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Abstract: The rise in dementia among the aging Korean population will quickly create a financial
burden on society, but timely recognition of early warning for dementia and proper responses to
the occurrence of dementia can enhance medical treatment. Health behavior and medical service
usage data are relatively more accessible than clinical data, and a prescreening tool with easily
accessible data could be a good solution for dementia-related problems. In this paper, we apply a
deep neural network (DNN) to prediction of dementia using health behavior and medical service
usage data, using data from 7031 subjects aged over 65 collected from the Korea National Health
and Nutrition Examination Survey (KNHANES) in 2001 and 2005. In the proposed model, principal
component analysis (PCA) featuring and min/max scaling are used to preprocess and extract relevant
background features. We compared our proposed methodology, a DNN/scaled PCA, with five well-
known machine learning algorithms. The proposed methodology shows 85.5% of the area under
the curve (AUC), a better result than that using other algorithms. The proposed early prescreening
method for possible dementia can be used by both patients and doctors.

Keywords: deep learning; deep neural network; dementia; feature extraction; prediction; principal
component analysis

1. Introduction

Dementia is closely related globally to elderly disability and dependency. Nearly
50 million people suffer from dementia, and about 10 million new patients appear yearly [1].
Physical, psychological, social, and economic aspects of dementia affect a diverse group of
people, including individuals with dementia as well as their caregivers, family members,
and society in general. According to World Alzheimer’s report in 2015 [2], the prevalence
rate of dementia in 2015 in the Asia Pacific High Income demographic, which includes
South Korea, was about 7%. The increased rate of dementia patients is also expected
to reach about 56% between 2015 and 2030 [1]. The increasing prevalence of dementia
patients in Korea has caused treatment costs and social burdens for dementia patients
to significantly increase. The National Assembly Budget Office has asserted that the
social costs of dementia will increase from 11.7 trillion won in 2013 to 23.1 trillion won in
2030 and 34.2 trillion won in 2040 [3]. Despite the importance of establishing dementia
policy, epidemiological studies related to dementia are deficient, creating a great need for
related research.

The primary signs and symptoms of dementia include memory loss, difficulty with
tasks, disorientation, language problems, behavioral changes, and loss of initiative. Signs
and symptoms related to dementia occur in three stages, i.e., early stage, middle stage, and
late stage. The early stage is somewhat ambiguous due to the disease’s gradual progress; it
includes events such as losing track of time, forgetfulness, and becoming lost in familiar
places. The signs and symptoms of the middle stage are clearer than those of the early
stage; people in the middle stage sometimes become lost at home and forgetful of current
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events and names. Difficulty with communication and increasing need for personal care
are other symptoms. Behaviors are changed, with repeated questioning and wandering.
The late stage reflects abnormal symptoms with virtually total dependence and inactivity
due to serious memory disturbances. Detailed symptoms and signs include difficulties in
walking, radical behavioral changes, failures at recognizing time and place, and failures
in recognizing relatives and friends. These and other signs and symptoms represent
differences among the stages associated with the progress of dementia [1].

The general diagnosis process of dementia requires comprehensive evaluation such as
listening to medical history, cognitive function and mental state evaluation, neuropsycho-
logical testing, evaluation of daily-living activities, clinical laboratory testing, and brain
imaging testing [1,3]. During the first stage, clinicians evaluate cognitive function and
mental state based on the Mini-Mental State Examination (MMSE) tool [4]. During the
second stage, the Korean version of the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD-K) is used as a neuropsychological test for comprehensively assessing the
state of cognitive functionality of dementia patients [5]. During the final stage, magnetic
resonance imaging (MRI) or computed tomography (CT) and hospital-based blood tests
are used to diagnose patients. These imaging techniques are simple tools that can also be
used to highlight morphology changes and irregularities, with MRI and CT scans mostly
used to distinguish the biomarkers of neurodegenerative diseases [6]. The test results
permit placement of suspected patients into dementia, mildly cognitive-impaired (MCI),
and normal categories [7].

