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Abstract: In order to improve the mechanical and dielectric properties of radome cyanate,
a synergistic reinforcement method is employed to develop a resin-based ternary-composite with
high heat-resistance and preferable radar-band transmission, which is expected to be applied to
fabricate radomes capable of resisting high temperature and strong electric field. According to
copolymerization characteristics and self-curing mechanism, epoxy resin (EP) and bismaleimide
(BMI) are employed as reinforcements mixed into a cyanate ester (CE) matrix to prepare CE/BMI/EP
composites of a heat-resistant radome material by high-temperature viscous-flow blending methods
under the catalysis of aluminum acetylpyruvate. The crystallization temperature, transition heat,
and reaction rate of cured polymers were tested to analyze heat-resistance characteristics and
evaluate material synthesis processes. Scanning electron microscopy was used to characterize the
micro-morphology of tensile fracture, which was combined with the tensile strength test and dynamic
thermomechanical analysis to investigate the composite modifications on tenacity and rigidity.
Weibull statistics were performed to analyze the experimental results of the dielectric breakdown field,
and the dielectric-polarization and wave-transmission performances were investigated according
to alternative current dielectric spectra. Compared with the pure CE and the CE composites
individually reinforced by EP or BMI, the CE/BMI/EP composite acquires the most significant
amelioration in both the mechanical and electrical insulation performances as indicated by the
breaking elongation and dielectric breakdown strength being simultaneously improved by 40%,
which are consistently manifested by the obviously increased transverse lines uniformly distributed
on the fracture cross-section. Furthermore, the glass-transition temperature of CE/BMI/EP composite
reaches the highest values of nearly 300 ◦C, with the relative dielectric constant and dielectric loss
being mostly reduced to less than 3.2 and 0.01, respectively. The experimental results demonstrate
that the CE/BMI/EP composite is a highly-qualified wave-transmission material with preferences
in mechanical, thermostability, and electrical insulation performances, suggesting its prospective
applications in low-frequency transmittance radomes.

Keywords: cyanate ester; break elongation; dielectric permittivity; glass transition; radome material

1. Introduction

Transmittance materials are primarily applied in radome manufactures to ensure that the antenna
device system operates smoothly in remote control and communications, resisting the mechanical,
thermal, electrical, and chemical impacts in harsh environments. The stealth function required for
recently progressive radomes has been achieved by coordinating the diversified characteristics of
wave-absorption at high frequencies and wave-transmission at low frequencies, which is intriguing for
developing next-generation transmittance materials [1–3]. At present, the wave-transmission materials
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used for fabricating radomes are mainly composed of ceramics and resins. It is difficult to densify
and mold the ceramic radomes with an adequate tenacity in the sintering process normally used for
preparing ceramic materials [4,5]. In comparison, resin-based transmittance materials are preferred
for their higher tenacity in a sufficient temperature range, which can be obtained through a casting
molding process used for radome fabrications [6,7].

Cyanate ester (CE) is a thermosetting resin polymer with relatively high thermal stability
and a characteristic molecular structure containing two or more cyanate functional groups –(OCN).
CE materials show minimal water absorption (<1.5%) and higher bending and tensile strengths than that
of epoxy resin. The glass-transition of CE resin generally occurs at the temperature range of 240~300 ◦C,
which can be increased to the maximum value of 400 ◦C after being thermally modified [8–10]. CE resin
possesses an extremely low relative dielectric constant (2.8~3.2) and a neglectable dielectric loss tangent
(0.002~0.008), which almost remain unchanged in the variations of temperature and wave-frequency.
Therefore, CE resin with high thermal stability and low electromagnetic wave dispersion is a prospective
resin-based candidate of broadband radome materials in the future [11,12]. However, the large numbers
of aromatic rings in the CE molecular structure will lead to considerable brittleness and low toughness
of the cured resin system and thereby cannot meet the high tenacity requirement for mechanically
protective radomes [13–15]. Moreover, the substantial toxicity of raw materials for synthesizing CE
resin restricts its sustainable applications [16]. With the original excellent properties being maintained,
the deficient properties of CE resin materials can be improved by means of mixing multiple organic
resins or introducing functional polar-groups into CE molecular chains [17–19].

