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In the current study, we report computational scores for advancing genomic interpretation of
disease-associated genomic variation in members of the RAS family of genes. For this purpose, we applied
31 sequence- and 3D structure-based computational scores, chosen by their breadth of biophysical prop-
erties. We parametrized our data by assembling a numerically homogenized experimentally-derived
dataset, which when use in our calculations reveal that computational scores using 3D structure highly
correlate with experimental measures (e.g., GAP-mediated hydrolysis RSpearman = 0.80 and RAF affinity
Rspearman = 0.82), while sequence-based scores are discordant with this data. Performing all-against-all
comparisons, we applied this parametrized modeling approach to the study of 935 RAS variants from
7 RAS genes, which led us to identify 4 groups of mutations according to distinct biochemical scores
within each group. Each group was comprised of hotspot and non-hotspot KRAS variants, indicating that
poorly characterized variants could functionally behave like pathogenic mutations. Combining computa-
tional scores using dimensionality reduction indicated that changes to local unfolding propensity associ-
ate with changes in enzyme activity by genomic variants. Hence, our systematic approach, combining
methodologies from both clinical genomics and 3D structural bioinformatics, represents an expansion
for interpreting genomic data, provides information of mechanistic value, and that is transferable to other
proteins.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

RAS is one of the most studied proto-oncogenes [1], having been
discovered in association with human cancers by the early 80s
[2–5]. Researchers soon realized that only a few positions, referred
to as hotspots, contributed to neoplastic transformation when
mutated. Subsequent studies showed that different mutations
had distinct patterns of disease occurrence and progression, sug-
gesting these variations reflect their underlying biochemical prop-
erties [6,7] and the possibility for therapeutic intervention against
this oncogene. However, characterization of RAS’ mutational
landscape has not been uniform, with mutations assessed by dif-
ferent assays in different labs and using different biochemical
assays or cell and animal models expressing them endogenous or
exogenously. Data derived from next generation sequencing of
tumors has discovered a large array of different mutations at var-
ied frequencies. Indeed, KRAS is the most frequently mutated
RAS family member, altered in 7% of TCGA samples, compared to
2.9% and 1.3% for NRAS and HRAS, respectively [8,9]. The majority
(86%) of cancer-associated hotspot mutations occur at codons G12,
G13, and Q61, with a smaller number at K117 and A146. Notably,
germline G12 mutations, such as G12S, also cause RASopathies, a
group of distinct neurodevelopmental disorders. RASopathy muta-
tions also occur at non-classic amino acids positions compared to
the somatic hotspots [10,11], but these non-classic alleles are also
observed rarely in cancer. Thus, there is a need to better
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understand the effects of the KRAS mutational landscape in herita-
ble conditions and cancer.

In the current study, we sought to develop an approach that
expands, enhances, and seeks to parametrized with higher resolu-
tion, methods for interpreting genetic variants by considering gene
products in their translated form - as 3D folded proteins. We report
extensive characterization of RAS mutations using DNA predictive
algorithms, combined with 3D structure-based and molecular
mechanics calculations, as described previously [12]. This
approach rendered scores that we applied to the study of 935 vari-
ants from 7 RAS genes, as a comprehensive means to assess relative
similarities of mutations across different members of the RAS fam-
ily. We then correlated our calculations with biochemical data,
which indicated that 3D methods do capture information relevant
for enzyme activity, and thus of value for drug development. Com-
bined our results, demonstrate that the comprehensive suite of
multi-level molecular scores used in this study enhances interpre-
tation of human genetic variation not only for the evaluation of
RAS and is likely applicable to other disease-causing genes
families.
2. Methods