There have been many recent efforts based on big data analysis to extend precision in
many medical areas [8–10]. Precision medicine can be loosely defined as patient-centric
therapy and diagnosis [11]. Improving prognostic models based on electronic health
records (EHRs) and healthcare claim data [12] can be used to support precision medicine.
Big data analysis associated with a deep learning method has been used to predict health
status or disease [13–15], and deep learning has recently been widely applied in many
areas, with various satisfactory results reported where previous conventional solutions
have been inadequate [16,17]. Xu et al. (2017) used the deep learning model to achieve
more solid and generally better model performance and least absolute shrinkage than for a
selection operator (LASSO) model, a generalized linear model (GLM), and an autoregres-
sive integrated moving average (ARIMA) model [18]. Most image data produced by deep
learning as supervised learning have been annotated by well-trained experts [19,20]. The
performance of image-based deep learning models may possibly depend on the training
and experience of the involved radiologist. Although deep learning has been used to
predict occurrence of diverse diseases, few studies have attempted to predict dementia
based on big non-image data analysis.

In this paper, we examine factors affecting dementia incidence and develop a predic-
tive model based on scaled principal component analysis (PCA) and DNN, employing
the 2001 and 2005 Korea National Health and Nutrition Examination Survey (KNHANES)
datasets [21]. The proposed methodology specifically uses the indirect and limited number
of features from this easily accessible data to predict dementia. The proposed methodol-
ogy will provide appropriate information to healthcare policymakers for improving the
quality of medical care and evaluating its appropriateness, and will improve efficiency
in use of diagnostic resources. The proposed methodology was validated for potential
dementia prediction using massive EHRs, and we expect to expand the proposed method
for prescreening various other health issues in the e-health field.

2. Related Work

There have been numerous studies using deep learning approaches to resolve issues
in diverse areas [22–26], and deep learning methods for detecting many diseases support
the further development of computer-aided diagnosis systems [27–29]. The detection or
prediction performance of deep learning/machine learning on different diseases has been
verified using diverse approaches and datasets
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Previous heuristic or nature-inspired methods for detecting dementia and some deep
learning methodologies using imaging data have been reported. Morales et al. [30] applied
several machine learning models such as the support vector machine (SVM) and different
types of naïve Bayes to predict dementia. That methodology used 112 variables obtained
from MRIs of 45 patients (14 patients with dementia). Although the prediction accuracy
was high (96%), the dataset sizes were relatively small. Korolev et al. [31]. proposed
a prognostic prediction model related to MCI-to-dementia progression using MRI data.
Most recently, Battineni et al. [32] applied the support vector machine (SVM) using a long-
term collection of 373 MRI data from 150 subjects in the Open Access Series of Imaging
Studies (OASIS-2). They categorized the dataset in terms of clinical dementia ratio scores,
viz., non-demented (190), demented (146), and converted (37), and the accuracy and
precision were respectively 68.75% and 64.18%. This study used a relatively low number of
subjects and exhibited low prediction performance. Frolich et al. [33] used a bootstrapping
wrapper around an SVM and a linear kernel based on the dataset of the MCI patients.
From among the 1071 MCI patients, they selected a subsample of 115 patients who had
progressed to dementia, and an AUC value up to 0.83 was shown. They concluded that
using two biomarkers of neurodegeneration was no better than using a single parameter
for diagnosing the progressed dementia from MCI. Zhou et al. [34] applied a stage-wise
deep neural network (DNN) to diagnose dementia through feature-learning methodology
using neuroimaging data. The subject ratio of actual positive and negative dementia was
190 and 226, and the normal and dementia accuracies were 60.8% and 58.7%, respectively.
Machine learning-based approaches using image data may also be limited as screening
tools because of the subtle atrophy during early stages of the disease and overlap in atrophy
patterns between dementia types.

