
with the current case-control cohort suggested an association of
long or long with 24 repeats (L/L with 24CA) with the ALS
phenotype (Table 1). Although there was a nominally significant
p value of L/L with 24CA using the CMH test combining allele
counts from the current cohort and the Australian cohort from
the previous study (p = 0.041), this result does not pass the
multiple testing correction threshold (α = 0.05/10; p = 0.005).
The longest repeats were more often observed in female sam-
ples, and the largest repeats were observed in female control
samples (eTable 2, links.lww.com/NXI/A735).

Notably, STMN2CA repeats much longer than the previously
reported ALS-associated threshold were frequently observed
in the gnomAD (eFigure 1, links.lww.com/NXI/A735).

Table 1 Replication Results of Theunissen et al.’s Associations of STMN2 CA Repeat Lengths and ALS Phenotype

Genotype

Status Fisher exact test CMH test

ALS Controls p Value OR 95% CI p Value OR 95% CI

Long/long (L/L) 84 (54.9%) 123 (59.4%) 0.4504 1.20 0.77–1.87 0.1775 1.19 0.93–1.53

L/L (with 24 CA) 59 (38.6%) 77 (37.2%) 0.8263 0.94 0.60–1.48 0.0407 1.44 1.02–2.03

L/L (without 24 CA) 25 (6.94%) 46 (12.8%) 0.1819 1.46 0.82–2.62 0.9179 0.97 0.75–1.27

Long/short (L/S) 44 (12.2%) 62 (17.2%) 0.8163 1.06 0.65–1.72 0.0935 0.79 0.61–1.03

Short/short (S/S) 25 (6.94%) 22 (6.11%) 0.1167 0.61 0.31–1.18 0.2504 1.36 0.84–2.20

Abbreviations: ALS = amyotrophic lateral sclerosis; CI = confidence interval; CMH = Cochran-Mantel-Haenszel; OR = odds ratio.
Tests of association were performed using either the Fisher exact test or the CMH test. p Values are reported uncorrected. Counts and percentages of
individual carriers are listed for ALS and control cohorts for each combination of allele length. OR and 95% CIs are given separately for each test and
combination.
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Repeat lengths as long as 89 were observed in the non-Finnish
European cohort, which is likely the closest match to ours and
the previously reported cohort.3 The frequency of the dif-
ferent allele combinations in Figure 1 varied slightly between
gnomAD populations (eTable 1).

Discussion
We used WGS data to estimate the STMN2 CA repeat length
and observed large repeats above the purportedly pathogenic
threshold in phenotypically normal individuals. We did not
observe an association between longer alleles and ALS risk,
nor did we replicate the necessity of the 24-repeat allele for
this association.

The previous study reported a trend of large STMN2 CA
repeat length with decreased expression of STMN2.3 How-
ever, this trend was not statistically significant. Furthermore, it
is unclear whether larger repeats are linearly associated with
decreased STMN2 levels, or whether the decrease is compa-
rable with that resulting from TARDBP variation or lowered
TARDBP expression.1,2 Although the expression level and
pathologic truncation of STMN2 are important in ALS and

TDP-43 pathology, our current results refute the association
of the STMN2 CA dinucleotide repeat with ALS.

The gnomADbrowser is useful to assess themaximum credible
allele frequency of a variant.7 However, as structural variants are
not as well documented, it is still possible to find associations
between CNVs and a given phenotype that do not replicate.
Samples in gnomAD or The 1000 Genomes Project8 may carry
large repeat alleles of risk variants,9 but without prior evidence
to support variant pathogenicity, an individual might also co-
incidentally carry a large repeat allele. It is important that these
known limitations did not hinder our evaluation of the pro-
posed association of the STMN2 CA repeat size and ALS.
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