Previous studies for developing CE-based modified materials have always concentrated on
the improvement of an objective performance for radome applications by individually blending
or combining specialized reinforcement agents to the CE matrix. These research schemes are
incompetent at taking into account the comprehensive characteristics of the modified materials,
which sets substantial limitations on the practical applications of CE resin. For instance, breakable
chain segments produced from the group reactions of amino-terminal polypropylene and CE trimers
can be embedded in the backbone of the cured network to decrease the crosslinking density and
increase the tenacity of CE resin, which will however degrade electrical resistance and dielectric
properties [6]; CE/carbon-fiber composites obtained through complex synthesis processes inherit the
unique mechanical and heat-resistant characteristics of carbon fiber, however, they show a significantly
decreased wave-transmittance due to the high dielectric permittivity of carbon fiber [20]. In the
present paper, epoxy resin (EP) and bismaleimide (BMI) were synergistically exploited as a coordinate
reinforcement to ameliorate the mechanical and electrical performances of CE transmittance materials.
According to the self-curing principle, EP and BMI at a well acceptable content of 10 wt % with 0.3 wt %
aluminum acetylpyruvate [21] as the catalysis for expediting the curing reactions were blended
into the CE matrix and processed through the thermosetting reactions to develop a significantly
modified transmittance material of ternary copolymer composite, which were experimentally verified
by analyzing the mechanical, heat-resistant, and dielectric properties.

2. Experimental

2.1. Material Preparation

The fundamental raw materials used in the material synthesis experiments were as follows: white
powdery crystals of bisphenol A cyanate ester (BACE, Hubei Jusheng Co. Ltd., Wuhan, China) as the
monomer matrix; viscous liquid of epoxy resin monomer (E51, Luohe Advanced Material Co. Ltd.,
Shanghai, China) as a reinforcement agent; light yellow crystalline powder of bismaleimide monomer
(BMI monomer, Guandao Chemistry Co. Ltd., Shanghai, China) as a coordination reinforcement agent;
and white powder of aluminum acetylpyruvate (AA, Yuancheng Technology Development Co. Ltd.,
Wuhan, China) as the resin-curing catalysis.



Molecules 2020, 25, 3117 3 of 12

Reinforcement agent in 10% mass percentage (10 wt%) was adopted to individually prepare the
CE-based composites modified with EP (CE/EP), BMI (CE/BMI) and EP together with BMI (CE/BMI/EP),
as shown in Table 1, which lists the blending proportions of pristine materials for preparing CE–based
copolymer composites. As reference, pure CE resin material was also obtained through the identical
curing process as that used for the composites. The oven was heated up to a temperature of 40 ◦C,
persisting for 10 min under evacuation, and then put the forming mold coated with a mold-releasing
agent into the oven and heated up to 60 ◦C to preheat for 20 min. The heated mixing and curing
processes of synthesizing resin composites were carried out with an oil bath pan: the monomer matrix
material (BACE) was put into the beaker container in the oil bath pan and heated up to melt, then the
reagents of auxiliary materials (E51 and BMI monomer) and 0.3 wt % catalyst (AA) were added to be
evenly stirred for 10 min, leading to a uniformly blended melt that was subsequently poured into the
preheated mold in the oven being evacuated to vacuum; reaction temperatures of the curing processes
are controlled by a step-heating method as 140 ◦C × 1 h + 160 ◦C × 2 h + 180 ◦C × 2 h + 200 ◦C × 3 h +

230 ◦C × 3 h and naturally cooled down to ambient temperature. The casting samples were finally
achieved after demolding.

Table 1. Composition of pristine materials for preparing the CE–based copolymer composites.

