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Abstract: The 2019 coronavirus infectious disease (COVID-19) is caused by infection with the new
severe acute respiratory syndrome coronavirus (SARS-CoV-2). Currently, the treatment options
for COVID-19 are limited. The purpose of the experiments presented here was to investigate the
effectiveness of ketotifen, naproxen and indomethacin, alone or in combination, in reducing SARS-
CoV-2 replication. In addition, the cytotoxicity of the drugs was evaluated. The findings showed
that the combination of ketotifen with indomethacin (SJP-002C) or naproxen both reduce viral yield.
Compared to ketotifen alone (60% inhibition at EC50), an increase in percentage inhibition of SARS-
CoV-2 to 79%, 83% and 93% was found when co-administered with 25, 50 and 100 µM indomethacin,
respectively. Compared to ketotifen alone, an increase in percentage inhibition of SARS-CoV-2 to
68%, 68% and 92% was found when co-administered with 25, 50 and 100 µM naproxen, respectively.
For both drug combinations the observations suggest an additive or synergistic effect, compared to
administering the drugs alone. No cytotoxic effects were observed for the administered dosages of
ketotifen, naproxen, and indomethacin. Further research is warranted to investigate the efficacy of the
combination of ketotifen with indomethacin (SJP-002C) or naproxen in the treatment of SARS-CoV-2
infection in humans.

Keywords: antiviral; drug repurposing; SARS-CoV-2; COVID-19; SJP-002C; indomethacin; ketotifen;
naproxen; mast cell stabilizer

1. Introduction

Coronaviruses are a large family of viruses that cause illness ranging from the common
cold to more serious diseases such as Middle East Respiratory Syndrome (MERS) and
Severe Acute Respiratory Syndrome (SARS). In December 2019, an outbreak of respiratory
disease in China was found to be caused by a novel coronavirus SARS-CoV-2 that causes
the disease Coronavirus Infectious Disease of 2019 (COVID-19).

SARS-CoV-2 virus is an enveloped, positive-sense, single-stranded RNA beta-corona-
virus [1–6]. The clinical progression of COVID-19 ranges from asymptomatic carriage to
fulminant cytokine storm with respiratory failure, multi-organ dysfunction and ultimately
death. It has been described that SARS-CoV-2 mediated inflammatory response has three
different stages [5] (see Figure 1). Stage I, early infection, is characterized by increased
cytokine and chemokine production. Stage I is the incubation period when SARS-CoV-2
multiplies and establishes residence in the host, primarily focusing on the respiratory sys-
tem. Symptoms reported during Stage I are usually mild and often non-specific, including
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fever, cough, diarrhea, and headache. Stage II of COVID-19 infection, the pulmonary phase,
is divided into two distinct parts: pneumonia without hypoxia (Stage IIA) or pneumonia
with hypoxia (Stage IIB). During Stage IIB, symptoms worsen and patients will likely
require hospitalization and oxygen supplementation. Stage III is the most severe stage,
which manifests as an extrapulmonary systemic hyper inflammation syndrome, driven
by the cytokine storm. Stage III is characterized by exuberant inflammation resulting
from high circulating cytokines such as interleukin (IL)-6 and tumor necrosis factor al-
pha (TNF-α) [7–12]. These inflammatory mediators are responsible for the multi-organ
damage, including acute respiratory distress syndrome (ARDS) and cardiac and renal
dysfunction [13–15]. In general, the prognosis and recovery from Stage III are poor.
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In addition to inhibition of viral replication, blunting this inflammatory response be-
fore overt cytokine storm is important to improve outcomes [7,16,17]. Although remdesivir
and convalescent plasma are used for this purpose, there is a need for adjunct treatments
to ameliorate disease burden.

