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Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular 
morbidity and mortality that is seen in both hypertensive and normotensive populations. 
Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive 
people. While the precise mechanism by which IR and SSBP relate remains elusive, 
several common pathways are involved in the genesis of both processes, including 
vascular dysfunction and immune activation. Vascular dysfunction associated with insulin 
resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and 
heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It 
manifests with increased blood pressure (BP) in salt sensitive murine models. Another 
common denominator in the pathogenesis of insulin resistance, hypertension, and salt 
sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor 
necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of 
interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional 
concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial 
Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin 
protein adducts in antigen presenting cells (APCs), and that this response is implicated 
in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) 
is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists 
increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ 
results in severe insulin resistance and hypertension. These findings suggest that PPARγ 
plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps 
via effects on the immune system and vascular function. The goal of this review is to 
discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
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INTRODUCTION

Salt sensitivity (SS) of blood pressure (BP) is a phenotype characterized by changes of BP 
that parallel changes in dietary salt intake. SS affects more than half of all hypertensive subjects 
as well as a quarter of normotensive individuals in the United  States (Weinberger et  al., 1986) 
and is a cardiovascular risk factor for both normotensive and hypertensive humans (Morimoto 
et  al., 1997; Weinberger et  al., 2001). As a polygenic trait normally distributed in human 
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populations, SS is well-known to be  associated with insulin 
resistance (IR; Zavaroni et  al., 1995; Fuenmayor et  al., 1998; 
Suzuki et  al., 2000; Giner et  al., 2001). In fact, epidemiological 
studies suggest that approximately 50% of salt sensitive individuals 
are insulin resistant (Reaven, 2003), independent of confounding 
factors such as age, obesity, and glucose intolerance (Galletti 
et  al., 1997). Furthermore, the degree of salt sensitivity seems 
to correlate with the severity of IR (Zavaroni et  al., 1995; 
Giner et  al., 2001), suggesting a causal relationship between 
the two states. However, the mechanisms underlying this 
association remain unclear. This article reviews the existing 
evidence on the interplay between salt sensitivity and insulin 
resistance and propose mechanisms to explain their relationship.

PATHOGENESIS OF SALT SENSITIVITY

Since SSBP was described, its underlying pathophysiologic 
mechanisms have been a matter of controversy. The traditional 
view follows the classic concept of Guyton (1991), who postulated 
that SS individuals must have an intrinsic defect in renal 
sodium handling. According to this view, a salt load expands 
plasma volume to reach isosmotic balance, which in turn 
activates systemic and renal natriuretic mechanisms, leading 
to renal salt excretion without change in arterial pressure 
(Guyton, 1991). Thus, only an impairment in some renal 
natriuretic system could lead to hypertension. While defects 
in renin angiotensin system (Giner et  al., 2000), renal sodium 
transport (Lluch et  al., 1996), and sympathetic system (de la 
Sierra et  al., 1996) among others, have been implicated, the 
exact pathogenesis has not been established. Impaired natriuresis 
should induce salt retention and plasma volume expansion in 
SS individuals. However, several studies showed that there is 
no difference in sodium balance, plasma volume, and cardiac 
output in response to salt loading or depletion between SS 
and salt resistant (SR) individuals (Schmidlin et al., 2007; Laffer 
et  al., 2016). Instead, hemodynamic measurements in humans 
and animals revealed an absence of the normal vasodilator 
response to salt or even a paradoxical vasoconstriction in SS 
(Ganguli et  al., 1979; Sullivan and Ratts, 1983; Simchon et  al., 
1989; Qi et  al., 1999; Schmidlin et  al., 2007; Laffer et  al., 
2016). This would imply a shift of the paradigm from one of 
renal excretory defects to one of extrarenal mechanisms producing 
vascular dysfunction. Indeed, while cardiac output increases 
after a salt load in both SR and SS subjects, SS subjects lack 
the concomitant decrease in total peripheral resistance (TPR) 
that is seen in SR subjects. Similarly, TPR is also unchanged 
after salt depletion in SS subjects. These findings suggested 
that BP elevation in SS was mediated by abnormalities in 
vasoconstrictor/vasodilator responses.