There have been a few recent studies regarding dementia prediction based on statistical
data. So et al. [35] provided a dementia-detection system using several machine learning
techniques, using data consisting of 9799 in the normal group and 4201 in the cognitive-
decline group. F-measure values of normal based on multi-layered perceptron and of
dementia based on support vector machine were 0.97 and 0.73, and although the overall
detection performance of the study was relatively accurate, their method used mental state
data from relatively sparse medical records. Their method divided the detection procedure
into two phases. The first screening was accurate, but the second achieved relatively low
performance. Barnes et al. [36] developed an electronic health record (EHR)-based tool to
detect patients with unrecognized dementia. Among 16,655 records, 15,640 indicated no
dementia, 498 indicated unrecognized dementia, and 517 indicated recognized dementia.
They applied logistic regression with LASSO penalty to build a prediction model with an
AUC value of 0.809. Although their discrimination was good, with a large population’s
EHR, the generalizability was somewhat limited because the majority of participants
were white, well-educated, and English-speaking. Park et al. [37] developed machine
learning-based prediction models using health and healthcare history data to predict future
incidence of Alzheimer’s disease. The total number of data points for elders of age greater
than 65 years was 40,736 (614 dementia and 2026 probable AD data). They used multiple
machine learning techniques in one-year prediction with AUC of up to 0.775, along with
bootstrapping to make the data balanced and ensure that the diagnoses of AD in the
database were not clinically ascertained.

3. Subjects

The materials used in this study were obtained from the 2001 and 2005 KNHANES,
performed by the Korea Centers for Disease Control and Prevention (KCDC). The KN-
HANES was conducted nationwide as a cross-sectional study in accordance with Article
16 of the National Health Promotion Act. In KNHAES, participating households were
randomly selected and sampled using multilevel stratification according to geographic
area [38]. The KNHANES corresponds to research conducted by the government for public
welfare in accordance with Article 2 of the Bioethics Act and is government-approval
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statistics based on Article 17 of the Statistical Act (Approval No. 117002). Researchers
were allowed to use the data through the raw material use application procedure on the
website of the Center for Disease Control and Prevention. Of the 72,023 participants who
responded to KNHANES’ medical utilization and health behavior in 2001 and 2005, 7031
were adults over the age of 65. Based on previous studies and statistical indicators [39], we
selected a population aged greater than 65. Of the subjects, the number of patients with
dementia was 47 in 2001 and 56 in 2005. The presence of dementia, which is a dependent
variable, was identified using the following question: “Have you had dementia for the past
year?” or “Is there a limitation of activity due to dementia?” A total of 7031 subjects were
finally included in this study. The dataset was divided into two parts: training (66%) and
testing (34%) data, as shown in Figure 1.

Figure 1. The data selection of the study population from KNHANES.

4. Method
4.1. Overview

In the proposed methodology, 22 variables were used, such as year, gender, age, type
of insurance, region (city/rural), marital status, education, the number of family members,
household income, subjective health status, stress awareness, smoking status, the experi-
ence of drinking, regular exercise, and the presence or absence of comorbidity (diabetes
mellitus, arthritis, hypertension, myocardial infarction, stroke, tuberculosis, asthma, and
chronic renal failure). Among the 22 variables, based on previous studies [40,41], we
selected age, sex, education, living place, insurance type, income, chronic disease, level
of depression, drinking, smoking, and ADL. Other possible and indirect variables were
used for testing the predictivity of the proposed model. In order to extract the numerical
type of features from the raw input data, we applied a scaled PCA that is able to estimate
the dementia-related risk factors. The dataset includes only 103 subjects with a history of
dementia among the 7031 subjects. The developed system architecture is shown in Figure 2.
First, the KNHANES data, for 22 input variables from 7031 subjects, was used to train (66%)
and test (34%) models. In order to validate the training process, 30% of the training sample
was used. Second, the categorical variables were converted to continuous variables based
on a scaled PCA method as a preprocessing. Third, we trained the DNN model using the
preprocessed variables and evaluated the predictive performances with the annotations
labeled by clinicians. In order to evaluate the accurate testing results, the data for testing
models were completely separated from the training data for testing.

Figure 2. The Flow Chart of the proposed DNN/scaled PCA approach.
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4.2. Preprocessing