2.1. Generating a mutation-specific biochemical feature resource

We generated a resource of experimental measurements by
numerically homogenizing data from across different studies and
various laboratories that quantitatively have measured or
described biochemical properties of mutated RAS proteins (KRAS,
HRAS and NRAS), relative to the wild type (WT) (Table S1) [13–
29]. We specifically focused on 6 biochemical assays that evaluated
the rate of intrinsic hydrolysis, GAP-mediated hydrolysis, nucleo-
tide (GDP and/ or GTP) exchange, and the binding affinities of
GTP, GAP, and RAF for hotspot and non-hotspot variants. Our anal-
ysis focused on variants with the most biochemical measurements.
Our final dataset consists of 23 variants that include 14 hotspot
variants and 9 non-hotspot variants (at codons A18, L19, A59,
T74, K117, A146 and R164Q; Table S1). For these 23 variants, if
the abovementioned 6 biochemical assays were available for
mutated KRAS, those measures were recorded in our resource.
Otherwise, for the variants G12V/R, G13V, G13S, A59T, Q61P/L/H
and A146V we obtained the measurements from mutated HRAS
or Q61R for NRAS (Table S1 for detailed description).

The reported biochemical measurements of variants were often
relative to the WT (Table S1). Moreover, different groups used dif-
ferent cell lines at different conditions for these measurements.
Hence, we strategically summarized the experimental data relative
to the WT in 5 categorical groups: similar to the WT (�WT), higher
impact than the WT (>WT), substantially higher impact than the
WT (�WT), lower impact than the WT (<WT), and substantially
lower impact than the WT (�WT). Individual studies’ data can
show relative differences among mutations in one of these cate-
gories, but we chose to categorize so that quantitative and qualita-
tive reports could be harmonized, expanding the number of usable
mutations and measurements.
2.2. RAS computational scores

We used the experimentally derived GDP-bound structures of 7
RAS proteins from the PDB [30]: KRAS (KRAS-4B; PDB: 4obe), HRAS
(4q21), NRAS (3con), MRAS (1x1r), RRAS (2fn4), RRAS2 (2ery) and
RERG (2atv). For each RAS protein we identified the corresponding
DNA coding regions in the human genome (GRCh38) for UniProt
canonical isoforms and obtained the genetic variants somatically
observed in cancer from COSMIC, genomic variants associated with
118
congenital disease and RASopathy from ClinVar and HGMD, and
variants observed in the currently healthy population from gno-
mAD using BioR (v5.0.0) [31] with custom scripts in R program-
ming language [32]. As a result, we obtained total 935 variants
for these 7 Ras genes. We used the pre-selected computational
scores from our previous study [12] that included 6 DNA
sequence-based scores and minor allele frequency (MAF), 5 protein
sequence-based scores and 19 protein 3D structure-based scores.
We selected these 31 scores based on the correlation among the
scores for all the 935 RAS variants, and 3D scores were assessed
based on their ability to capture diverse biophysical or biochemical
properties. Detailed description of the 31 scores used in this study
is provided in our previous study [12]. We believe these scores are
unique and most efficiently cover the broadest diversity of RAS
properties hence, suitable for mechanistic interpretation of the
RAS hotspot and non-hotspot variants in this study.

2.3. Analysis of experimental data missingness

To explore our data set of the biochemical measurements of the
23 hotspot and non-hotspot variants of KRAS and summarize the
structure of the missing values therein, we used the Visualization
and Imputation of Missing Values (VIM) version 6.0 [33].

2.4. Analysis of dissimilarities among experimental measures

To identify similarities and dissimilarities between the hotspot
and non-hotspot variants, we used the general dissimilarity coeffi-
cient or Gower’s distance between two variants. This was the sum
of all variable-specific experimental measurements from our
literature-mined resource. We computed all the pairwise Gower
distances between the variants in the data set using daisy for Dis-
similarity Matrix Calculation as implemented in the cluster pack-
age v2.1.0 [34].

2.5. Correlation analyses

We calculated the Spearman correlation (RSpearman) among and
between the experimental measurements and computational
scores, and the corresponding p-values for statistical significance
(via the asymptotic t approximation) using the rcorr function from
Hmisc package version 4.4–1 [35].

2.6. Dimensionality reduction

For each biochemical feature from the experimental measure-
ments, we combined the correlated computational scores for com-
paring among hotspot and non-hotspot variants using PHATE
(Potential of Heat-diffusion for Affinity-based Trajectory Embed-
ding). PHATE is a newly developed dimensionality reduction tech-
nique that generates a low-dimensional embedding, in a way that
attempts to preserve local and global similarities to enhance inter-
pretability of the data’s underlying structure [36]. In this study, the
structure of the data indicates similarities among RAS variants,
according to computational scores using sequence and 3D struc-
ture. We performed PHATE analysis using the phateR v1.0.0 pack-
age with default parameters [36].