Our understanding of whole-body Na+ distribution has been 
recently expanded by new knowledge about the storage of Na+ 
in the interstitial compartment. Previous literature on salt 
sensitivity regarded body salt balance in terms of the traditional 
isoosmolar sodium distribution, including the intravascular, 
interstitial, and intracellular compartments. However, recent 
studies showed that Na+ may accumulate in the interstitium 

without commensurate water retention but in association with 
glycosaminoglycans instead (Titze et  al., 2004; Wenstedt et  al., 
2021). Whether this Na+ is or is not hyperosmolar is controversial 
(Rossitto et  al., 2020), but irrelevant in terms of activation of 
immune cells, which is due to the Na+ concentration, not to 
its osmolality (Barbaro et  al., 2017). In any case, the finding 
sheds doubt on the traditional model of sodium-water balance 
(Machnik et  al., 2009; Wiig et  al., 2018). In murine models, 
extrusion of Na+ from this compartment involves a macrophage 
salt-sensitive tonicity-responsive enhancer binding protein 
(TonEBP) and stimulation of vascular endothelial growth factor 
C (VEGFc) leading to lymphangiogenesis (Machnik et al., 2010; 
Wiig et  al., 2013). Blocking this pathway by pharmacological 
or genetic means results in salt-sensitive hypertension.

Studies using 23Na MRI confirmed that Na+ is stored in 
the interstitia of skin and skeletal muscle in humans, indicating 
that this may also occur in other organs less accessible for 
measurement, and that this storage may provide a buffering 
system for excess salt intake (Kopp et  al., 2013). Others have 
shown that skin Na+ positively correlates with BP. We  have 
made a similar observation with muscle Na+, which positively 
correlated with systolic and diastolic blood pressures in patients 
studied either on their usual diets or during the sodium loading 
and depletion phases of a research protocol (Sahinoz et  al., 
2021). Also, skin and skeletal muscle Na+ increase with aging 
and hypertension (Rossitto et  al., 2020), suggesting a direct 
role of these stores in BP regulation. Some evidence for 
differential regulation of this Na+ storage between SS and SR 
individuals has been obtained (Laffer et  al., 2016), but this 
remains to be  established with certainty in future studies.

INSULIN RESISTANCE, HYPERTENSION, 
AND SALT SENSITIVITY

Insulin resistance, or reduced insulin sensitivity, is a key 
component of the metabolic syndrome, which includes 
hypertension, obesity, and dyslipidemia. Research in the last 
three decades has proved a strong association between 
hypertension and insulin resistance, and this relationship is 
stronger in salt sensitive hypertension (Yatabe et  al., 2010).

Salt intake has a close relationship with hypertension (Grillo 
et  al., 2019) and may be  a determinant of the pathogenetic 
link between salt sensitivity and insulin resistance, because it 
impairs insulin sensitivity in normotensive and hypertensive 
patients with salt sensitivity but not in those with salt resistance 
(Sharma et  al., 1991; Zavaroni et  al., 1995). A high-salt diet 
exaggerated the insulin response to an oral glucose load in 
SS but not SR patients (Ferri et  al., 1998; Fuenmayor et  al., 
1998). This suggests that in salt sensitive states, high salt intake 
may exacerbate insulin resistance. In turn, insulin resistance 
seems to heighten the blood pressure response to sodium intake 
(Zhou et  al., 2014). Whether the effect of aldosterone, many 
times inappropriately secreted in SS subjects, plays a role in 
determining insulin resistance via hybridization of the insulin 
and insulin growth factor receptors (Sherajee et  al., 2012) is 
not known.
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Several mechanisms have been postulated to explain the 
association between insulin resistance, salt sensitivity, and 
hypertension. In the following sections, we  will describe renal 
vascular and immune mechanisms, including novel findings 
about a role for endothelin (Liu et al., 2013) and for interstitial 
Na+ storage (Nikpey et  al., 2017).