In vitro susceptibility of viruses to an antiviral agent is usually assessed using a
quantitative assay to measure virus replication in the presence of increasing concentrations
of the product compared to replication in the absence of the product. The half maximal
effective concentration is the concentration of product at which virus replication is inhibited
by 50 percent (EC50). Assays that evaluate antiviral activity include, but are not limited
to, virus inactivation assays, plaque reduction assays, cytopathic effect inhibition assays,
peripheral blood mononuclear cell (PBMC) assays, and binding and fusion assays [18].
Additionally, compounds must also be evaluated for cellular toxicity. The cytotoxic effect
of a compound is usually determined in a cell line of relevance, by calculating the cellular
cytotoxicity concentration (CC50), i.e., the concentration of the test compound that reduces
cell viability by 50%, compared with the cell control value.
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Data of animal models and non-human primate models support that mast cells are
strongly activated during SARS-CoV-2 infection, producing damage to the lung tissue, with
haemorrhaging visible on the lungs and fluid accumulation in the lungs [19,20]. Tradition-
ally, mast cell stabilizers such as ketotifen have been in used in humans for the treatment of
allergy and asthma, and these drugs are thought to act by preventing degranulation of mast
cells [21–23]. Sen-Jam Pharmaceutical is developing combination therapeutics for the treat-
ment of COVID-19, including a mast cell stabilizer and a non-steroid anti-inflammatory
drug. These products are thought to have both antiviral and anti-inflammatory proper-
ties, capable of reducing viral replication and the excessive immune response, typically
referred to as cytokine storm. In the current study, the combination product ketotifen
and indomethacin (SJP-002C) and the combination product ketotifen and naproxen are
investigated. It is hypothesized that both combination products can be used early in the
treatment of COVID-19 to modify disease progression, and in combination with standard
of care. As broad-spectrum anti-inflammatory drugs, reducing both cyclooxygenase and
inhibiting mast cell degranulation, together ketotifen and indomethacin can maximally re-
duce immune mediated inflammation. A further advantage of the combination products is
that ketotifen may provide protection against possible indomethacin or naproxen-induced
gastrointestinal (GI) injury.

The purpose of the experiments presented here were to investigate the effectiveness
of ketotifen, naproxen and indomethacin, alone or in combination, in reducing virus
replication. In addition, the cytotoxicity of the drugs was evaluated.

2. Materials and Methods

Ketotifen, indomethacin, and naproxen were sourced from Sigma Aldrich and remde-
sivir from MedChemExpress SARS-CoV-2 hCoV-19/Australia/VIC01/2020 was a gift
from Melbourne’s Peter Doherty Institute for Infection and Immunity and African Green
Monkey Kidney (Vero E6) cells obtained from ATCC (ATCC-CRL1586) (Noble Park North,
VIC, Australia).

Virus stocks were expanded via passage in Vero E6 cells in growth media, which
comprised Minimal Essential Medium without L-glutamine supplemented with 1% (w/v)
L-glutamine 1.0 µg/mL of TPCK-Trypsin, 0.2% BSA, 1× Pen/Strep, and 1% Insulin Trans-
ferrin Selenium (ITS).

African Green Monkey Kidney (Vero E6) cells (ATCC-CRL1586) were sub-cultured to
generate cell bank stocks in cell growth medium, which comprised of Minimal Essential
Medium (MEM) without L-glutamine supplemented with 10% (v/v) heat-inactivated
Fetal Bovine Serum (FBS) and 1% (w/v) L-glutamine. Vero E6 cells were passaged for a
maximum of 13 passages, after which a new working cell bank stock was retrieved from
liquid nitrogen for further use.

2.1. Study 1. Cytopathic Effect (CPE) Assay

In Study 1, the cytopathic effects of indomethacin, ketotifen, and naproxen were
compared with remdesivir (positive control).

Vero E6 cells were seeded into 96-well plates at 2 × 104 cells/well in 100 µL seeding
medium (MEM supplemented with 1% (w/v) L-glutamine, 2% FBS). Plates were incubated
overnight at 37 ◦C, 5% CO2. Test compounds were prepared fresh on the day of testing,
vortexed and visually inspected to confirm complete dissolution.