2.7. Western Blot for pERK activity

HEK 293 KRAS mutant cells were created by Flp-In T-
REx technology (Invitrogen) by co-transfecting KRAS mutant
pcDNA5/FRT/TO plasmid with pOG44 plasmid and selecting for
hygromycin resistant clones. Mutant cells were plated at 200,000
cells/well in 6-well plates and induced to express KRAS with
1ug/mL doxycycline the following morning. 24-hours after the
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addition of doxycycline, the cells were harvested with RIPA buffer.
Lysates were homogenized, then cleared by centrifugation for
10 min. Protein concentration was normalized by BCA assay to
2 mg/mL. 10 mg of each sample was run on a 12% SDS PAGE gel
and then transferred to a nitrocellulose membrane. Membranes
were incubated with primary antibody diluted 1:000 in 5% BSA at
4 degrees overnight. Primary antibodies included: b-Actin
(45 kDa) - MAB8929 R&D Systems, KRAS (21 kDa) � 05–516 Milli-
poreSigma, pERK (42–44 kDa) � 9101S Cell Signaling, Total ERK
(42–44 kDa) � 4696S Cell Signaling. Membranes were then
washed twice with TBST and incubated for 60 min in correspond-
ing secondary antibody diluted 1:1000. After two more washes in
TBST and a final wash in TBS, the membranes were imaged by
chemiluminescence on a Chemidoc imager. Densitometry of the
blots was performed using ImageJ software. Densitometry
of pERK was normalized to total ERK levels and then fold change
calculated comparing induced (+doxy) to uninduced (-doxy) sam-
ples. Densitometry of KRAS was normalized to total b-actin levels
and then fold change calculated comparing induced (+doxy) to
all uninduced (-doxy) samples.
3. Results

It is necessary to enhance methods for interpreting genetic vari-
ation in the RAS family because variants are known to alter enzy-
matic properties [14,18,21,26], yet genomics-based pathogenicity
predictors yield uniform calls across variants (Fig. S1). Thus, new
approaches must be developed to mechanistically explain existing
experimental data, and predict the effects of variants that lack
experimental characterization.

Building an evidence-based resource to characterize available
and missing experimental data shows that KRAS variants are not
functionally equivalent