PCA is a method of converting the raw input data to new coordinate systems for
extracting valuable information from complicated datasets [42]. In general, PCA is used to
reduce the dimensions of the raw input data and find the optimal hidden characteristics for
generating the preprocessed inputs of classification algorithms [43]. The used KNHANES
dataset, however, consists of mostly categorical/binary and a small number of continuous
variables with a lot of missing data. The categorical/binary variables need to be converted
to continuous variables for increasing the overall detection performance due to a lack of
specific information. We applied diverse scalers for enhancing the performance of PCA.
The PCA with the scaler preprocessed all input data to generate new 22 variables to reduce
the effect of the discrete data. The combinations of principal components (PCs) of six
different PCAs are shown in Figure 3: (a) 10th and 11th PCs with quantile transformer
scaler; (b, c) 17th, 18th, 19th, and 20th PCs with min/max scaler; (d) 9th and 20th PCs
with standard scaler; (e, f) 8th, 9th, 12th, and 13th PCs without scaler. As can be seen in
Figure 3b,c, the dementia data (red boxes) are gathered on one side, making it possible
to see that the min/max method provides meaningful feature values compared to other
PCA combinations. In addition, according to the testing results shown in Table 1, a DNN
with PCA-min/max-transformer scaler shows the best mixture, and Figure 4 shows the
percentage of variance.
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Figure 3. Diverse Feature scaling plots with the PCA: class 0 is non-dementia patients (blue triangle) and class 1 is dementia
patients (red rectangular): (a) 10th and 11th PCA with quantile transformer scaler; (b) 17th and 18th PCAs with min/max
scaler; (c) 19th and 20th PCAs with min/max Scaler; (d) 9th and 20th PCAs with standard scaler; (e) 8th and 9th PCAs
without scaler; (f) 12th and 13th PCAs without scaler.

Table 1. AUC results based on the various PCA types.

Effects of PCA
Type Min/Max Quantile Transform Standard PCA without Scaler without PCA

AUC 0.855 0.788 0.804 0.779 0.695

The top AUC value is highlighted in bold.
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Figure 4. The percentage of variance in PCA-min/max-transformer scaler.

4.3. DNN Architecture

A simple feed-forward neural network was used to train the proposed model with
a standard backpropagation algorithm. We have trained diverse combinations and opti-
mized hyperparameters including the activation function, the regularization technique, the
number of hidden layers, and the number of neurons in each layer. The network architec-
ture of four hidden layers with each hidden layer containing 30 neurons showed the best
performance. The last layer, with two neurons, generated a regression output. The ReLU
activation [44] was applied in each hidden layer, sigmoid was applied in the output layer,
and the dropout [45] probability was 0.4 for all hidden layers. Adam optimization [46]
with the binary cross-entropy and 0.001 of the learning rate were used for the training
process. We did not apply the weighted binary cross-entropy because increasing the weight
of the minor classes’ losses may cause instability for optimizing performance in the highly
imbalanced dataset [47]. The optimized hyperparameter choice is robust and has shown
better predicting performance. Batch normalization [48] after the first three hidden layers
and dropout were applied to avoid overfitting and unstable convergence. Figure 5 shows
the detail of the DNN architecture.

Figure 5. The architecture of the proposed DNN.

We conducted comparative analysis using six classification algorithms: random for-
est (RF) [49], AdaBoost [50], multilayer perceptron (MLP) [51], Gaussian Naive Bayes
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(GNB) [52], SVM [53], and our proposed DNN with min/max scaler. All classifiers were
evaluated using common performance metrics such as recall, specificity, precision, accuracy,
receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) using
the KNHANES dataset. For a better comparison between the classifiers, we attempted
to set the similar best-effort sensitivity and specificity results for all methods. Overall,
performance can be compared using AUC value as a single performance metric to better
reflect algorithm performance [54].

4.4. Performance Metric

In general, although the detection performance of the binary classifier was evaluated
by accuracy (Acc), the KNHANES dataset is imbalanced in that there was much more
non-dementia (n = 6928) data than dementia (n = 103) data. To evaluate the imbalanced
data, three more metrics were used, viz., recall (Rc), specificity (Sp), and precision (Pc). Rc
is the probability of predicting the subjects with dementia, Sp indicates the probability of
detecting the subjects with non-dementia, and Pc reflects the probability of the algorithm’s
correct classification of dementia status among the data classified as dementia. The four
parameters, indicating positive or negative predictions based on true or false conditions,
were used to screen status for the binary classifier. Mathematically, these performance
metrics can be calculated using Equations (1)–(4).