The positive control compound remdesivir was prepared as a 10 mM stock in dimethyl
sulfoxide (DMSO) and stored at −20 ◦C. Compound dilutions were prepared on the day of
experimentation. A 3-fold, 8 point, DMSO dilution series of each of the four test compounds
was performed initially, ranging 100 mM to 0.045 mM. An intermediate dilution series in
virus growth medium (MEM supplemented with 1% (w/v) L-glutamine, 2% FBS, 8 µg/mL
Tosyl Phenylalanyl Chloromethyl Ketone (TPCK)-Trypsin was generated ranging 800 µM–
0.37 µM. A 50 µL volume from each compound intermediate dilution series was added to
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triplicate wells of the assay plate pre-seeded with Vero E6 cells. The DMSO concentration
was maintained at 0.2% in the assay plate. One assay plate per compound was generated.

Similarly, remdesivir was subjected to an initial DMSO dilution series, intermediate
dilution series to reduce the DMSO concentration to 0.2% in the assay plate. Remdesivir
was tested at a starting concentration of 20 µM.

A 50 µL volume of SARS-CoV-2 diluted in virus growth medium to generate a multi-
plicity of infection (moi) of 0.05, was added to the assay plates. This moi was previously
determined to provide 100% cytopathic effect (CPE) in 4 days. Virus was added to triplicate
rows to assess antiviral activity and virus growth medium without virus was added to
triplicate rows to assess cytotoxicity.

The percent cell protection achieved by the positive control (remdesivir) and test
articles in virus-infected cells was calculated by the formula of Pauwels et al. [24] as
shown below:

Percent cell protection = ([ODt]virus − [ODc]virus/[ODc]mock − [ODc]virus) × 100 (1)

where:
[ODt]virus = the optical density measured in a well examining the effect of a given

concentration of test article or positive control on virus-infected cells.
[ODc]virus = the optical density measured in a well examining the effect of the

negative control on virus-infected cells.
[ODc]mock = the optical density measured in a well examining the effect of the

negative control on mock-infected cells.
The EC50 values were calculated from the percent cell protection results by non-linear

regression analysis using the Hill (sigmoid Emax) formula:

y = Miny + (Maxy − Miny)/1 + (EC50/x)D (2)

where:

X = test or control article concentration;
Y = percent cell protection;
Min = minimum;
Max = maximum;
D = slope coefficient.

2.2. Study 2. Yield Reduction Assay

Vero E6 cells were seeded into 96-well plates at 2 × 104 cells/well in 100 µL seeding
medium (MEM supplemented with 1% (w/v) L-glutamine, 2% FBS). Plates were incubated
overnight at 37 ◦C, 5% CO2. Ketotifen, indomethacin and naproxen were prepared as
outlined in Section 2.1 above.

For combination studies, compounds were added together in the deep well plate in a
1:1 ratio, then 100 µL volume of compound combination was added to cell monolayers. A
200 µL volume of virus (B3) was added to plates (moi 0.003).

After 48 h incubation, virus was harvested at each concentration and diluted 1:10
(n = 1) or 1:100 (n = 2) in virus growth media. One hundred microliters were added to
triplicate wells of 96-well plates containing Vero E6 cells and serially diluted three-fold
across the plate for a total of nine different virus concentrations. Six of the wells contained
assay media alone (i.e., no virus) and served as controls. Plates were incubated for three
days at 37 ◦C in a humidified 5% CO2 atmosphere during which time the CPE was allowed
to develop. Cell monolayers were then observed microscopically with visual scoring
of virus-induced CPE used as an endpoint. The TCID50 of the virus suspension was
determined using the method of Reed-Muench [25]. The virus yield was expressed as a
percentage with respect to virus growth when no drug was added, for each concentration.
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2.3. Study 3. Cytotoxicity Assay