We developed a harmonized dataset for rapidly assessing muta-
tional effects on the biochemical properties of the GTPase encoded
by KRAS. We collected, processed, and categorized data derived
from studying 23 KRAS hotspot and non-hotspot variants occurring
at 11 amino-acid residues, distributed throughout the 3D structure
(Fig. 1A and B, Table S1). These 11 residues include G12 and G13
from the P-loop (phosphate-binding), Q61 and T74 from the
switch-II region (Fig. 1B), R164 in the allosteric lobe, with the
remainder affecting switch-I and the nucleotide binding pocket.
The properties measured include (relative to WT; see Methods)
both intrinsic and GAP-mediated hydrolysis, nucleotide exchange,
GTP binding, and RAF and GAP affinity (Fig. 1C). Missing data were
most common for GAP affinity (82.6% of variants), RAF affinity
(65.2%), GAP-mediated GTP hydrolysis (43.5%), and intrinsic GTP
hydrolysis (39.1%). The most reported measurements were for both
GTP binding and nucleotide exchange rates (34.8%; Fig. S2A). For
six (26.1%) variants, only GTP binding measurements were avail-
able, whereas for three (13.0%), all the measurements except GAP
affinity were available. Lastly, only one variant (G12V, 4.3%) had
all 6 measurements (Fig. S2B). We explored the interrelationships
among KRAS biochemical features by computing correlations
among experimental data and observed a broad range of values
(-0.76 � RSpearman � 1). We detect no correlation (RSpearman � 0)
between intrinsic GTP hydrolysis and RAF affinity, as well as
between GAP-mediate hydrolysis and GTP binding. On the other
hand, there was a strong and statistically significant correlation
(RSpearman = 1) between RAF and GAP affinities, as well as between
GTP binding and GAP affinity (Fig. S2C and Table S2). The data sug-
gests that each feature of RAS GTPases can be altered indepen-
dently of others. Therefore, the prediction of one feature is
unlikely to inform about another, thus motivating the need for
our broad approach.
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Because genetic variation outside of classic somatic hotspots
has received relatively little attention, we next sought to quantify
similarities among them by combining information across different
experimental measurements (Fig. 1D). We used Gower distance
which varies from 0 (identical) to 1 (maximally different). Variants
fell into 4 clusters (denoted as C1 to C4; Fig. 1C and D). While, clus-
ter assignment may change as additional measurements are made,
we anticipate that major patterns among variants, that are already
visually apparent, will persist. Interestingly, we first noted that
hotspot mutations occurred across three clusters. Q61 alterations
occur in C1, while G12A/R/S, G12V/D/C and G13C occur in C3,
and G13V/D in C4. Within C1, two non-hotspot variants, Q22K
and K177N, most closely associated with the hotspot Q61H for
their increased GTP binding. C2 contains three non-hotspot muta-
tions, R164Q, A59T, an dA18D, which each have a distinct profile
among the 23 mutants. C3 reveal the similarities between two
non-hotspot variants (L19F and T74P) and the four hotspot vari-
ants (G12V/D/C and G13C). C4 identifies similarities among
A146T/V and G13V/D but differences among non-hotspot variants
A146T/V and hotspot variants G12A/R/S as well as Q61L/P/H. Addi-
tionally, differences between the non-hotspot variants R164Q and
the hotspot variants are not surprising, as the former behave like
WT KRAS, based on available measurements. Nonetheless, our
findings are especially noteworthy for hotspot variants the non-
hotspot variants A59T and A146T/V, which have multiple experi-
mental measurements. Hence, by revealing patterns of similarity
between hotspot and non-hotpot variants of KRAS, this data sup-
port the fact RAS variants are not functionally equivalent [37], rais-
ing the need of a broader data science approach to scoring genomic
variation in this gene.

3.1. 3D structure-based scores explain experimental differences among
23 KRAS variants

We evaluated the congruency between experimental measure-
ments and computational scores derived from calculations at mul-
tiple molecular levels – genomic, protein sequence, and protein 3D
structure. Specifically, we computed the pairwise Spearman corre-
lation (RSpearman) between each experimental measurement and 31
computational scores (Fig. S3A) across the 23 KRAS variants. We
excluded MAF and conservation as these scores each had identical
values across the 23 KRAS variants (Figs. S3A and B). We filtered
using p-value < 0.05 and obtained 18 computational scores that
are highly correlated (RSpearman > 0.51) with experimental measure-
ments, consisting of one DNA sequence, three protein sequence,
and fourteen 3D structure-based scores (Fig. 2 and Table S3). This
finding is important to consider since genomic scores are generally
based on DNA sequence features, and therefore mostly incapable of
capturing nuanced impact of mutations on specific biochemical
properties compared to the 3D structure-based scores.

The fourteen 3D scores that correlate with experimental bio-
chemical measures are physically interrelated. They coordinate
around five molecular properties (folding entropy, folding stability,
local packing and energetic stability, and residue level folding
cooperativity) that represent different contributions to the proba-
bility of local unfolding or conformational rearrangement. For
example, the change from WT in main-chain SASA correlated with
GAP-mediated hydrolysis rate (RSpearman = 0.55; p-value = 0.05),
nucleotide exchange rate (0.56; 0.03), GAP affinity (0.95; 0.05)
and RAF affinity (0.82; 0.01; Fig. 2). This observation supports
the inference that changes in SASA caused by mutation impacts
KRAS activity through modulation of GAP-mediated hydrolysis
and nucleotide exchange rates, GAP and RAF affinities. Similarly,
protein folding stability (DDGfold) positively correlate with nucleo-
tide exchange rate (RSpearman = 0.71; p-value = 0.00) and GAP affin-
ity (0.95; 0.05), further suggesting that stability changes for
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mutated proteins impacts both properties. These findings directly
show the strong association between the 3D scores and the mea-
surements for key biochemical properties of mutated KRAS,
beyond what is currently available from genomic scores, enabling
120
us to better interpret mechanisms of dysfunction underlying
distinct KRAS variants.