Rc = TP/(TP + FN) (1)

Sp = TN/(TN + FP) (2)

Pc = TP/(TP + FP) (3)

Acc = (TP + TN)/(TP + FN + FP + TN) (4)

where the true-positive (TP) is correctly identified as dementia and the true-negative (TN)
is correctly identified as non-dementia. The false-positive (FP) and false-negative (FN) are
incorrectly identified status for dementia and non-dementia, respectively.

4.5. Hyperparameter Tuning for Optimal Result

The training environment includes several hyperparameters that must be tuned for
best-effort performance. We have tuned hyperparameters, including the DNN depth and
the number of nodes, to build the optimal model and improve prediction performance.
To the best of our knowledge, there is no general rule for tuning hyperparameters, so we
established a system to train the depth of 2 to 8 layers and 10 to 50 nodes based on trial
and error. To minimize the overfitting problem, we adopted two techniques, dropout and
batch normalization. Dropout works as a weighting to prevent focusing on outcomes from
specific hidden nodes, and batch normalization prevents the loss of feed-forward data
on initialization in terms of appropriate weighting. We have trained the model based on
dropout values ranging from 0.1 to 0.5 and, based on the testing, the optimal dropout value
was chosen as 0.4. Testing results based on hyperparameter tuning are shown in Table 2.

Table 2. AUC results based on the various hyperparameter setting combination.

Neurons
# of Neuron 10 20 30 40 50

AUC 0.783 0.783 0.855 0.822 0.816

Hidden Layers # of Layers 2 3 4 5 8
AUC 0.822 0.832 0.855 0.815 0.741

Epochs Epoch 25 30 40 50 100
AUC 0.788 0.795 0.814 0.855 0.811

Drop-Outs % of Drop-Out 0.1 0.2 0.3 0.4 0.5
AUC 0.817 0.821 0.795 0.855 0.781

The top AUC values are highlighted in bold.
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5. Results and Discussion

We have tested various setting combinations and get the best DNN architecture for
dementia prediction including four hidden layers, each with 30 neurons. The testing
environment sets training epochs as 50 and a batch size as 10. We applied the preprocessed
inputs of the scaled min/max PCA to the trained DNN model and obtained the confusion
matrix, as shown in Table 3.

Table 3. Confusion matrix of the proposed model.

Confusion Matrix
Parameters

Predicted
(Dementia)

Predicted
(Non-Dementia)

Actual (Dementia) 23 (TP) 12 (FN)
Actual (Non-Dementia) 455 (FP) 1901 (TN)

Table 4 summarizes the performance characteristics of the six classification algorithms
for classifying subjects as having dementia for the given testing data. The optimal threshold
for classifying dementia was 0.025, based on all model parameters, resulting in an Acc of
81.9%, an Rc of 68.6%, and an Sp of 82.1%, as marked italic. The AUC value represents the
overall performance as one value; the top two AUC values are highlighted in bold. All
thresholds of the compared classifiers have been adjusted to balance values of sensitivity
and specificity. Figure 6 compares the six classifiers using ROC curves with the best ROC
curve marked as a bold red line. The proposed scaled PCA/DNN method produced the
best result, followed by the RF method. Based on comparative results, we conclude that
the scaled PCA/DNN method outperforms the other classifiers in terms of all performance
metrics. We also compared the proposed method with other studies, as shown in Table 5.
Although previous studies used different statistical features with different conditions,
such as the ratio of normal and dementia and performance metrics, the proposed method
produced the best AUC result (0.855) compared to the others’ AUC values, except for [37]
that used a highly balanced dataset.

Table 4. Performance result of the proposed model with min/max scaled PCA.

Classification
Model Threshold Rc Sp Pc Acc AUC

DNN 0.025 68.6 82.1 5.4 81.9 85.5
RF 0.02 65.7 75.3 3.8 75.2 77.6

ABC 0.465 62.8 73.7 3.4 73.5 74.1
GNB 0.035 65.7 79.3 4.5 79.1 77.2
MLP 0.005 54.2 79.1 3.7 78.8 75.3
SVC 0.035 65.7 64.5 2.6 64.5 67.6

The top two AUC value are highlighted in bold and DNN results are marked as italic.

