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Abstract

Background: Robust transcriptional signatures in cancer can be identified by data similarity-driven meta-analysis of gene
expression profiles. An unbiased data integration and interrogation strategy has not previously been available.

Methods and Findings: We implemented and performed a large meta-analysis of breast cancer gene expression profiles
from 223 datasets containing 10,581 human breast cancer samples using a novel data similarity-based approach (iterative
EXALT). Cancer gene expression signatures extracted from individual datasets were clustered by data similarity and
consolidated into a meta-signature with a recurrent and concordant gene expression pattern. A retrospective survival
analysis was performed to evaluate the predictive power of a novel meta-signature deduced from transcriptional profiling
studies of human breast cancer. Validation cohorts consisting of 6,011 breast cancer patients from 21 different breast cancer
datasets and 1,110 patients with other malignancies (lung and prostate cancer) were used to test the robustness of our
findings. During the iterative EXALT analysis, 633 signatures were grouped by their data similarity and formed 121 signature
clusters. From the 121 signature clusters, we identified a unique meta-signature (BRmet50) based on a cluster of 11
signatures sharing a phenotype related to highly aggressive breast cancer. In patients with breast cancer, there was
a significant association between BRmet50 and disease outcome, and the prognostic power of BRmet50 was independent
of common clinical and pathologic covariates. Furthermore, the prognostic value of BRmet50 was not specific to breast
cancer, as it also predicted survival in prostate and lung cancers.

Conclusions: We have established and implemented a novel data similarity-driven meta-analysis strategy. Using this
approach, we identified a transcriptional meta-signature (BRmet50) in breast cancer, and the prognostic performance of
BRmet50 was robust and applicable across a wide range of cancer-patient populations.
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Introduction

Breast cancer is the most common type of cancer in women and

the second-leading cause of cancer death among women in the

United States. A molecular biomarker that can predict the

likelihood of cancer progression to invasive or metastatic disease

can guide how aggressively patients are initially treated [1]. There

is a clear need for a better understanding of how molecular profiles

relate to cancer phenotypes and clinical outcomes and for new

cancer biomarkers with definable and reproducible performance

in diverse patient populations.

The introduction of genome-scale gene expression profiling has

led to the identification of specific transcriptional biomarkers

known as gene expression signatures. The discovery of gene

expression signatures from any single well-powered study is

relatively straightforward. Some signatures have utility as

transcriptional biomarkers for classifying patients with significantly

different survival outcomes in breast cancer [2,3]. For example,

transcriptional profiling of primary breast cancer has been used

previously to identify a 70-gene signature (marketed as Mamma-

Print but designated here as BRsig70) [3], a distinct 76-gene

signature (BRsig76) [2], and others (Oncotype DX [4,5],

TAMR13 [6], Genius [7], GGI [8], PAM50 [9] and PIK3-

CAGS278 [10]). Typical of other transcriptional biomarkers, both

BRsig70 and BRsig76 were derived from a training set from

a single study and then validated with a test set from the same
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retrospective patient cohorts. When subjected to external valida-

tion, most signatures could only be validated using one dataset

(NKI295) [11] or a few smaller datasets with retrospectively

accrued samples. This validation method has inevitable limitations

of statistical power or sample selection bias. As a result, a common

weakness of this approach is its lack of consistency and

reproducibility [12–16].

With hundreds of breast cancer gene expression datasets

deposited in public databases, we now have the ability to utilize

these data to their full potential and discover recurrent and reliable

gene expression signatures for breast cancer prognosis prediction.

However, the identification of a prognostic expression signature

through meta-analysis of publicly available cancer gene expression

profiles represents an underexploited opportunity. There are

several reports of meta-analysis frameworks that use multiple

breast cancer datasets to build and validate prognostic classifiers

[7,17,18]. These approaches focus on selecting predictors from

combined training sets, either using average Cox-scores [18] or

taking into account the sample molecular subtypes [7,17].

However, one unanswered question is how to identify homoge-

neous gene expression studies using a refined and unbiased

selection method [19]. In order to extrapolate validated prognostic

signatures to a broader patient population, new biostatistical

methods using data similarity-based analysis are needed [20].

To avoid the weaknesses of single study-derived signatures and

to generate a new strategy to better utilize the available gene

expression data from independent studies, we have developed

a meta-analysis strategy called EXALT (EXpression AnaLysis

Tool) [21,22]. The essential feature of EXALT is a database

containing thousands of gene expression signatures extracted from

published studies that enables signature comparisons. In this study,

we used EXALT in an iterative manner (iterative EXALT) to

conduct a data similarity-driven meta-analysis and elucidate

transcriptional signatures with enhanced prognostic value in

breast cancer. We demonstrated that heterogeneous signatures

from 223 public datasets containing 10,581 breast cancer samples

could be systematically organized by their common data elements

(i.e., intrinsic similarities and disease phenotypes) and assembled

into a new signature data type called a meta-signature. We

identified a specific meta-signature consisting of 50 genes

(BRmet50) that is robustly predictive of cancer prognosis in

6,011 breast cancer patients from 21 different breast cancer

datasets as well as in other malignancies including lung and

prostate cancer. These findings illustrate the value of BRmet50 in

breast cancer prognosis independent of treatment variables and

indicate that iterative EXALT is a novel meta-analysis method

capable of performing informative and robust discovery of meta-

signatures in cancer.

Results

Extraction of Human Cancer Signatures
To organize the complex transcriptional data, we have

established a hierarchical data structure. The top level consists

of the transcriptional studies, and each transcriptional study was

partitioned into three levels: data sets, groups, and samples. A

study can include one or many data sets depending on its

experimental design [21]. From 56 breast cancer studies (Table

S1), we have collected 223 breast cancer data sets representing

10,581 breast cancer samples. Primary breast cancer samples

within each dataset were grouped by their clinical attributes. Each

dataset included at least two groups of tumor samples with various

clinical phenotypes (Figure 1 top panel). For example, the

phenotypes related to cancer relapse or poor prognosis include

tumor size, nodal involvement, grade, lymphovascular invasion,

p53 status, BRCA1 mutation, BRCA2 mutation, estrogen receptor

(ER), and human epidermal growth factor receptor 2 (HER2)

status [23,24]. Two or more groups per dataset were needed to

generate statistical comparisons. A total of 633 significant gene lists

(‘‘simple signatures’’) from all possible pairwise group comparisons

were generated accordingly using a Student’s t-test [21]. All 633

‘‘simple signatures’’ were then stored in a human cancer signature

database (HuCaSigDB) that is accessible online (http://seq.mc.

vanderbilt.edu/exalt/) [22]. The major procedural steps for

extraction of signatures are provided in the Methods S1.