Renal Sodium Retention
Insulin resistance is primarily due to downregulation or 
inactivation of insulin signaling, which is mainly mediated by 
insulin receptor substrates (IRSs) in effector organs. IRSs exhibit 
tissue specific distribution. Whereas IRS1 facilitates insulin 
dependent glucose transport in adipose and skeletal muscle 
tissue, IRS2 primarily mediates the effects of insulin on the 
kidney (Kido et  al., 2000; Hookham et  al., 2013). The latter 
increase Na+ reabsorption in multiple nephron segments via 
stimulation of Na+/H+ exchanger type 3 (Klisic et  al., 2002), 
Na+/K+ ATPase (Ewart and Klip, 1995), Na-K-2CL cotransporter 
(Tsimaratos et al., 2003; Horita et al., 2011), sodium-bicarbonate 
cotransporter (NBCe1; Horita et  al., 2011; Pavlov et  al., 2013), 
and the epithelial sodium channel (ENaC; Loffing and 
Korbmacher, 2009). It is now known that insulin resistance 
affects IRSs’ expression differently in each target tissue (Soleimani, 
2015). For example, insulin resistant humans have significantly 
reduced IRS1 and IRS2 expression in metabolically active tissues 
such as muscle, while IRS2 expression in the kidney is 
exceptionally preserved (Sechi, 1999; Nakamura et  al., 2015). 
Thus, the compensatory hyperinsulinemia required to maintain 
normoglycemia can aggravate insulin sodium-retaining actions 
(Miyazaki et al., 1996), which may potentially lead to hypertension 
(Figure  1). This is supported by the observation that mice 
lacking the insulin receptor specifically in the collecting duct 
principal cells showed significantly lower ENaC activity, while 
ENaC subunit expression was not changed compared to wild 
type mice. Also, wild type mice had enhancement in ENaC 
activity following insulin treatment, indicating insulin mediated 
channel opening in renal tubules (Pavlov et  al., 2013). Thus, 
selective insulin resistance, through decreasing sodium excretion, 
may increase the effective sodium load in response to high 
oral sodium intake, which could aggravate the blood pressure 
response in salt sensitive patients.

Vascular Dysfunction
Another mechanism by which IR is postulated to induce 
hypertension is through vascular insulin resistance (Yki-Järvinen 
and Utriainen, 1998). Insulin has important vasodilatory effects 
in skeletal muscle to augment muscle blood flow and glucose 
transport (Steinberg et  al., 1996) and these are impaired in 
insulin resistant states (Mather et  al., 2013). Insulin relaxes 
precapillary arterioles to facilitate transcapillary insulin transport, 
increasing microvascular blood flow by a nitric oxide (NO) 
dependent process termed microvascular recruitment (Herkner 
et al., 2003; Vincent et al., 2004). Insulin-induced NO production 
is due to activation of nitric oxide synthase via the 
phosphatidylinositol 3-kinase (PI3K) pathway, similar to other 
metabolic insulin signaling (Muniyappa et  al., 2020).

In contrast to its vasodilatory effects, insulin also triggers 
vasoconstriction via mitogen-activated protein kinase (MAPK)-
dependent production of vasoconstrictor endothelin 1 (ET-1). 
This mechanism is involved in fine-tuning of vascular tone 
(Muniyappa et  al., 2020). Selective resistance to the action of 
insulin on the PI3K-dependent pathway depresses nitric oxide 
synthesis, whereas the unaffected MAPK pathway maintains 
endothelin-1 production. This results in a shift of the normally 
delicate balance between the two opposing vascular actions 
of insulin toward vasoconstriction and hypertension (Ko et  al., 
2010). Supporting the involvement of insulin resistance-associated 
vascular dysfunction in SSBP are observations in Dahl salt 
sensitive rats, which after a high salt diet exhibit hypertension, 
metabolic insulin resistance, impaired insulin-dependent 
activation of PI3K/endothelial NO synthase (eNOS), and impaired 
NO-mediated vasorelaxation (Zhou et  al., 2009, 2010). Other 
studies of mice have also found high salt diet induced reduction 
in NO synthesis, through Rho kinase-dependent inhibitory 
phosphorylation of eNOS by circulating interleukin-17 (IL-17; 
Faraco et  al., 2018).

Insulin’s vasodilatory effects are also crucial to ensure adequate 
transendothelial transport, a rate limiting step of insulin’s metabolic 
action (Yang et  al., 1989). There is evidence that microvascular 
IR precedes metabolic IR (Zhao et  al., 2015), suggesting an 
important role for endothelial dysfunction in the pathogenesis 
of metabolic IR. IR also causes capillary rarefaction in the skeletal 
muscle, a process of reduced capillary density due to impairment 
in the angiogenesis mediated by the vascular endothelial growth 
factor (VEGF; Chung et al., 2006; Frisbee, 2007). This contributes 
further to insulin-induced vascular dysfunction.

The evidence above suggests that vascular dysfunction 
induced by insulin resistance may play a role in the pathogenesis 
of hypertension. Conversely, hypertension associated increased 
vascular resistance may contribute to the development of 
metabolic insulin resistance. Indeed, a relationship between 
hypertension and insulin resistance is further suggested by 
the finding that monotherapies with either enalapril (vasodilator 
ACE inhibitor) or rosiglitazone (insulin sensitizer), effectively 
reduce metabolic insulin resistance, plasma levels of ET-1 
and blood pressure in spontaneously hypertensive rats (Potenza 
et  al., 2006). Similar trends have also been reported in 
nondiabetic hypertensive patients treated with insulin sensitizers 
and vasodilator antihypertensive agents (Raji et  al., 2003; 
Geng et  al., 2013).