Samples Mass Ratio
(CE:BMI:EP) Catalyst/wt%

CE 10:0:0 0
CE/BMI 10:1:0 0.3
CE/EP 10:0:1 0.3

CE/BMI/EP 10:1:1 0.3

Curing reaction of the CE monomers (pre-polymers) with reactive (–O–C≡N) functional groups is
addition polymerization without producing any by-products, in which the ring trimerizations will
occur to form a three-dimensional cross-linked network when being heated, as shown in Figure 1a,
which schematically illustrates CE self-polymerization.

BMI monomers also undergo self-polymerization when being heated, with the hydroxyl in one
imide ring as the electron donor and the electron-deficient double-bond in another imide as the
electron acceptor, in which two independent radicals are produced by the formation of electron
donor-to-acceptor complex to initiate the chain growth reactions, as schematically shown in Figure 1b
for BMI self-polymerization. The polymerization reactions for the ternary EP/BMI/CE composite
are complicated to generate various products, among which the curing reaction of EP is usually
accompanied with the curing agents to initiate the reactions, otherwise the BMI and EP can dissolve
each other in any proportion to be well blended into CE. In the curing process under gradient-heating,
the reaction products are dominated by the oxazolidinone organic structure and heterocyclic pyrimidine
groups [22,23], as shown in Figure 1c for the schematic polymerization mechanism of BMI and EP
blending with CE.
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2.2. Material Characterization and Property Test

In order to characterize the fractured micro-structures related to mechanical properties, the
cross-sections of the quick-frozen brittle fractures, which had been obtained by treating the demolded
sheet samples of 30 mm × 30 mm × 1 mm in liquid nitrogen, were observed by an ultra-high-resolution
cold field emission scanning electron microscope (SU8020, Hitachi Co. Ltd., Tokyo, Japan) with
a magnification of 2k under the accelerating voltage of 0.5 kV~30 kV. The tensile stress-strain
characteristics, by which the tensile strength, Young modulus, and breaking elongation can be
evaluated, were measured according to the GB/1447-2005 standard with a mechanical elongation
testing machine (QX-W300, Shanghai Qixiang Test Instruments Co. Ltd., Shanghai, China) to estimate
the material tenacity improved by the composite modifications. By employing the dynamic mechanics
analysis (DMA) method, the viscoelasticity of the resin-based composites is evaluated by measuring
the energy-storage modulus at different temperatures as implemented on a dynamic thermomechanical
analyzer (Q800DMA, TA apparatus Co. Ltd., Delaware, USA) under a nitrogen atmosphere with
the samples being scaled as 50 mm × 10 mm × 1 mm and a heating rate of 5 ◦C/min at the testing
temperature range of 30~300 ◦C.

According to the differential scanning calorimetry (DSC) method, the variation curves of heat-flow
vs. temperature before and after the resin curing process were tested using a thermal analyzer
(DSC-3, METTLER TOLEDO, Zurich, Switzerland) under a nitrogen atmosphere at the temperature
range of 30~300 ◦C with a heating rate of 10 ◦C/min. The exothermic-peak and glass-transition
temperatures were evaluated to investigate the curing process and heat-resistant characteristics of the
prepared materials.
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Direct current (DC) electrical insulation performances of the circular film samples with a diameter
of 80 mm and a thickness of 0.1 mm were tested with the film breakdown strength tester (BTF-072,
Changchun Peterford Technology Co. Ltd., Changchun, China) by measuring the dielectric breakdown
voltage according to the ASDTM149 standard, in which the voltage-increasing rate and dielectric
capacitance are controlled to 500 V/s and 6 kV·A, respectively. The tested results of the dielectric
breakdown field were analyzed though Weibull 2-parameter statistics. Alternative current (AC)
dielectric polarization behaviors (complex dielectric permittivity spectrum) of the circular film samples
with both sides being vacuum evaporated by aluminum film electrodes with a 25 mm diameter
were tested in a scanned frequency range of 10 kHz~10 GHz at ambient temperature utilizing a
wide-frequency dielectric spectrometer (Alpha-A, Novocontrol Co. Ltd., Frankfurt/Main, Germany)
to obtain the dielectric constant and loss spectra in a wave-region comprising x-band (radar band),
by which the dielectric properties and wave-transmittance of CE-resin composites are studied.