We modeled all six experimental parameters from our
biochemical feature resource using the same procedure, with
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GAP-mediated hydrolysis and RAF affinity having the strongest
associations with the derived scores. Thus, we first detail the mar-
ginal and composite scores for these two features in the next sec-
tions, and then discuss the remaining four, followed by overall
patterns across the dataset.
3.2. 3D structure-based scores reveal mechanisms of disruption of
GAP-mediated hydrolysis of the 23 KRAS variants

We used dimensionality reduction to derive a composite score
from the multiple individual scores that correlated with GAP-
mediated hydrolysis. Our goal was to prioritize similarities or dif-
ferences in potential underlying mechanisms of dysfunction
among variants, congruent with the available experimental evi-
dence. We used two approaches leveraging computational scores
for the 23 KRAS variants that correlate with experimental mea-
surements of GAP-mediated hydrolysis: 1) pattern analysis using
k-clustering and 2) unsupervised dimensionality reduction for all
RAS variants.

In our first approach, we examined patterns among five compu-
tational scores (one protein sequence and four 3D structure-based
scores) that correlate with the GAP-mediated hydrolysis rate
(Fig. 3A and B). All four structure-based scores relate to local stabil-
ity, and therefore we expect their alteration by mutations to mod-
ulate local unfolding. We identified three groups of variants,
according to these scores. One cluster contained p-loop mutations,
another contained switch-II mutations plus G13C and selected
non-hotspot variants (e.g. A146V and K117N), and the third con-
tained only non-hotspot variants plus G13V. The composition of
mutations differs among these clusters, and patterns according to
changes in multiple structure-based stability scores. Thus, compu-
tational scores reveal patterns among hotspot and non-hotspot
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variants’ GAP-mediate hydrolysis that may be driven by differ-
ences in local unfolding probabilities.

In our second approach, we used PHATE dimensionality reduc-
tion to score overall similarities among the 935 variants from 7
RAS genes. We performed 1D PHATE (PHATE1) analysis of the 5
computational scores that correlated with GAP-mediated hydroly-
sis (see Fig. 3C-F). The composite summary score from PHATE1
across (Fig. 3C) provides a probability density distribution from,
which we projected the 23 KRAS variants; they were largely
ordered by their GAP-mediated hydrolysis rate (Fig. 3D). Moreover,
PHATE1 and experimental measurements display a better correla-
tion (RSpearman � 0.80) than any individual computational score (|
RSpearman|�0.61; Fig. 3E and F) and were able to predict relative
levels for mutations that have not been experimentally measured.
These results are additionally important since there are conflicting
reports on the effects of G12D [21,26,27] and weather G13D
behaves more like WT compared to G12D [14]. In this study, we
rectified conflicts by favoring the data more supported by the
allele’s incidence rate in cancer. Yet, our calculations may help to
clarify the intrinsic effect of each allele by interpolating among
the data generated independently between different laboratories,
and to prioritize experiments for future validation studies. Among
variants with missing GAP-mediated hydrolysis measurements,
the PHATE1 values suggest, for example, that G12S has comparable
effects to G12A/R and relatively lower effect for G13C compared to
G13V. A146V associates to higher relative GAP-mediated hydroly-
sis than A146T, which is like G12A/R/S and G13V. Mutant-to-
mutant correlations show that L19F, A59T, and K117N compare
to G13D and Q61H. The remaining variants (A18D, Q22K and
T74P) appear like WT (Fig. 3F). These findings indicate that
mutated KRAS proteins may modulate GAP binding by changing
the probability of locally unfolded conformations, which will in
turn change GAP-mediated hydrolysis rates.
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3.3. 3D structure-based scores reveal that changes in RAF-affinity
underlies the dysfunction of 23 KRAS variants