A gene expression signature (‘‘simple signature’’) as defined by

EXALT is a set of significant genes with their corresponding

statistical scores and gene expression direction codes (up or down).

Some ‘‘simple signatures’’ are biologically related to breast cancer

prognosis, but they were derived from individual transcription

profiling studies and are all too often underpowered, truncated, or

of low quality. There are inherent limitations for any individual

profiling study including small sample size relative to the large

number of potential predictors, limitations of technological

platforms, sample variation, and bioinformatics or statistical

method bias. An underlying assumption we made in formulating

this approach is that any individual transcriptional profiling study

does not decode an entire expression signature. Rather, these

‘‘simple signatures’’ represent only fragments of a complete and

common transcriptional profile (meta-signature).

Identification of a Novel Breast Cancer Meta-signature
We hypothesized that a meta-signature with improved pre-

dictive power could be discovered by data similarity-driven meta-

analysis of transcriptional profiles from multiple related studies.

EXALT analysis provided the basis for grouping or clustering

‘‘simple signatures’’ sharing significant data similarity. The

iterative EXALT process gathered homologous signatures from

‘‘simple signatures’’ and consolidated them into meta-signatures

(Figure 1 middle and lower panel). Briefly, each breast cancer

signature was compared with all breast cancer signatures in

HuCaSigDB, and signature pairs with significant similarity were

grouped together. The intrinsic relationship between pairwise

signatures was first determined by gene symbol match and

concordance in the direction of gene expression change. Then,

a normalized total identity score was calculated based on Q-values

from the two signatures. The significant similarity level were

determined by simulation analysis [21] as explained in the

Methods S1.

We performed iterative EXALT analyses in which all-versus-all

signature similarity searches were carried out. More specifically,

each of the 633 ‘‘simple signatures’’ from HuCaSigDB served as

a seed (also called query or anchored signature) to query all

‘‘simple signatures’’ in HuCaSigDB repeatedly and to bring other

homologous signatures together by their common elements (i.e.,

intrinsic similarities). This iterative process ‘‘grouped’’ or ‘‘clus-

tered’’ signatures based on their similarities (Figure 1 middle

panel). Signature pairs that were sufficiently similar (p,0.05) were

linked together to form clusters. After iterative comparisons, each

seed signature either remained as a singleton (i.e., a seed signature

that self-matched but did not match any other signatures) or

formed a cluster with other signatures.

This iterative EXALT process starting with 633 seed signatures

resulted in 121 signature clusters and 512 singletons (Figure 1

middle panel). We focused on eight specific clusters because the

eight seed signatures and all other clustered signatures in each of

the eight were clearly related to cancer metastasis. The remaining

113 clusters had no consistent and obvious cancer metastasis

Data Similarity-Based Meta-analysis in Cancer
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phenotypes. For the eight metastasis-related clusters, each

contained various overlapping signature members associated with

phenotypes that are known risk factors for cancer metastasis such

as high-grade tumors, ER-negative status, basal-like cell type, and

cancer relapse. Of these, we selected the largest signature cluster

containing 11 metastasis-related signatures (Figure 1 and Table 1)

[2,3,6,8,11,25–29]. Because each signature in the cluster was

derived from a comparison between highly aggressive and less

aggressive breast cancers, this comparison yielded a ‘‘poor-

prognosis’’ gene signature (Table 1).

Each of the 11 signatures comprises several hundred genes. In

order to identify a recurrent and concordant gene expression

pattern in the metastatic signature cluster, all genes that comprised

the 11 signatures (n = 6,526) were assembled into a synthetic

signature designated as BRmet. The genes within BRmet were

ranked based on recurrent frequency and direction of differential

expression (meta-direction) among all 11 signatures. A 100%

recurrent frequency was applied to select the top 50 genes for the

meta-signature (BRmet50) (Figure 1 lower panel). Thus, BRmet50

profiles are concordant among all 11 clustered simple signatures

(Table 1). BRmet50 genes represent significantly differentially

Figure 1. Signature clustering process for identification of BRmet50. The workflow of iterative EXALT method includes three major
processes. (1) Extraction of 633 breast cancer signatures. All paired sample groups within each breast cancer datasets (n = 223) were compared based
on all possible clinical and pathologic covariates such as tumor size, nodal involvement, grade, marker status, lymphovascular invasion, relapse,
metastasis, p53 status, BRCA1 and BRCA2 mutations. Student’s t-test was then performed for all pairwise comparisons, and a total of 633 breast
cancer signatures were generated and uploaded into a database (HuCaSigDB). (2) Signature clusters and classification. Iterative search was carried out
using each of 633 signatures as a query (anchored or seed) signature against HuCaSigDB repeatedly to identify homologous signatures with
significant data similarity defined by EXALT. 121 out of 633 query signatures found at least one similar signature in HuCaSigDB and formed 121
clusters, while the remaining 512 (singletons) failed to generate clusters. Two typical results are depicted by schematic description labeled with
anchored signatures: the singleton Sig21 and the cluster Sig24 including 11 signature members like Sig544, Sig128, Sig140, etc. Knowledge based
analysis of signature phenotypes and sizes was performed among 121 signature clusters. Eight clusters had obvious metastasis phenotypes. Of the
eight clusters, the largest cluster anchored by the query signature (sig24) was selected for further analysis. (3) Identification of meta-signature
BRmet50. All 6,526 signature genes from the 11 signatures of the cluster Sig24 were assembled together to form a synthetic signature (BRmet). The
genes within BRmet were ranked based on recurrent frequency and concordance of differential expression represented by a meta-heat map. The top
50 genes (BRmet50) represented in rows were determined by a 100% recurrent frequency and gene expression profile concordance among the 11
signatures represented in columns. The colors in the meta-heat map represent the direction of differential gene expression within a given
transcriptional profile (red for up, green for down, and black for a missing match). Color intensity reflects the confidence levels of differential
expression.
doi:10.1371/journal.pone.0054979.g001
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expressed genes not only within their own datasets but also across

11 other related datasets (Figure 1).