The cytotoxic effects of indomethacin, ketotifen, and naproxen on Vero E6 cells was
tested over a 4 day or 48 h period to mimic either the antiviral assay or the yield reduction
assay. Drugs were tested at the same concentration as those used in Sections 2.1 and 2.2.
Viable cells were determined by staining with MTT or crystal violet. A 100 µL volume
of a 3 mg/mL solution of MTT was added to plates and incubated for 2 h at 37 ◦C in a
5% CO2 incubator. Wells were aspirated to dryness and formazan crystals solubilized by
the addition of 200 µL 100% 2-Propanol at room temperature for 30 min. Absorbance was
measured at 540–650 nm on a plate reader. Media were removed from cells stained with
crystal violet and washed once with PBS. A 40 µL volume of 0.25% crystal violet/20%
methanol stain was added to each well and incubated for 30 min at room temperature.
Crystal violet stain was aspirated, monolayers washed 3–5 times with PBS and the stain
solubilized with the addition of 100 µL 1% sodium dodecyl sulfate (SDS). After 30 min at
room temperature, absorbance was measured at 540–650 nm on a plate reader. The 50%
cytotoxic concentration (CC50) was defined as the concentration of the test compound that
reduces the absorbance of the mock infected cells by 50% of the control value. The CC50
value was calculated as follows:

CC50 = [ODt]mock/[ODc]mock. (3)

3. Results
3.1. Study 1. Cytopathic Effect (CPE) Assay

Results of Study 1 are shown in Table 1. None of the treatments exhibited antiviral
activity in the 4 days CPE assay.

Table 1. EC50 and CC50 data from the CPE assay.

Compound EC50 (µM) CC50 (µM)

Ketotifen >138.6 138.6
Naproxen >400 >400

Indomethacin >400 >400
Remdesivir 2.9 NT

3.2. Study 2. Yield Reduction Assay

The compounds were then tested in a Yield Reduction Assay (YRA) under reduced
rounds of virus replication (48 h) to see if any antiviral activity was observed. The results for
ketotifen and naproxen are summarized in Table 2 and Figure 2. Ketotifen alone inhibited
SARS-CoV-2 and exhibited an EC50 of 48.9 µM. Naproxen alone did not inhibit SARS-CoV-2
and exhibited an EC50 of >100 µM.

Table 2. EC50 and percentage inhibition of SARS-CoV-2: 50 µM ketotifen EC50 in combination
with naproxen.

Concentration Naproxen (µM)

Treatment EC50 100 50 25 12.5 6.25 3125

Ketotifen 48.9 - 68 0 0 0 0
Naproxen >100 0 0 0 21 0 -

Naproxen EC50 +
50 µM ketotifen <6.25 92 68 68 75 60 -

EC50 is the effective concentration of product, i.e., the concentration at which virus infection is inhibited by
50 percent.
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Figure 2. Dose–response curves for naproxen and ketotifen, alone and in combination. EC50 is the
effective concentration of product, i.e., the concentration at which virus infection is inhibited by
50 percent.

When ketotifen was added at a single concentration, naproxen’s ability to reduce virus
yield was enhanced. The EC50 of naproxen was reduced to <6 µM, equating to ~17-fold
greater effect in the presence of ketotifen. The dose–response curves are shown in Figure 2.
These data indicate an additive or synergistic effect (See Figure 2).

The results for ketotifen and indomethacin are summarized in Tables 3 and 4. Table 3
reveals that, compared to ketotifen alone (60% inhibition at EC50), an increase in percentage
inhibition of SARS-CoV-2 to 79%, 83% and 93% was observed when co-administered with
25, 50 and 100 µM indomethacin, respectively, indicating an additive or synergistic effect.

Table 3. EC50 and percentage inhibition of SARS-CoV-2: 50 µM ketotifen in combination with indomethacin.

Concentration Ketotifen (µM)

Treatment EC50 50 25 12.5 6.25 3125

Ketotifen 47.1 60 0 0 0 0
Ketotifen + 100 µM indomethacin 48.1 94 0 0 37 0
Ketotifen + 50 µM indomethacin 46.5 97 0 0 0 37
Ketotifen + 25 µM indomethacin 42.2 90 0 0 0 0

EC50 is the effective concentration of product, i.e., the concentration at which virus infection is inhibited by
50 percent.