3. Results and Discussion

3.1. Micro-Morphology Characterization

The fracture cross-sections of pure CE, CE/BMI, CE/EP, and CE/BMI/EP composites after being
cured were characterized by SEM, as seen in Figure 2. It can be seen in the SEM images that no
observable phase separation arise in all four resin materials, implying good miscibility between the
blended components. The relatively smooth fracture surface of pure CE represents a typical brittle
fracture. The fracture surface of the CE/BMI composite appears to have a few ductile-vortex grooves
with long crack lines, and the bottom of the groove is flat, while the fracture of CE/EP composite shows
an increment of ductile-vortex grooves with short cracks. In comparison, the resin fracture of the
CE/BMI/EP composites exhibit dense and uniformly aligned striations of teared layers, indicating a
typical ductile fracture.
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It is indicated from Figure 2b that the CE/BMI copolymer composite has undertaken a
complete copolymerization reaction to form a homogeneous structure. Whereas due to insufficient
copolymerization, the separated phase of incompatible homopolymer arises from the self-polymerization
of CE monomers and EP fortifiers, as indicated by dispersed fragments on the fractured cross-section of
the CE/EP copolymer composite in Figure 2c. In contrast, the smaller and fewer fragments in Figure 2d
clearly illustrates the significant attenuation of homopolymer phase separation, caused by the more
sufficient ternary copolymerization of the CE/BMI/EP copolymer composite. Therefore, the EP/BMI
synergistic reinforcement can evidently promote the copolymerization reaction for CE-resin composite
modifications, which will effectively increase material toughness.

3.2. Mechanical Property

The tensile strength, Young modulus, and break elongation of the CE resin and composite
materials were evaluated from the elongation stress-strain tests with the results being shown in
Figure 3a. After being blended with BMI and EP reinforcements in the curing process, the prepared
CE-based composites show conspicuous enhancements in both tensile strength and break elongation.
Even though the CE/BMI and CE/EP composites, respectively, show lower and higher tensile elastic
modulus than that of pure CE, and the CE/BMI/EP composite acquires the highest value due to the
synergistic BMI and EP reinforcements. The CE/BMI/EP composite represents the most distinctive
improvement in tensile tenacity with a break elongation increment of 30% compared with CE resin,
due to the complete curing reactions of synergistic reinforcements. Cyanate and epoxy groups are fairly
compatible to be dissolved in any proportion and partially react to form oxazoquinolinone organic
structures with a substantially higher modulus, leading to stronger intermolecular forces and thereby
showing a higher elastic modulus under external mechanical loading [24]. A considerable number of
reticular triazine ring structures generated by heating self-polymerization in the cured CE resin have
been expanded and entangled by the BMI homopolymers, accounting for the reduced brittleness and
increased tensile strength of the composites [25].
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Figure 3. (a) The tensile strength, Young modulus, and break elongation of pure CE and CE-based
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after curing.

The DMA testing results of pure CE and CE-based composites are shown in Figure 3b.
The CE/BMI/EP composite acquires remarkably higher storage modulus at temperatures from 20 ◦C
to 200 ◦C, indicating that the increased intermolecular forces limit the movement of molecular chain
segments and a more stable molecular morphology has been achieved by a coordinated reinforcement
of BMI and EP. At the temperatures of 200~270 ◦C when approaching the glass-transition temperature
(Tg), the transformation of molecular-chain motions from localized vibrations to random global
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displacements results in the nosedive ability to store elastic deformation energy [26,27]. After the
temperature reached Tg ~ 270 ◦C, the polymer molecules of all the three composites will exist in a loose
or free aggregation state when elastic energy storage promptly tends to almost zero [28].