Annotation for BRmet50 genes is provided in Table S3. Only

five genes in BRmet50 overlapped with BRsig70, and two were

found in common with BRsig76. The number of overlapping

genes between BRmet50 and the six other cancer signatures

(Oncotype DX, TAMR13, Genius, GGI, PAM50, and PIK3-

CAGS278) is relatively low (1%227%), suggesting that

BRmet50 is a distinct signature. Because BRmet50 was deduced

from a cluster of signatures comparing highly aggressive and less

aggressive breast cancers, we predicted that BRmet50 would be

associated with poor prognoses in breast cancer such as cancer

relapse, metastasis, and death. The general prognosis feature of

BRmet50 might be different than those of BRsig70/76

(BRmet70 and BRmet76) because they were designed specifi-

cally to predict distant metastasis in early-stage breast cancer

patients with lymph node-negative status [2,3]. Thus, we

realized that neither BRsig70 nor BRsig76 was fully comparable

to BRmet50. Rather, they served as prognostic control

signatures in this study.

Meta-validation of BRmet50 in Breast Cancer
Since the BRmet50 was deduced from a signature cluster

comparing more and less aggressive cancers, we retrospectively

examined the ability of BRmet50 to predict prognosis in 21

datasets, including 11 independent validation datasets not used in

the signature clustering process (Table 2).

To examine the stability of the iterative EXALT method and

to avoid over-fitting of the nine training datasets, we used

a ‘leave-one-out’ cross-validation strategy to deduce nine

BRmet50 control signatures for the corresponding nine training

datasets. In each leave-one-out trial, the included signatures

remained clustered. Furthermore, all BRmet50 control signatures

from the ‘leave-one-out’ procedure shared the core set of the 50

genes. We then tested these control meta-signatures in corre-

sponding training datasets (Table S2) and found that their

prognostic performances were as good as BRmet50 (Table 2).

Data suggest that iterative EXALT-based clustering process is

a stable and reliable method that is not affected by any particular

signature member in the BRmet cluster.

The 11 independent validation datasets were used to evaluate

BRmet50 prognosis performance. Log-rank tests were conducted

to assess the differences in survival analysis. The p-values from log-

rank tests comparing BRmet50, BRsig70, BRsig76, and the six

other published cancer signatures (Oncotype DX, TAMR13,

Genius, GGI, PAM50 and PIK3CAGS278) are summarized

(Table 2 and Table 3). Each signature was evaluated for its ability

to classify subjects with breast cancer into ‘good’ and ‘poor’

prognostic groups. Expression values for each signature were

retrieved from each corresponding dataset, then unsupervised

hierarchical clustering was performed using the Spearman rank

correlation, and group assignments were determined in each

dataset based on the first bifurcation of the clustering dendrograms

[30]. BRmet50 distinguished between the good and poor

prognostic groups successfully in all datasets (Table 2), while

BRsig70 and BRsig76 could not discriminate prognosis groups in

four and six datasets respectively. The failure of BRsig70 and

BRsig76 to stratify prognostic groups in those datasets persisted

after we re-classified samples using the original algorithms (e.g.,

either the Pearson correlation method [3] or the relapse score

method based on weighted Cox’s regression coefficient values [2]).

Thus, these results were independent of statistical methods.

Similar results were also obtained among the six other well-

established cancer signatures because none of them could

discriminate prognosis groups in all 11 test datasets (Table 3). As

another performance measure, we calculated the c-index for the

cancer signatures in 11 validation datasets (Table 3), which is

a generalization of the area under the receiver operating

characteristic (ROC) curve [31]. The prognostic value (c-index)

for BRmet50 and the other cancer signatures were compared. For

any given test dataset, BRmet50 c-index is similar to those from

the other cancer signatures, suggesting that the BRmet50 and

other cancer signatures provide comparable prognostic informa-

tion.

Performance Measurements in BR1042
Kaplan-Meier analysis was used to illustrate different relapse-

free survival in BR1042 among the three types of signatures

including BRmet50, one BRmet50 control signature, and two

previously identified signatures (BRsig70 and BRsig76) (Figure 2).

The results demonstrate a significant difference in relapse-free

survival between the good and poor prognosis groups as predicted

for the dataset BR1042 by BRmet50 as well as BRmet50 control

signature (BRmet[-1042]) from the leave-one-out process

(p,0.05). Among patients for whom BRmet50 predicted a good

prognosis, the 10-year rate of relapse-free survival was 79% versus

only 47% among those with a poor prognosis (Figure 2, upper left

panel). The risk of relapse predicted by BRmet50 was significantly

higher among patients in the poor prognosis group than that

among those in the good prognosis group. However, for the same

dataset, neither BRsig70 nor BRsig76 distinguished a significant

difference in metastasis-free survival between the good and poor

prognostic subgroups.

The performance of BRmet50 (c-index: 0.6573, p-value: 0.002)

was better than those of BRsig70 and BRsig76 (c-index: 0.5839 or

0.5172, respectively, p-value .0.14) when examining the BR1042

dataset. Our results indicate that the predictive power of BRmet50

is robust and applicable across a wide range of independent

datasets.

To assess whether BRmet50 association with prognosis outcome

was specific, we generated 1,000 signatures of identical size (50

genes) using randomly selected genes from the human genome. All

random signatures were tested in the same panel of 21 test

datasets. After 1,000 random permutations of the gene signatures,

Table 1. Members of breast cancer metastatic signature
(BRmet50).

Signature ID Signature Name BRid*

Sig544 without metastasis vs with metastasis BR544 [3]

Sig2411 without metastasis vs with metastasis BR2411 [11]

Sig1405 ER-positive vs ER-negative BR1405 [2]

Sig1128 grade 1 vs grade 3 BR1128 [25]

Sig1042 grade 1 vs grade 3 BR1042 [8]

Sig1224r ER-positive vs ER-negative BR1224 [26]

Sig1552r normal breast-like vs basal-like BR1552 [27]

Sig1095 grade 1 vs grade 3 BR1095 [28]

Sig1414 grade 1 vs grade 3 BR1414 [28]

Sig1141 grade 1 vs grade 3 BR1141 [6]

Sig907r normal breast-like vs basal-like BR907 [29]

*BRid denotes the breast cancer dataset ID sharing the same signature ID
number as the respective published study.
doi:10.1371/journal.pone.0054979.t001
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the p-value distribution (-log p-value) from each test dataset was

generated, and p-values from BRmet50 and the six other

published cancer signatures were also plotted on the X-axis of

the distribution plots (Figures S2 and S3).

Although some random signatures are significantly (p,0.05)

associated with breast cancer outcomes in various datasets, the

associations are stronger for the seven breast cancer signatures in

more than half of the test datasets. These control results provide

valid statistical support for their prognosis relevance. Furthermore,

we noticed that most p-values from BRmet50 were on the far right

side of the random p-value distributions (Figures S2 and S3). We

then compared the patient outcome association of BRmet50 to

those of 1,000 random signatures of identical size (Figure S2 and

S3), and we confirmed that BRmet50 showed a stronger

association than the vast majority of (.95%) random signatures.