We investigated how the 23 KRAS variants change RAF affinity
by first identifying the computational scores exhibiting strongest
associations with this property (Fig. 4), all of which were from
3D structure and emphasize hydrophobic and entropic properties.
By observing the patterns of these computational scores (Fig. 4A
and B), we identified non-hotspot variants with similar profiles
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and RAF affinity as hot-spot variants. We find T74P and R164Q
resembled hotspot variants G13C/D/S and Q61H/L. On the other
hand, the non-hotspot variants L19F and K117N more closely
resembled Q61R, A18D, Q22K, and A146T resembled G13V, and
A59T and A146V clustered with G12R. In contrast, we observed
the remaining hotspot variants, G12C/D/V/A/S and Q61P, in a sep-
arate cluster. PHATE1 analysis of all 935 variants from 7 RAS genes
show high correlation (RSpearman � -0.82) with experimental RAF
affinity measurements (Fig. 4C and D). We used PHATE1 values
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values.
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to compare the degree of predicted RAF affinity with experiment
(Fig. 4E and F), the largest difference being between G12C and
G12R. Overall, these predictions agreed with experimental data
and showedmuch stronger associations with direct empirical mea-
surement than using genomic scores alone.

Additionally, we predicted relative RAF affinity changes for
amino acid substitutions lacking experimental measurements (15
out of 23; Fig. 4B). These include G12S, which we predict has a
decreased RAF affinity like other G12 variants, and G13V, Q61P,
A59T, and A146V which we predict to have intermediate decreases
in RAF affinity. On the other hand, the variants Q61H, A18D and
Q22K show relatively smaller changes, closer to WT levels than
the other mutations assessed. The remaining variants (G13C/S,
Q61R, L19F, T74P, K117N, and R164Q) are predicted to have RAF
affinity comparable toWT. Our analysis identified biophysical prop-
erties (changes in folding propensity and solvation energies) that
distinguish RAF affinities among RAS mutants better than genomic
scores.

We performed similar interpretations for GTP binding activity
(Fig. S4A), intrinsic hydrolysis (Fig. S4B), nucleotide exchange
(Fig. S5A), andGAP affinity (Fig. S5B).We identified pattern of highly
correlated computational scores associatedwith themeasurements
for these KRAS variants. However, for GTP binding activity and
nucleotide exchange rate, the correlations between PHATE1 (using
the associated computational scores as input) and experimental
measurements were low (RSpearman � 0.28 and 0.05, respectively).
For intrinsic hydrolysis, we identified two highly correlated compu-
tational scores. On the other hand, GAP affinity showed a strong cor-
relation with 8 computational scores (RSpearman � 0.95), whichmost
likely is due to the large number ofmissingmeasurements (19 out of
23 variants). These results underscore that more data is needed to
complete our understanding of the structure–function relationship
for mutations that encode dysfunctional RAS enzymes. Thus, com-
bined, the use of 3D structure-based scores enhances the informa-
tion available from genomics over existing methods that are based
only on sequences, or thosewhich incorporate amore limited reper-
toire of structural evaluations.

3.4. Deriving a more uniform and mechanistic interpretation of all RAS
variants

To visualize the relative changes in GAP-mediated hydrolysis
and RAF affinity across all 935 RAS family variants, we extended
PHATE to 2D and followed a similar procedure as above. 2D PHATE
for GAP-mediated hydrolysis (Fig. 5A) and RAF affinity (Fig. 5B),
identify mutations with the largest experimental changes occupied
tails of the value distribution, supporting that computational
scores can distinguish which mutations have the largest effect on
the enzyme. G12 KRAS hotspot variants occupy a distinct region
while G13 and Q61 KRAS hotspot variants are more broadly dis-
tributed. This observation indicates that G12 alterations are speci-
fic vulnerabilities to the enzyme and impart relatively unique
changes, while other mutations have more varied changes. To val-
idate these predictions, we added information about the down-
stream effect of activated RAS using pERK levels. We first
identified four representative alleles that spanned the range of val-
ues from our composite scores of both biochemical features (G12C/
D and G12C/D). We generated inducible human cell lines carrying
each of these alleles and completedWestern blot analyses (Fig. 5C).
This work revealed that each mutation conveyed a different level of
downstream activity, yet with G12D and G12C having similar
levels of induction and G13 mutations having higher induction
with higher variance (Fig. 5D). These data were concordant with
the ranking of these alleles from our composite scores. We also
gathered pERK data from the literature (Table S4) and mapped
both types of pERK data onto the PHATE spaces (Fig. 5E), again
124
demonstrating concordant ranking of the mutation. Together,
these data indicate the potential for structure-based scores to
enhance existing genomics scores with data of mechanistic value.