With the combination of SEM micro-morphology, mechanical tensile experiment, and DMA
analysis, it can be reasonably summarized that the fully blended and polymerized (after curing)
CE/BMI/EP composite with a tight molecular aggregation possesses excellent mechanical properties
including the quintessential ductile fracture and high tenacity. Therefore, we have successfully
developed a deformation-stable CE/BMI/EP composite with significantly improved performances of
tensile resistance and elastic energy storage.

3.3. Thermal Characteristics

Curing temperatures of CE resin and its composites were measured employing DSC dynamic tests
performed in resin-curing processes, as per the results shown in Figure 4a. The curing temperature
can be determined directly by the location of the characteristic exothermic peak in the dynamic DSC
spectrum for the curing process. The CE prepolymers can be cured by one specific self-polymerization
under the lowest temperature of 183 ◦C. After being modified by EP or/and BMI reinforcements,
the peak curing temperature is increased by 10~30 ◦C in reference to pure CE, in which the CE/BMI/EP
composite shows a significantly lower curing temperature of 194 ◦C than the other binary composites,
further confirming the synergistic effect of simultaneous BMI and EP modification that is beneficial
to curing tractability. Aside from the alike peak curing temperature like pure CE, the CE/BMI/EP
composite shows a wider temperature range around the DSC peak, implying that the polymerization
reactions are facilitated in a milder curing process and more suitable for casting. The curing reaction of
CE/BMI/EP composite consists of CE self-polymerization, CE copolymerization with EP or BMI, and
BMI self-polymerization [29,30], as schematically shown in Figure 1c.
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Glass-transition temperature Tg is an essential thermal property of resin materials, which indicates
the thermal stability and determines the working temperature range in thermodynamic environments.
The cured materials of CE and modified composites were also tested for the DSC temperature spectra
by which Tg can be effectively evaluated, as seen in the results shown in Figure 4b, which is well
consistent with the DMA results of Figure 4. The structural morphology of cured CE transforms at
240 ◦C (Tg), which is lower than the CE-based composites due to the mixture effects on the melting
point of a multiple-phase system. Otherwise, the ternary CE/BMI/EP composite shows an approximate
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Tg of 289 ◦C, which is definitely higher than the other binary composites, implying that the preferred
enhancement of heat-resistance has been achieved in concomitance with mechanical modification.

The polymerization structures of the ternary composite obtained by simultaneous EP and BMI
modification in curing reaction process were more complex than the other resin materials, leading to the
qualitative changes in polymer aggregation. The self-polymerization reaction occurs in the CE monomer
matrix after being heated to curing temperature to form the regularly reticulated configurations of
densely distributed triazine-rings, which are capable of restricting the molecular segments to a stable
state below a specific high temperature [31], whereas EP or BMI reinforcement will abate the regularity
of CE reticulated configurations and thus reduce the intermolecular forces, resulting in a decreased
kinetic energy needed for molecular chains to escape from van der Waals interactions at a lower Tg.
Nevertheless, in the extended curing process of the CE/BMI/EP composite, the copolymerizations of
EP and BMI with CE monomers can produce various heterocyclic derivatives of pyrimidine, which
will substantially intensify intermolecular entanglements. Meanwhile, the formation of CE network
structures is expedited by BMI reinforcement with a minority of BMI self-polymerization reactions,
which will affirmatively improve the crosslinking density of curing networks and the aggregation of
polymer products. Therefore, a larger kinetic energy of molecular segments is required to destroy the
polymeric aggregating configurations for the qualitative transformation from the elastomeric state to
amorphous glassy morphology. Moreover, the more flexible oxazolidone groups will be generated
from the reactions of EP with CE monomers, which hinders the segment movements of molecule
chains and will raise material viscosity. Accordingly, a higher temperature is required for qualitatively
exacerbating molecule vibrations to break the viscous resistance of the CE/BMI/EP composite, resulting
in the evident inhibition on glass-transition and the excellent heat-resistance retained from the CE resin.