Thus, the probability of obtaining the same p-values as BRmet50

by chance in the same test datasets in Table 2 is significantly low

(p,0.05).

Predictive Power of BRmet50 Is Independent of Common
Clinical and Pathological Covariates
Because dataset BR1141 [6] includes 269 patients with breast

cancer and a full panel of common clinical and pathological

covariates, we tested whether the association of BRmet50 with

poor prognosis outcome was independent of established clinical

and pathological criteria using the robust BR1141 dataset

examined by Cox proportional-hazards models (Table 4 and

Table S4). The association between BRmet50 and the risk of

poor clinical outcome was significant regardless of tumor size,

lymph-node status, or tamoxifen treatment (p,0.05). Further-

more, the BRmet50 could segregate tumors with intermediate

differentiation or ER-positive into good and poor prognostic

subcategories (hazard ratio for a poor prognosis: 2.5; p#0.001)

but not for those that were ER-negative. Neither BRsig70 nor

BRsig76 was capable of stratifying tumors with either good or

poor differentiation in any subset of BR1141 except tamoxifen

treatment subset (Table 4). Because BR1141 was among the

training datasets, we also tested a ‘leave-one-out’ BRmet50

control signature, and found identical significant associations

(Table S4). The association between BRmet50 and relapse

outcome in the BR1141 subset of patients without tamoxifen

treatment is further described in the Methods S1.

Five of the 21 datasets used for evaluating BRmet50

performance (BR1042, BR1095, BR1128, BR1141, GSE7390)

represented 1,183 tumors and had data on a common set of

clinicopathologic characteristics including tumor size, grade,

lymph node status, and Nottingham Prognostic Index (NPI)

[32,33]. Univariate and multivariate analyses of these five

validation sets were performed to further evaluate the perfor-

mance of BRmet50 compared with other prognostic factors,

Table 2. Summary of survival analysis p-values in breast cancer.

Test Data Sets Endpoints* BRmet50 BRmet50 Ctr** BRSig70 BRSig76

Training datasets

BR544 [3] DMFS ,0.001 ,0.001 0.007 0.024

BR2411 [11] RFS ,0.001 ,0.001 ,0.001 ,0.001

BR1405 [2] RFS 0.002 0.002 0.019 0.006

BR1128 [25] DSS ,0.001 ,0.001 0.015 0.018

BR1042 [8] RFS 0.002 0.033 0.144 0.698

BR1552 [27] RFS ,0.001 ,0.001 0.082 ,0.001

BR1095 [28] DFS ,0.001 ,0.001 0.001 0.005

BR1414 [28] RFS ,0.001 ,0.001 ,0.001 ,0.001

BR1141 [6] RFS ,0.001 ,0.001 0.026 0.156

BR18347175 [90] DMFS ,0.001 NA*** ,0.001 ,0.001

Validation datasets

METABRIC discovery [91] DSS ,0.001 NA ,0.001 ,0.001

METABRIC validation [91] DSS ,0.001 NA ,0.001 ,0.001

GSE2607 [89] RFS 0.004 NA 0.005 ,0.001

GSE7390 [88] RFS 0.028 NA 0.516 0.063

GSE11121 [87] DMFS 0.027 NA 0.012 0.183

GSE17705 [85] DMFS 0.045 NA 0.043 0.574

GSE20624 [84] RFS 0.001 NA 0.037 0.037

GSE20685 [83] OS ,0.001 NA 0.002 ,0.001

GSE21653 [86] DFS 0.014 NA 0.121 0.396

GSE25055 [82] DMFS ,0.001 NA ,0.001 ,0.001

GSE25065 [82] DMFS ,0.001 NA ,0.001 ,0.001

*Endpoints: Clinic endpoints are distant metastases-free survival (DMFS),relapse-free survival (RFS), disease-free survival (DFS), disease-specific survival (DSS), Overall
Survival (OS).
**BRmet50 Ctr: control signatures are isoform signatures of BRmet50 assembled by the leave-one-out method in which the corresponding breast cancer dataset is
excluded intentionally.
***NA: not available.
doi:10.1371/journal.pone.0054979.t002
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namely, BRsig70, BRsig76, age, tumor size, grade, lymph node

status, and NPI. The unadjusted (Table S5) and adjusted

(Table 5 and Table S6) hazard ratios of these factors and

signatures were determined.

Univariate Cox proportional-hazards analysis demonstrated

that BRsig70, BRsig76, or any individual common prognostic

factor (tumor size, grade, lymph node status, or NPI) could not

successfully predict cancer prognoses in all five datasets. However,

BRmet50 was uniquely able to significantly differentiate tumor

samples into two prognostic groups in all five validation sets. The

prognostic value of BRmet50 was greater than each of the

established risk factors (Table S5). For example, optimal un-

adjusted hazard ratios (HR) (high risk vs. low risk) in BR1128 were

2.8 (95% CI: 1.5–4.9; p,0.001) (BRmet50 control), 1.9 (95% CI:

1.1–3.3; p = 0.01) (BRmet70), 2.0 (95% CI: 1.1–3.5; p= 0.02)

(BRmet76), and 2.2 (95% CI: 1.6–2.9; p,0.01) (NPI), respectively.

The data suggested that the BRmet50 was more efficient at

predicting relapse-free survival in BR1042, BR1141, and

GSE7390 and disease-free survival in BR1095 and BR1128 than

established prognostic factors.

Multivariate Cox proportional-hazards analysis was used to

determine if BRmet50, BRsig70, or BRsig76 added independent

prognostic information to other standard clinicopathological

features. In this multivariate Cox proportional-hazards analysis

(Table 5), significant associations (p,0.05) were observed in all five

test datasets between BRmet50 and patient relapse-free or disease-

free time after adjustment for standard clinical covariates. Thus,

BRmet50 contributed new and important prognostic information

beyond that provided by established clinical predictors. For the

most part, BRsig70 and BRsig76 showed no significant associa-

tions in these analyses.

Predictive Power of BRmet50 in Other Cancer Types
Because BRmet50 successfully predicted breast cancer progno-

sis and because some molecular oncogenic events are conserved

among multiple cancer types [34], we hypothesized that BRmet50

may represent a conserved transcriptional profile for poor

prognosis in multiple cancer types.