Table 4. EC50 and percentage inhibition of SARS-CoV-2: 100µM indomethacin in combination with ketotifen.

Concentration Indomethacin (µM)

Treatment EC50 100 50 25 12.5 6.25

Indomethacin 100.1 50 0 0 - -
Indomethacin + 50 µM ketotifen <6.25 93 83 79 75 60
Indomethacin + 25 µM ketotifen >100 0 0 0 - -

Indomethacin + 12.5 µM ketotifen >100 0 0 0 - -
Indomethacin + 6.25 µM ketotifen >100 37 0 0 - -

Indomethacin + 3.125 µM ketotifen >100 0 37 0 - -
EC50 is the effective concentration of product, i.e., the concentration at which virus infection is inhibited by 50
percent. - = not assessed.

Indomethacin alone inhibited SARS-CoV-2 and exhibited an EC50 of 100.1 µM (see
Table 4). Indomethacin did not reach an EC50 in the presence of 50 µM ketotifen, although
60% inhibition was observed at 6.25 µM indicating that an EC50 would probably be reached
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at ~3 µM had the dilution series had covered a lower range. These in vitro data indicate
that a lower dose of indomethacin is required to inhibit virus growth in the presence of
50 µM of ketotifen, indicating an additive or synergistic effect. Indomethacin did not reach
an EC50 in the presence of 25 µM, 12.5, 6.25 or 3.1 µM ketotifen.

When ketotifen was added at a single concentration, indomethacin’s ability to reduce
virus yield was enhanced. The EC50 of indomethacin was reduced to <6 µM, equating to
~13-fold greater effect in the presence of ketotifen. Figure 3 shows the dose–response curves
for indomethacin and ketotifen, alone and in combination. The dose–response curves
suggest an additive or synergistic antiviral effect against SARS-CoV-2 when ketotifen and
indomethacin are administered in combination.
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3.3. Study 3. Cytotoxicity Assay

The results of the cytotoxicity assessments are summarized in Table 5. The 50%
cytotoxic concentration (CC50) was defined as the compound concentration required for the
reduced cell viability by 50%. No cytotoxicity was observed for indomethacin, naproxen
and ketotifen at the concentrations tested.

Table 5. Percentage viability at different concentrations of ketotifen, naproxen, and indomethacin.

Concentration (µM) 100 50 25 12.5 6.25 3.13 1.56 0.78 0.39 0.20

Indomethacin (%) 143 143 125 124 124 117 111 106 98 -
Naproxen (%) 107 108 107 107 106 112 96 112 108 -
Ketotifen (%) - 86 104 122 125 121 109 101 103 110

- = not assessed.

4. Discussion

The current findings show that both the combination products ketotifen and in-
domethacin (SJP-002C) and ketotifen and naproxen reduce viral yield. Compared to
ketotifen alone (60% inhibition at EC50), an increase in percentage inhibition of SARS-
CoV-2 to 90%, 97% and 94% was found when co-administered with 25, 50 and 100 µM
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indomethacin, respectively, indicating an additive or synergistic effect. The EC50 of in-
domethacin was reduced to <6 µM, equating to ~13-fold greater effect in the presence of
ketotifen. Compared to ketotifen alone (60% inhibition at EC50), an increase in percentage
inhibition of SARS-CoV-2 to 68%, 68% and 92% was found when co-administered with
25, 50 and 100 µM naproxen, respectively. This also indicates an additive or synergistic
effect, but the reduction in viral yield was smaller than observed with SJP-002C. Finally,
no cytotoxic effects were observed for the concentrations of ketotifen, indomethacin, and
naproxen tested.