We investigated whether the above large-scale patterns charac-
terize all KRAS, HRAS and NRAS hotspot variants, by projecting the
amino acid substitutions at G12, G13 and Q61 and observed an
overall similar pattern, but with differences between the RAS pro-
teins (Fig. 6A and B). To quantify and better visualize the differ-
ences by RAS and hotspot location, we calculated the centroid of
the G12, G13 and Q61 variants for each RAS (Fig. 6C and D). Inter-
estingly, G12 variants especially from KRAS and NRAS, cluster
independently of other mutations. Hotspot location was a distinct
feature for GAP-mediated hydrolysis independent of RAS protein.
G13 and Q61 alterations were more intermixed for RAF affinity,
but with a clear trend for HRAS mutations to have relative differ-
ences from NRAS and KRAS. From these patterns among hotspot
variants, we inferred certain amino acid substitutions have the
same mechanisms across RAS proteins, while other substitutions
are modulated by intrinsic biochemical properties of individual
RAS genes [38]. These computational observations are important
since differences between RAS proteins are evident, both by dis-
ease incidence and mutational biases, but the GTP-binding
domains, which catalyzes GTP hydrolysis and mediates down-
stream signaling, are 95% identical between them. In fact, the
sequences between KRAS, NRAS, and HRAS are identical in the
effector lobes (residues 1–86) and exhibit small differences in
allosteric lobes (residues 87–166). Therefore, the information from
linear sequence is insufficient to characterize the subtle similari-
ties or differences among the hotspot variants, but 3D structure-
based scores appear to identify signals from the allosteric lobe that
links into mutation-specific effect differences.
4. Discussion

In this study we present the broadest-to-date resource for KRAS
mutational effects on enzymatic properties from the literature,
spanning 23 distinct alterations and six biochemical measure-
ments, which demonstrates the functional heterogeneity of RAS
mutations. We identified that 3D structure-based calculations cor-
relate with enzymatic activity much better than well-established
DNA scores. DNA scores are primarily based on sequence conserva-
tion and functional information of the genome; while informative
and extensively used in predicting pathogenicity in clinical work-
flows, they provide little data of mechanistic value for interpreting
variants at the molecular level. Structure-based and additional
molecular calculations can enhance DNA scores because they pro-
vide information about features that are not considered when
developing genomics annotations [12,39,40]. Thus, we believe
the high specificity of 3D scores will make them a vital component
to research into oncogenic variation, understanding of differential
drugability of each mutation, and translation of genomic data into
clinical knowledge.

While the effects of classic hotspot mutations are generally
accepted, as we gathered data from literature, we identified some
discrepancies among these measurements. For example, KRAS
G12D and in HEK 293 T/17 cells had 4.5-fold higher GTP-bound
level compared to WT [26], whereas similar measurements in
MCF10A cells showed no change [21]. From another study by Hun-
ter et al. [14], the same KRAS G12D variant showed 4.8-fold lower
RAF affinity relative to WT, while Poulin et al. [27] reported that
KRAS G12D variant exhibited similar RAF affinity as WT. These dif-
ferences may be due to feedback mechanisms where cells compen-
sate for changes in KRAS activity by modulating other RAS
enzymes, downstream effectors, or upstream receptors. Thus,
future study is needed to better understand the context specificity