To examine the prognostic specificity of BRmet50, we

investigated whether BRmet50 could predict prognosis in other

epithelial cancers such as colon, lung, or prostate cancer. Three

datasets, one for each cancer type: colon cancer (n = 73) [35], lung

cancer (n = 441) [36], and prostate cancer patients (n = 596)

(Table 6) [37] were subjected to univariate and multivariate

analyses. On the basis of gene expression signatures (BRsig70,

BRsig76, or BRmet50), 1,110 patient samples were segregated into

two groups (Table 6). All three signatures failed to predict cancer

relapse in colon cancer [35] (p.0.05). However, BRmet50 but

neither BRsig70 nor BRsig76 successfully predicted disease

specific survival in prostate cancer and relapse-free survival in

Table 3. Summary of survival analysis p-values and c-indexes in breast cancer.

BRmet50 BRsig70 BRsig76 ONCO TAMR13 PAM50 Genius PIK3 GGI

p-values

METABRIC D ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 0.001 ,0.001

METABRIC V ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 0.002 ,0.001

GSE2607 0.004 0.005 ,0.001 0.01 0.814 0.078 0.814 0.814 0.814

GSE7390 0.028 0.516 0.063 0.368 0.238 0.223 0.013 0.911 0.015

GSE11121 0.027 0.012 0.183 0.002 ,0.001 0.004 0.003 0.012 0.122

GSE17705 0.045 0.043 0.574 0.064 0.002 0.015 0.858 0.677 0.137

GSE20624 0.001 0.037 0.037 0.003 0.037 0.037 0.037 0.037 0.037

GSE20685 ,0.001 0.002 ,0.001 ,0.001 0.023 0.006 0.016 0.018 0.003

GSE21653 0.014 0.121 0.396 0.001 0.007 0.123 0.027 0.11 0.06

GSE25055 ,0.001 ,0.001 ,0.001 ,0.001 0.001 ,0.001 ,0.001 ,0.001 ,0.001

GSE25065 ,0.001 ,0.001 ,0.001 ,0.001 0.89 ,0.001 0.597 ,0.001 0.082

c-index

METABRIC D 0.6182 0.6125 0.5969 0.6379 0.5961 0.6159 0.6015 0.5726 0.6279

METABRIC V 0.6004 0.5905 0.5860 0.6142 0.5724 0.5838 0.5679 0.5638 0.6069

GSE2607 0.5661 0.6498 0.5700 0.6712 0.5039 0.6342 0.5039 0.5039 0.5039

GSE7390 0.5831 0.5469 0.5795 0.5524 0.5604 0.5578 0.5864 0.4745 0.5891

GSE11121 0.6126 0.6199 0.5723 0.6353 0.6631 0.6359 0.6429 0.6135 0.586

GSE17705 0.5845 0.569 0.5232 0.5724 0.6052 0.5865 0.5112 0.5185 0.5543

GSE20624 0.5082 0.5063 0.5063 0.5989 0.5063 0.5063 0.5063 0.5063 0.5063

GSE20685 0.6064 0.5978 0.6213 0.6006 0.5762 0.5885 0.5798 0.5839 0.5989

GSE21653 0.5701 0.542 0.5209 0.6121 0.5866 0.5604 0.5644 0.568 0.5528

GSE25055 0.6384 0.6524 0.6301 0.6440 0.6022 0.6604 0.6126 0.6830 0.6472

GSE25065 0.646 0.6567 0.653 0.6884 0.5158 0.6894 0.5358 0.667 0.5766

Note: METABRIC D and METABRIC V are discovery and validation datasets from METABRIC study [91], and Other datasets represented by GSE ID are available from NCBI
GEO database.
There are eight published signatures in the study including BRsig70 [3], BRsig76) [2], ONCO (Oncotype DX) [4,5], TAMR13 [6], PAM50 [9], Genius [7], PIK3(PIK3CAGS278)
[10], and GGI [8].
doi:10.1371/journal.pone.0054979.t003
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lung cancer (p,0.01), suggesting that transcriptional profiles for

poor-prognosis may be more conserved in breast, lung, and

prostate cancer. In the lung cancer dataset, the good prognosis

groups predicted by BRmet50 had the highest relapse-free survival

(.40% and p,0.01) among the 3 signatures. We also determined

whether the association between the three signatures and the

clinical outcomes in patients with prostate, lung, and colon cancer

was independent of established clinical and pathological criteria

(Table 6). The results suggest that BRmet50 might serve as

a prognostic biomarker for both breast and non-breast cancer and

may represent a conserved transcriptional profile among multiple

cancer types.

Discussion

Data generated by high-throughput transcriptional studies of

cancer has rapidly accumulated and there is increasing interest in

translating this information into clinical value. Although single-

study analysis can be informative, it is often affected by inherent

limitations. These limitations can be overcome by combining

related independent studies into a meta-analysis. Our study

demonstrated that heterogeneous signatures from individual

cancer studies can be systematically organized into a meta-

signature (BRmet50) based on their intrinsic data similarities by

a novel meta-analysis strategy (iterative EXALT). This meta-

analysis approach can increase statistical power, minimize false

discovery, reduce batch effects, and improve the generalizability of

Figure 2. Kaplan-Meier analyses for relapse-free survival. Data from 108 tumors from the dataset BR1042 were stratified into two groups by
BRsig70 and BRsig76 (bottom panels), the control signature (BRmet[-1042]) from the leave-one-out method, or BRmet50 (upper panels) gene
expression profiles. In each survival plot, two types of relapse-free survival were compared: a poor prognosis group (black dashed line) and a good
prognosis group (red solid line). The relapse-free time in days is displayed on the x-axis, and the y-axis shows the probability of relapse-free survival.
The p-values indicate the statistical significance of survival time differences between the two groups.
doi:10.1371/journal.pone.0054979.g002
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the findings. The value of the BRmet50 signature was evaluated in

terms of predicting prognoses in breast and other cancers.

There are two strategies for meta-analysis of transcriptional

datasets: data combination and data integration methods. The data

combination method is a comprehensive reanalysis of the primary

data by merging data from multiple studies [38–46]. This method

is powerful because all of the information in the datasets is used.

However, this power comes with some risks such as the necessity to

model heterogeneity between datasets. Specifically, use of this

approach often requires an ad-hoc normalization of the raw data

files [47,48] followed by explicitly modeling the inter-study

variability [45,49]. The data integration method compares gene lists

from any expression platform filtered according to p-values or

rank combination [50,51]. The large capacity is not dependent

upon the methods used for the initial data processing [52];

heterogeneous datasets become comparable after simplification of

raw gene expression values to gene lists, but it comes with the risk

that a significant amount of information might be lost. This

method has been successfully implemented in a variety of analysis

tools such as Venn diagrams, L2L [53], LOLA [54], GeneSigDB

[55], Oncomine [56], Connectivity Map (CMAP) [57], and our

own novel method called EXALT [21].