Scientific evidence supports the observed efficacy of ketotifen in combination with
indomethacin (SJP-002C) or naproxen in reducing viral yield. Both naproxen [26,27] and
indomethacin [26] have shown—either by computer simulation or in vitro studies—to
inhibit viral nucleoprotein involved in viral replication of SARS-CoV-2. Amici et al. [28]
described indomethacin’s antiviral activity against SARS-CoV in vitro in Vero E6 cells and
in human epithelial lung cells. [29–32]. In humans, naproxen has been added to oseltamivir
and clarithromycin for the treatment of influenza, which resulted in a significantly reduced
30-day mortality, intensive care unit stay, and hospitalization in general [33]. Indomethacin
showed efficacy of improved arterial oxygenation in critically ill patients with severe
bacterial pneumonia [34] and in adults with respiratory distress syndrome [35]. In rela-
tion to the aim of the combination products to reduce excessive immune response, both
indomethacin and naproxen have shown to reduce interleukin (IL)-6 in the plasma and
synovial fluids of rheumatoid arthritis patients [36], and in another study indomethacin re-
duced inflammation in Alzheimer patients [37]. These findings suggest that both naproxen
and indomethacin may be effective in counteracting the cytokine storm associated with
SARS CoV-2 infection [38–40].

Ketotifen is approved and marketed in Canada, Europe and Asia for chronic urticaria
and childhood asthma for over 20 years, with an excellent safety profile. Mast cells have
been implicated in the pathogenesis of viral infections, such as human immunodeficiency
virus (HIV)-1, dengue virus, cytomegalovirus, and bovine respiratory syncytial virus [41].
Mast cells can intensify immunological injury through the production of mediators, in-
cluding tryptase, TNF-α, IL-6, IL-1, and chemokine (C-C motif) ligand 3 (CCL3). Animal
studies have shown that ketotifen can reduce excessive inflammation (cytokine storm),
and ketotifen has been shown to reduce end organ damage and mortality in mice in-
fected with H5N1 type Influenza A [42]. Ketotifen has been shown in mice infected with
H5N1 influenza viral to dramatically reduce lung damage and mortality, even when the
antiviral, oseltamivir, was dosed sub-optimally (ketotifen and oseltamivir 100% survival
vs. oseltamivir alone 65%) [43]. Another study found that ketotifen reduced vasoactive
products and vascular leakage (i.e., an IgG mediated immune response to Dengue virus) in
mice [19]. Finally, research also showed that ketotifen can exert a protective effect against
NSAID induced GI injury [44,45]. Taken together, these findings support that ketotifen
has the potential to reduce excessive inflammation and cytokine storm associated with
SARS-CoV-2 infection.

Recent research published as preprint also supports our findings with regard to the
efficacy of naproxen and indomethacin in reducing SARS-CoV-2 viral yield. For example,
Terrier et al. [46] found that naproxen inhibited viral yield in Vero E6 cells and protected
bronchial epithelia against SARS-CoV-2 induced-damage. Building upon the work by
Amici et al. [28], Xu et al. [47] conducted antiviral SARS-CoV-2 testing in green monkey
kidney Vero E6 cells and found that indomethacin had a direct and potent antiviral activity
against SARS CoV-2, without cytotoxicity. In contrast, aspirin, the comparator drug in this
study, did not show a significant antiviral effect.

Although the mechanisms underlying the antiviral activity of the combination prod-
ucts ketotifen and indomethacin (SJP-002C) and ketotifen and naproxen against coronavirus
infection require further investigation, the results shown herein are promising and warrant
further investigation. Future research should confirm our findings in animal models. In
addition, future research should confirm whether this observation will modify disease
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progression in humans, and if ketotifen in combination with indomethacin or naproxen
will reduce cytokine storm and subsequent organ damage and mortality rates associated
with COVID-19 disease.

5. Conclusions

The current findings show that the combination of ketotifen with indomethacin (SJP-
002C) or naproxen both significantly reduces viral yield. Compared to ketotifen alone,
the combination with indomethacin or naproxen has an additive or synergistic effect.
No cytotoxic effects were observed for concentrations of ketotifen, naproxen, and in-
domethacin tested.
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