3.4. Electrical Performance

Two-parameter Weibull Statistics was employed to analyze the dielectric breakdown strength
(DBS) results being tested at ambient temperature, as shown in Figure 5. Scale-parameter represents
the characteristic breakdown field at 63.2% probability, and shape-parameter indicates the dispersion
of the breakdown data. The characteristic breakdown field Eb and shape-parameter β from the fitted
Weibull distributions of DBS data are listed in Table 2. Compared with the CE resin, the CE/BMI/EP
composite presented a 40% increment of Eb and 19% reduction of β, which indicate the remarkable
improvements of DBS and high-voltage resistance stability, while the two binary composites show
only 11% DBS enhancement with degraded high-voltage resistances. The polymerization reactions of
the ternary composite in the curing process are more complicated than the pure CE resin and binary
composites, which render the multiple heterocyclic structures including the oxazoquinolinone and
pyrimidine produced by the CE copolymerizations with EP and BMI, respectively, leading to the
abatement of intermolecular polarity and the amelioration of electrical insulation performance [32].
Meanwhile, the self-polymerization reactions of CE and BMI monomers form interpenetrating polymer
network structures that can prevent the curing molecules from aggregating in a localized space and
impede the space-charge accumulating on structural defects under external electric field, resulting in
substantial improvements of DBS and insulation-stability.

Table 2. Weibull distribution fitted 2-parameters in 95% confidence interval from the tested dielectric
breakdown fields: characteristic breakdown field Eb at 63.2% probability and shape parameter β.

2-Parameter

Eb/(kV/mm) β

CE 66.33 14.38
CE/BMI 71.13 14.64
CE/EP 73.32 18.73

CE/BMI/EP 87.94 11.64
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CE/BMI/EP composites.

Dielectric characteristics of wave-transmittance materials determine the electromagnetic-wave
transmissivity and is the most important index to evaluate the performance of radome. The relative
dielectric constants and dielectric loss of the pure CE and CE/EP, CE/BMI, and CE/BMI/EP composites
as a function of AC electric field frequency are shown in Figure 6. The dielectric permittivities of the
four materials all show downward trends in a wide frequency range of 10 kHz~10 GHz, in which the
CE/BMI/EP composite is optimal with the lowest real dielectric spectrum between 2.6 and 2.8 in the
smallest variation amplitude, which ensures obtaining an efficient and stable signal transmission in
the X-band. The totally larger dielectric loss of the CE/EP composite increases monotonously with the
rising frequency in contrast to the spectrum fluctuations of the other three materials, while the lowest
dielectric loss of 0.002~0.004 has been acquired by the CE/BMI/EP composite in the whole testing
frequency range. In particular, the CE/BMI/EP composite persists with a constant minimum value
of dielectric loss in 106~108 Hz, which comprises a characteristic low frequency x-band of skywave
over-the-horizon radar.
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Figure 6. Complex dielectric functions of the pure CE and CE/EP, CE/BMI, and CE/BMI/EP composites:
(a) relative dielectric constant and (b) dielectric loss tanδ.

AC dielectric spectra indicate that the CE/BMI/EP composite also has earned a promotion in
dielectric properties. The low dielectric polarization characteristics of CE resin originate from the polar
configuration formed by self-polymerization. After the collaborative modifications of EP and BMI
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reinforcements, a new stable composite structure with smaller intermolecular voids has been achieved
through a variety of copolymerization reactions, which restricts the movements of polar structures and
obtains a faster dielectric response around intermolecular voids. In contrast, the dense reticulations of
CE resin are partially interrupted by BMI or EP reinforcement to form larger intermolecular spaces
and possibly cause two-phase interfaces in the binary composites, leading to a higher activity of polar
molecule segments and the interfacial polarization with longer relaxations. Therefore, the synergistic
effect of coordinate reinforcement is also valid for improving the dielectric performances of CE
resin. Simultaneously, with a higher breakdown-resistance than CE, the low dielectric constant and
loss of CE/BMI/EP composite determines the high-quality signal transmission coefficient and the
high-efficiency electromagnetic wave transmittance in the radar wave-band, suggesting a preferable
wave-transmittance material in prospective applications of antenna radomes. To this end, mechanical,
thermal, and dielectric characteristics of the CE/BMI/EP composite are listed in Table 3 in comparison
with other reports, which highlights the comprehensive competitiveness of the strategic CE-resin
modifications represented in this paper.