Iterative EXALT helped us understand the relationship

between the intrinsic signature data similarities and signature-

associated phenotypes. When the clustered signature phenotypes

in Table 1 were cross-checked with all source phenotypes in Table

S1, it was confirmed that the datasets with the same sample

phenotypes were not necessary to generate signatures with

significant data similarity. All data integration methods except

EXALT have a shared challenge in how to collect suitable

profiling datasets from heterogeneous gene expression studies.

These methods typically analyze a limited number of data sets

brought together through a prior knowledge-based search (in-

clusion/exclusion criteria) rather than by intrinsic data similarities

[20]. Even though such approaches can ensure that the patient

populations or sample phenotypes are similar or homogeneous,

they are inadequate given that (1) they can miss valuable datasets

and (2) they can include incorrect data sets having no data

similarity, resulting in abnormal heterogeneous expression profiles.

This characteristic can negatively affect the profile performance,

robustness, and applicability. To collect homogeneous datasets for

any meta-analysis, it is still a big hurdle when lacking a data-driven

quantitative evaluation for inclusion/exclusion criteria [19]. To

solve this problem and exploit the enormous wealth of available

Table 4. Hazard ratio risks for cancer relapse and log-rank tests in BR1141.

Clinicopathologic BRmet50 BRsig70 BRsig76

parameters HR (95% CI) HR P HR (95% CI) HR P HR (95% CI) HR P

Tumor size

T1 2.6 (1.3–5.5) 0.009 1.5 (0.6–3.7) 0.386 1.0 (0.5–2.1) 0.942

T2 1.7 (1.0–2.8) 0.044 1.8 (0.9–3.8) 0.113 0.7 (0.4–1.2) 0.209

Lymph-node involvement

No 2.3 (1.4–3.9) 0.001 1.6 (0.8–3.0) 0.193 0.8 (0.5–1.4) 0.511

Yes 2.0 (1.0–4.1) 0.053 2.8 (0.8–9.3) 0.089 0.6 (0.3–1.4) 0.245

Tamoxifen treatment

No 2.6 (1.4–5.0) 0.004 2.1 (1.0–4.6) 0.063 1.1 (0.5–2.0) 0.869

Yes 2.2 (1.2–3.9) 0.007 1.7 (0.7–4.0) 0.230 0.6 (0.3–1.0) 0.041

Differentiation

Good 2.3 (0.6–8.4) 0.196 2.4 (0.8–7.2) 0.121 1.3 (0.4–3.8) 0.682

Intermediate 2.5 (1.5–4.3) 0.001 1.6 (0.8–3.4) 0.219 0.7 (0.4–1.2) 0.194

Poor 1.4 (0.6–3.4) 0.442 0.2 (0–1.8) 0.172 0.5 (0.2–1.1) 0.086

ER status

Negative 1.4 (0.5–4.0) 0.495 2.2(0.3–16.3) 0.456 0.9 (0.3–2.3) 0.782

Positive 2.5 (1.6–4.0) ,0.001 1.8 (1.0–3.3) 0.050 0.7 (0.4–1.1) 0.103

The 269 patients with breast cancer included in the BR1141 dataset were stratified according to tumor size, lymph-node status, tamoxifen treatment, histological grade,
and ER status. A univariate Cox proportional-hazards model was used to evaluate the association of individual signatures (i.e., the BRmet50, BRsig70, or BRsig76) with
the clinical outcome in each category.
T1 denotes a tumor with size less than or equal to 2.0 cm, and T2 denotes a tumor with size larger than 2.0 cm. HR (95% CI): hazard ratio value (95% confidence
interval). HR P: hazard ratio p-value.
doi:10.1371/journal.pone.0054979.t004

Table 5. Multivariate analysis of disease risk among patients
with breast cancer.

BRmet50 BRsig70 BRsig76

Datasets HR (95% CI) HR P HR (95% CI) HR P HR (95% CI) HR P

BR1042 3.1 (1.4–7.0) ,0.01 1.7 (0.7–3.9) 0.23 0.8 (0.4–1.7) 0.54

BR1095 1.8 (1.1–2.9) 0.02 1.5 (0.9–2.5) 0.16 1.3 (0.8–2.2) 0.26

BR1128 2.0 (1.0–3.9) 0.03 1.4 (0.8–2.7) 0.27 1.2 (0.6–2.3) 0.49

BR1141 2.3 (1.4–3.6) ,0.01 1.6 (0.9–2.9) 0.13 0.6 (0.4–1.0) 0.05

GSE7390 2.5 (1.4–5.0) ,0.01 1.1 (0.6–2.0) 0.76 2.0 (1.1–3.3) 0.03

The HR and p-values for each signature were adjusted by age, grade, tumor
size, LN, ER, and NPI.
Age and tumor diameter were modeled as continuous variables; the hazard
ratio is for each increase of 1 cm. in diameter or for each 1-year increase in age.
HR: hazard ratio with 95% confidence interval; HR P: hazard ratio p-value.
doi:10.1371/journal.pone.0054979.t005
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data to their full potential, iterative EXALT can systematically

integrate available transcriptional datasets in public domains

(Table S1) based on intrinsic data similarities. The unique

processes performed by the iterative EXALT method include

gathering homogeneous signatures for meta-analysis (Table 1),

consolidating homogeneous signatures, and discovering reliable

and recurrent meta-signatures for given diseases or biologically

related phenotypes (Figure 1). These important features are not

present in our previous EXALT program [21,22], nor can they be

found in any other data integration methods.

The power of the iterative EXALT is illustrated in the

identification of a meta-signature (BRmet50). In our meta-

validation of BRmet50, we found that distinct gene expression

signatures have a common significant predictive value in more

than half of the breast cancer studies (Table 2, Table 3, and Figure

S2 and S3). This agreement supports the notion that the limited

overlap in gene identity among gene expression profiles does not

affect similar prognostic performance in breast cancer [58].