Table 6 shows the derived correlation coefficients of the 22 input variables with respect
to dementia; the best correlation (greater than 0.14) is marked in bold and the next three
informative values (over ±0.07) are marked in red italics. Based on Table 3, age is the
most correlated input variable, with the next three factors being the number of family
members, stroke, and subjective health status. The data in this study are basically a type of
subjective health awareness that reflects a self-reported assessment of one’s own health
status. While the survey of subjective health perception of respondents is relatively simple,
the survey of actual health status is much more difficult. Although the questionnaires
of subjective health perception based on the Likert scale of 4 or 5 are the variables that
contained possible measurement errors, subjective health perception has been widely
used in social science research as a proxy variable for actual health status. We considered
not only the individual subjective health status, but also the interconnected relationships
based on the proposed scaled PCA and DNN. Thus, although the individual correlation
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coefficient of the 22 variables in Table 6 is relatively low, the overall AUC of the proposed
methodology shows high performance.

Figure 6. Comparison of ROC curves of six classification methods.

Table 5. Comparison of performance and methodology.

Methods
# of Subject

# of Features Performance Note
Normal Dementia

RF, SVM [37] 40,736 614 4894 AUC (0.775) -

Logistic Regression
with LASSO [36] 16,655 498 EHR AUC (0.809) Patients with

unrecognized dementia

MLP, SVM [35] 9799 4201 14 for phase 1
31 for phase 2 F-measure (0.739) High positive cases

PCA/DNN 6928 103 22 AUC (0.855) -

Table 6. Correlation coefficients of the 22 variables.

Variable Correlation Variable Correlation

year 0.003220 arthritis −0.033356
region −0.000858 diabetes −0.004743

age 0.147275 hypertension −0.034224
gender 0.035885 stroke 0.075265

marital status −0.059214 myocardial infarction −0.004670
education −0.033166 tuberculosis −0.013385

insurance type 0.004591 asthma −0.011954
the number of family members 0.078062 chronic renal failure 0.017108

household income 0.018608 smoking status −0.025947
subjective health status 0.074173 drinking −0.027069

stress awareness −0.036353 regular exercise −0.026474
The best correlation (greater than 0.14) is marked in bold and the next three informative values (over ±0.07) are
marked in red italics.

The proposed methodology was able to predict the dementia population, based on
limited or indirect data such as health behavior and medical service usage records. It could
be an initial screening tool to facilitate diagnosis or reduce medical costs. The limitations
of this study are the use of a seriously imbalanced dataset and a lack of longitudinal data
reflecting the progress of dementia. From our previous research, the proposed methodology
has powerful potential for using big data to predict diverse health-related problems such
as stroke [55] and osteoarthritis [56], and we expect that a balanced dataset could resolve
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problems of the high false-positive rate and low precision. The survey data also include
binary or categorical information, and although we used PCA preprocessing to convert
discrete data to continuous form for improving resolution, additional input variables were
still required. The dataset we used was also targeted to subjects who possibly might suffer
from dementia in the near future, and subjects currently under medical treatment for
dementia were excluded. This pre-selection process could impact the overall predictive
performance of the proposed model.

6. Conclusions

In this paper, we have proposed an automatic dementia-prediction methodology
that uses a combination of a PCA with min/max transforming scaler and a DNN with
7031 subjects from a health behavior and medical utilization record dataset. No subjective
inputs were used in the proposed methodology. The proposed model can be used for early
detection of potential dementia patients who might need additional medical checkups and
treatment at the appropriate time before disease exacerbation. Because of unsupervised
clustering, the proposed scaled min/max PCA does not require manual variable selec-
tion. Because input data were relatively simple, DNN was applied to examine significant
variables and scaled min/max PCA values to extract features as continuous variables
from discrete/categorical input variables. The Rc, Sp, and AUC values resulting from the
proposed method were 68.6%, 82.1%, and 85.5%, respectively. The proposed methodology
predicts not only future dementia patients but also other types of diseases using data that
include limited input variables.

Future studies should examine the analysis of other health behavior and medical
service usage datasets for diverse diseases requiring prescreening. We also expect to
use heterogeneous input data such as detailed variables and physiological signals to
achieve better prediction performance and to apply the proposed model using a more
balanced dataset to reduce the high false-positive rate and improve precision. Finally,
we will extend auto-fine-tuning to reduce training time and use a larger-scale method to
improve performance.
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