Table 3. Comprehensive characteristics of CE-resin composites for comparison.

Composites/ Characteristics AlPO4/CE
[33]

PPCE/
BMI [8]

CE/EP/LC
[34]

CE/EP/
PEK-C [35]

CE/BMI/
HBPSi [28]

CE/BMI/EP
Present

Tensile strength/MPa 90 72 62 86 82 92
Tensile modulus/GPa 3.6 – 3.6 3.5 3.0 3.8
Elongation at break/% 5.42 3.67 3.35 4.44 3.96 5.82

Curing temperature/◦C 210 135 198 185 – 194
Tg/◦C 271 277 280 234 268 289

Relative dielectric constants (10 GHz) 3.05 3.10 2.74 – 2.97 2.64

Dielectric loss tanδ (10 GHz) 0.0065 0.0170 0.0049 – 0.0063 0.0040

Transmittance band (tanδ ≤ 0.01) Ku S C – S X

4. Conclusions

A resin-based ternary-composite with high heat-resistance and preferable radar-band transmission
has been developed to ameliorate the mechanical and dielectric properties of a cyanate copolymer used
for antenna radomes. The synergistic reinforcement method is suggested to synthesize resin-based
transmission materials being capable of resisting high temperature and strong electric field. The CE
resin as a fair wave-transmittance material is significantly modified in terms of the mechanical and
dielectric properties by a synergistical reinforcement scheme of blending EP and BMI into the CE
matrix. The prepared materials have been systematically investigated by the micro-morphology
SEM and mechanical elongation experiments in combination with dynamic thermomechanical
analyses. The curing process and glass-transition are shown in the DSC tests, and the DC electrical
insulation and wave-transmittance performances are evaluated through DBS Weibull statistics and
AC complex dielectric spectra. The CE/BMI/EP composite achieved by coordinately blending BMI
and EP reinforcements represents a preferable processing character of curing at the temperature of
194 ◦C with a wide and flat exothermic peak for easy casting. The cured CE/BMI/EP composite
shows a higher glass-transition temperature with an improvement in heat-resistance compared with
pure CE resin. The fractured surface of the CE/BMI/EP composite illustrates the evident ductile
striations, and the tensile strength approaches 96 MPa with a break-elongation of 5.9%, implying
that the intermolecular forces have been enhanced by simultaneously blending BMI and EP into the
CE matrix to realize a compatibly copolymerized ternary composite. Meanwhile, the CE/BMI/EP
composite acquires the considerable increments in mechanical energy-storage and stiffness, confirming
the promoted tenacity observed by SEM. Compared with the binary-composite, the highly intensified
intermolecular interactions in the ternary composite result in the reduction of free spaces for charge
transports, as indicated by the DBS increment of 40%. The relative dielectric constant and dielectric
loss of the CE/BMI/EP composite decline to 2.6~2.8 and 0.002~0.004, respectively, in a wide frequency
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range of 10 kHz~10 GHz, which means an extremely low dielectric polarization specified for high
quality transmittance materials. In contrast to the CE resin, the CE/BMI/EP composite as an efficient
wave-transmittance material possesses the analogical processability and higher heat-resistance as well as
with the mechanical strength being significantly improved. In a wide X-band of radar communications,
the CE/BMI/EP composite represents an evident reduction in dielectric permittivity and transmission
loss in comparison to the CE resin, demonstrating a notably higher electromagnetic wave-transmittance.
In brief, the CE/BMI/EP composite acquires an appreciable amelioration simultaneously in mechanical
tensile strength, electrical insulation performance, and heat-resistance, promising its competency in
applications for the radar radomes requiring for high mechanical strength and electrical insulation.
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