However, unlike other studies in which only a few test datasets

were examined [59,60], our current study included a large number

of test datasets. We found that some well-established cancer

signatures were not significant predictors in several published

breast cancer survival studies (Table 2 and Table 3). Further, when

adjusted for major prognostic clinical covariates, neither BRsig70

nor BRsig76 was able to discriminate between good and poor

prognosis groups in multiple breast cancer datasets (Table 5). This

observation agrees with the notion that BRsig70 is a predictor of

early relapse and is of limited clinical utility in breast cancers

[11,15,61–66]. One explanation is that BRsig70 and BRsig76 had

been previously validated only in a few datasets with the selected

patient subsets (e.g., patients with lymph-node-negative status)

[11,61,67]. A large prospective clinical trial (MINDACT) is now

being carried out [68] to test whether BRsig70 can predict

prognosis in patients with node-negative as well as those patients

with one to three positive lymph node to avoid chemotherapy

[15]. Our results emphasize the need to perform additional

validation studies of transcriptional biomarkers, including a dem-

onstration of their value beyond common histopathological

predictors [5,69], for extrapolation to a more general patient

population [70–74]. A meta-analysis strategy combining both

discovery and validation of transcriptional biomarkers may be

well-suited to accomplish these goals.

A previous report [59] suggested that a large percentage

(.50%) of random gene expression signatures were significantly

associated with breast cancer outcome in two breast cancer

datasets (designated here as BR2411 [11] and BR1141 [6]). We

generated 1,000 random signatures with identical in size to

BRmet50 from the human genome and examined them using 21

validation datasets (Figures S2 and S3). Based on the random p-

value distributions, we found that the distributions were hetero-

geneous. Some datasets such as BR18347175 and GSE20624 had

unusual skewed distributions of random p-values and a high

percentage (50% or higher) of random signatures that were

significantly associated with breast cancer outcome at p,0.05.

However, for the majority of the other validation datasets,

outcome association of BRmet50 and most published cancer

signatures showed stronger associations than the median of

random signatures. On average, the association of BRmet50 with

disease outcome was stronger than that of the top 5% random

signatures (Figures S2 and S3).

One important observation from this large scale validation of

results is that a random signature may produce significant

outcome associations (p,0.05) in a small number of test datasets,

but it is still very difficult for a random signature to repeatedly

yield significant results by chance in a majority of 21 test datasets.

Out of 1,000 random signatures, there were only 13 (1.3% of

random signatures) that generated significant predictions (p,0.05)

from more than 10 out of 21-test datasets (.50%). However, for

the same 21 validation datasets, 100% of the tests of BRmet50 and

more than 50% of the tests of the six other known cancer

signatures were significant. Abiding to this criterion, the proba-

bility that a random signature achieves the similar level of

performance as the BRmet50 by chance is low (p,0.013). Clearly,

our study emphasizes the importance of large-scale validation tests.

A 21-gene signature (Oncotype DX) is a diagnostic test that

quantifies the likelihood of relapse of tamoxifen-treated, lymph

node-negative breast cancer using a recurrence score method [4].

The recurrence score is derived from the RT-PCR based

reference-normalized expression measurements for 16 cancer-

related genes. The panel of 21 genes in Oncotype DX includes

some well-known biomarker genes for breast cancer subtypes and

prognosis prediction such as Ki67, HER2, ER, and PGR. This has

raised concern about whether it truly adds independent prognostic

information beyond other standard clinicopathological covariates

[5,69]. We did not apply the Oncotype recurrence score formula

directly to gene expression values described in this study. In order

to make comparisons between BRmet50 and this widely used

prognostic marker, we examined the prognosis prediction values of

Oncotype DX signature and the other six well-known cancer

signatures in all 21 test datasets (Figures S2 and S3 and Table 3)

Table 6. Univariate and multivariate analysis in lung, prostate, and colon cancer.

BRmet50 BRsig70 BRsig76

Cancer type Analysis HR (95% CI) HR P HR (95% CI) HR P HR(95% CI) HR P

Lung [36] Univariate 1.7 (1.3–2.4) ,0.01 1.2 (0.8–1.9) 0.37 1.2 (0.8–1.9) 0.37

Multivariate* 1.8 (1.2–2.5) ,0.01 1.2 (0.7–1.9) 0.51 1.2 (0.7–1.9) 0.51

Prostate [37] Univariate 0.4 (0.3–0.6) ,0.01 1.2 (0.8–1.8) 0.34 0.7 (0.5–1.0) 0.07

Multivariate** 0.6 (0.3–1.0) 0.04 1.3 (0.8–2.1) 0.27 0.9 (0.5–1.4) 0.52

Colon [35] Univariate 1.3 (0.4–4.7) 0.66 0.5 (0.1–1.9) 0.32 0.5 (0.2–1.9) 0.32

Multivariate*** 1.4 (0.4–5.0) 0.62 0.5 (0.1–1.8) 0.31 0.5 (0.1–1.8) 0.30

*Adjusted factors in lung cancer: age, gender, chemotherapy treatment, radiation treatment, smoking habits, and tumor stage.
**Adjusted factors in prostate cancer: age, tumor stage, ploidy, and PSA relapse.
***Adjusted factor in colon cancer: age.
doi:10.1371/journal.pone.0054979.t006
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using random signature simulations as negative controls. The

results suggest that Oncotype DX is a strong predictor with

significant predictions in 80% of test datasets.

Because breast cancer is such a heterogeneous disease, most

recent studies have taken the molecular heterogeneity of breast

cancer into account in their predictions [7,75]. As a general

prognosis predictor in cancer, BRmet50 is a meta-signature

derived from datasets representing heterogeneous cancer subtypes,

and BRmet50 therefore represents mixed gene expression profiles

of various breast cancer subtypes. During the univariate analysis of

breast cancer subtypes (Table 4), we noticed that BRmet50 could

be used to segregate ER-positive (luminal tumors) and interme-

diate grade tumors regardless of tumor size and lymph-node status

into good and poor prognostic subcategories (hazard ratio for

a poor prognosis: 2.5; p,0.001) but not for those with ER-negative

status or those with high-grade (Table 4). These prognostic

features are consistent with those of many other breast cancer

prognostic signatures [60,76–80] but different than those of

subtype-specific prognostic predictors (GENIUS) that can be

applied to breast cancer samples with ER-negative or HER2-

negative status [7]. When BRmet50 was used in the subtype

classification model [75] we found that BRmet50 could inform

subtype classification but its prediction strength was not as robust

as the three-gene model [75].