Fig. 5. Mechanistic interpretation of all RAS variants from experimental measurements. We performed 2D PHATE analysis to identify spatial patterns for interpreting the
variable degree of changes across 935 RAS variants. A) 935 RAS variants are projected on the 2D PHATE space using the 5 computational scores that strongly correlate with the
GAP-mediated hydrolysis rate of the 23 KRAS variants that are colored with the semi-quantified measurements in the plot (see Fig. 3A-B). Marginal distributions along
PHATE1 and PHATE2 are also shown. B) A similar 2D PHATE plot of 935 RAS variants using the 5 computational scores highly correlated with the semi-quantified RAF affinity
measurements of the 23 KRAS variants that are indicated in the plot (see Fig. 4A-B). C) From the patterns among RAS mutations, we selected four KRAS alleles that spanned
the range of PHATE values for functional validation. Representative Western blots are shown for pERK, a critical downstream marker of RAS activity. D) We quantified pERK
levels downstream of each mutant after 24hr induction of each allele (see Methods). E) Using the PHATE spaces defined in panels (A) and (B), we show the pERK data derived
from the literature (Table S4) and from this study. Downstream activity changes for these KRAS alleles are highly concordant with their ranking according to computed scores.
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of even classic hotspot variation, which may be enhanced by mech-
anistic and structure-based data, as in the current study.

Limitations on the availability of the biochemical measure-
ments for KRAS variants need to be considered, especially for vari-
ants with only single experimental measurements. Filling in the
missing data in the future, may modify the associations among
experimental and computational scores that we have identified
(Fig. 2), but our study demonstrates that 3D protein structure-
based scores are key in providing insight into mechanisms under-
lying altered enzymatic activities of the mutated protein (Figs. 3
and 4). Finally, we note that intrinsic differences for each RAS-
family protein are observed, despite the highly similar sequences
among them. Thus, mechanistic information is encoded in 3D
structures which can also inform about baseline differences among
WT enzyme isoforms. Computations between RAS isoforms could
play a role in future studies to explain differential disease inci-
dence across the repertoire of KRAS, HRAS and NRAS mutations
in different types of human cancers.

We analyzed RAS at the molecular level to investigate how
mutations affect distinct biochemical properties. One limitation
of our approach is resolution of the experimental data, which we
chose as semi-quantitative to harmonize across different reports.
Further, RAS proteins are known to activate different signaling
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pathways (e.g. RAF/MAPK and PI3K/AKT/mTOR) depending on par-
ticular cell types, tissues and their subcellular localization [20,41].
Also, hotspot mutations surround the nucleotide-binding site and
earlier studies suggested that the nucleotide exchange may alter
the affinity of mutant RAS proteins for downstream effectors pro-
teins [14,42]. For scoring, we focused on biochemical experimental
measurements on the RAS protein, rather than downstream effects
which are mediated by additional factors. However, we also con-
sidered pERK, which is a critical downstream effect of RAS activa-
tion and one of the only measurements, the other being pMEK,
recommended by a recent RASopathy expert panel [43]. We found
that our composite scores, primarily leveraging 3D structural fea-
tures, ranked KRAS mutations concordant with experimental mea-
sures of pERK induction. Finally, due to the limited availability of
systematic and quantitative experimental measurements of the
RAS variants, we were unable to perform an ideal supervised
machine learning approach to classify the variants based on bio-
chemical properties. We are actively pursuing studies of the KRAS
enzyme to gather the requisite data to train and test more robust
models. Thus, our current study establishes that 3D structural data
brings added value to genomic pathogenicity predictors for preci-
sion oncology, and future work combining 3D modeling and quan-
titative systems analyses of signaling networks will better
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determine the phenotypic outcome differences among RASopathy
and cancer-associated RAS mutations [44].

5. Conclusions

Genomic scores are commonly used in clinical workflows, but
they cannot discriminate among RAS mutations that have different
biochemical properties. Thus, we used a broad repertoire of protein
sequence and 3D structure-based scores to enhance genomic
scores with more nuance of the translated gene product. We
demonstrated that these additional scores explain differences
among biochemical measurements of KRAS, that classic hotspot
and non-hotspot mutations alike can have similarly altered pro-
files, and that these profiles associate with enzymatic properties.
The current study lays the groundwork for our multi-level struc-
tural bioinformatic approach, which we believe will be informative
to precision oncology efforts to combat RAS alteration, and be gen-
eralizable to other proteins for increasing researchers’ ability to
interpret the effects of human genetic variation.
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