In summary, we have developed and demonstrated the utility of

a novel data similarity-based meta-analysis strategy for deducing

a transcriptional meta-signature with enhanced prognostic value in

breast cancer. We report a novel meta-signature, BRmet50, which

has a superior capability to predict clinical outcomes in 21 breast

cancer transcriptional profiling datasets. Furthermore, BRmet50

can distinguish prognostic subsets of patients with ER-positive

breast cancer or intermediate-grade breast cancer regardless of

lymph-node and tamoxifen treatment status. Finally, we demon-

strated that BRmet50 has predictive value in other cancer types

(prostate and lung), suggesting that different cancers may share

common transcriptional elements that influence their clinical

behaviors. Additional prospective studies will be valuable in

determining the clinical value of BRmet50 in breast cancer patient

subsets and other cancers.

Methods

The methods used for signature extraction, developing the

signature databases, and EXALT analysis were previously

reported [21,22]. Iterative EXALT analysis for clustering and

assembling signatures is described in the result section (Figure 1)

and the Methods S1.

Patient Data
Patient information, both clinical data and gene expression data

for signature identification and validation, were obtained from

independently published human cancer studies and the Gene

Expression Omnibus (GEO) provided by the National Center for

Biotechnology Information (NCBI) [81] as described in Table S1,

Table 1, Table 2, and Table 6. The meta-signature (BRmet50)

was derived from meta-analysis of breast cancer gene expression

profiles from 223 breast cancer training datasets (Table S1).

Leave-one-out cross validation was used to prepare BRmet50

control signatures from nine training datasets (Table S2) as

described in the Methods S1. To provide an evaluation of the

iterative EXALT approach and meta-signature, 21 datasets

(Table 2) containing 6,011 breast tumor samples were retrospec-

tively examined by survival analyses [2,3,6,8,11,25,27,28,82–91].

Of them, 10 are from 223 training datasets (Table 1 and Table 2),

and the other 11 (‘‘validation datasets’’ in Table 2) are in-

dependent validation datasets not included in the 223 training

datasets (Table S1).

To ensure quality in the test survival data sets derived from

published breast cancer studies, we applied the ‘‘rule of fifty’’ [92–

94] as an inclusion criteria. Specifically, an included dataset must

have at least 50 samples with survival data (designated as survival

samples) and a minimum of 10 events. To ensure a valid sample

size for a survival analysis, at least 60% of the samples were

required to have survival information. Thus, missing data

(censored survival data) was controlled to a minimal level. The

average follow-up length was 14 years across 21 datasets.

Statistical Analysis
Our statistical approach, as illustrated in Figure S1, assessed the

ability of the identified meta-signature BRmet50 to serve as

a survival time predictor. First, hierarchical clustering of the

BRmet50 gene profiles in each test dataset was performed and

visualized using the open-source desktop program (version

1.5.0.Gbeta) developed at Vanderbilt University. Spearman rank

correlation was used to measure the similarities in gene expression

profiles among patient samples. Unsupervised hierarchical clus-

tering based on average linkage was performed to group the

patient samples. The group assignments for the patient samples

were determined in each dataset based on the first bifurcation of

the clustering sample dendrogram [30]. Using disease outcomes,

Kaplan-Meier curves for the two groups were compared. Log-rank

tests and c-index measurements were conducted for the two

groups’ survival difference. The Cox proportional hazards model

was applied to each dataset for both univariate and multivariate

survival analyses. All these analyses were carried out with the

open-source R software, version 2.14.1 (www.r-project.org).

For general prognosis performance evaluation of various

signatures in full datasets and subsets, p-values from log-rank tests

and from univariate and multivariate Cox proportional hazard

models were evaluated. Various disease outcomes (e.g., relapse,

distant metastasis, or death) were used as clinical end points

(Table 2). The estimated hazard ratio (HR), its 95% confidence

interval (CI), and the p-value allowed us to directly compare the

performances of different signatures (Figure S1). For graphical

representation, Kaplan-Meier curves of survival probability were

plotted for each subgroup.

Supporting Information

Figure S1 Flow chart of statistical methods for valida-
tion. Four types of signatures were used in this study: (1)

BRmet50; (2) BRmet50 control signatures from ‘‘Leave-one-out’’

process; (3) BRsig70, BRsig76 and other six known signatures for

breast cancer prognosis; and (4) 1,000 random signatures of

identical in size to BRmet50. Gene expression signatures were

used for unsupervised hierarchical clustering. Sample group

assignments were determined in each data set based on the

sample clustering dendrogram. Gene expression-based sample

groups together with patient survival data and clinicopathological

variables in cancer were used to determine the signature

prognostic performance in survival analyses. The survival analyses

include log-rank tests and Cox proportional hazards regression

models (univariate and multivariate models). All signatures were

validated in 21 breast cancer (BR) data sets (Table 2, Figures S2,

S3, and 2 and Table 3), and one breast cancer data set (BR1141)

was further analyzed among breast cancer subsets (Table 4 and

Table S4). BRmet50, BRsig70, and BRsig76 were examined to

determine whether they were independent of common clinico-
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pathologic factors in breast cancer (Table 5, Tables S5, S6) and

three other three cancer types (Table 6).

(TIFF)

Figure S2 Comparison of cancer signatures and ran-
dom signatures (part 1). 12 datasets were tested individually

with 1,000 random signatures and seven known cancer signatures.

Each panel is labeled with its respective test dataset ID and depicts

the distribution of p-values from1,000 random signatures identical

in size to BRmet50 (50 genes). The x-axis denotes the reciprocal

logarithm of p-value (-log [p-value]) from survival analyses.

Colored arrowheads represent the seven known cancer signatures

and point to the p-value locations in the random p-value

distributions.

(TIFF)

Figure S3 Comparison of cancer signatures and ran-
dom signatures (part 2). Nine datasets were tested individually

with 1,000 random signatures and seven known cancer signatures.

Each panel is labeled with its respective test dataset ID and depicts

the distribution of p-values from1,000 random signatures identical

in size to BRmet50 (50 genes). The x-axis denotes the reciprocal

logarithm of p-value (-log [p-value]) from survival analyses.

Colored arrowheads represent the seven known cancer signatures

and point to the p-value locations in the random p-value

distributions.

(TIFF)

Table S1 Breast cancer dataset source and derived
signature phenotypes.
(DOCX)

Table S2 List of breast cancer meta-signatures.

(DOCX)

Table S3 Annotation of genes in BRmet50.
(DOCX)

Table S4 Hazard ratio risks and log-rank tests in
BR1141.
(DOCX)

Table S5 Comparison of signatures with common
clinicopathologic factors by univariate hazard ratio
model.
(DOCX)

Table S6 Multivariate analysis of relapse risk among
patients with breast cancer.
(DOCX)

Methods S1 Supplemental methods.
(DOC)
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