Interplay Between Endothelin-1 and IR in 
Hypertension
Endothelin-1 is a potent vasoconstrictor secreted by vascular 
endothelial cells and has been long thought to play a role in 
the development of the hypertension component of the metabolic 
syndrome (Dhaun et  al., 2008). As discussed above, selective 
insulin resistance enhances the prohypertensive action of ET-1 
by disrupting its physiological balance with NO. This is supported 
by observations in rodents and humans. In rats, a continuous 
insulin infusion leads to development of insulin resistance and 
hypertension along with higher plasma ET-1 levels 
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(Juan et  al., 2004). In humans, (a) insulin stimulates ET-1 
production during an euglycemic hyperinsulinemic clamp, (b) 
insulin resistant patients have elevated plasma ET-1 
concentrations (Wolpert et  al., 1993), (c) plasma insulin and 
ET-1 levels correlate in essential hypertensive patients 
(Zaporowska-Stachowiak et  al., 1997), and (d) a mixed ET-1 
type A (ETA) and type B (ETB) receptor antagonist produces 
vasodilation in insulin resistant but not insulin sensitive humans 
(Shemyakin et  al., 2006). All these findings suggest a role of 
insulin-induced ET-1 predominance in the development 
of hypertension.

Conversely, ET-1 may play a causal role in the development 
of insulin resistance, since it inhibits insulin mediated glucose 
uptake in adipocytes through ETB receptors (Chou et al., 1994). 
It is via stimulation of this receptor that ET-1 regulates adiponectin 
expression and promotes adipose tissue deposition and insulin 
resistance (Juan et  al., 2007; Rivera-Gonzalez et  al., 2020).

Interplay Between Endothelin-1 and Salt in 
Hypertension
Murine studies have also shown that high salt intake upregulates 
vascular ET-1 expression independent of changes in blood 
pressure (Tsai et  al., 2006). Also, if the endothelin-1 gene is 

knocked out from the endothelium (the VEET KO mouse), 
a high salt diet fails to increase mean arterial pressure to the 
same extent as in control mice (Speed et  al., 2015).

In normotensive and hypertensive humans, high salt intake 
increases plasma ET-1 levels (Liu et al., 2013). We have discussed 
above how tissue Na+ storage is involved in salt sensitivity of 
blood pressure. It is therefore noteworthy that skin Na+ 
accumulation in response to high salt diet is accompanied by 
increased ET-1 mRNA expression in vascular tissues (Speed 
et al., 2015). Therefore, ET-1 may modulate the blood pressure 
response to salt intake through a direct vasoconstrictive effect 
as well as an effect on tissue Na+ accumulation. Actually, the 
interaction between ET-1 and salt in hypertension may have 
a third player, because tissue Na+ also associates with insulin 
resistance, with the caveat that the latter observation has only 
been made in patients with end stage kidney disease (Sahinoz 
et  al., 2020).

Several observations suggest that participation of ET-1  in 
salt-induced hypertension may be different in SS vs. SR subjects. 
For example, ET-1 levels are higher in salt sensitive than in 
salt resistant essential hypertensive patients (Ferri et  al., 1998). 
Also, while receiving an intermediate salt diet, salt sensitive 
patients have a higher plasma ET-1 response to oral glucose 
load than their salt resistant counterparts (Ferri et  al., 1998). 

FIGURE 1 | Hyperinsulinemia induced sodium retention in the kidney. Insulin resistance (IR) in humans selectively affects insulin receptor substrate (IRS) 1 in muscle 
and adipose tissue, while the function of IRS2 in kidney is preserved. The compensatory hyperinsulinemia of insulin resistant states increases insulin’s effects in renal 
tubules by activating of Na+/H+ exchanger type 3, Na+/K+ ATPase, Na-K-2CL cotransporter, sodium-bicarbonate cotransporter (NBCe1) and the epithelial sodium 
channel (ENaC). This leads to increased sodium retention which contributes to hypertension. The figure created with BioRender.com.
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Finally, in a study of 155 normotensive and mild hypertensive 
patients, a 7-day high salt diet increased plasma ET-1 levels 
and arterial stiffness much more in SS than in SR patients 
(Liu et  al., 2013). All these studies show that exaggerated ET-1 
responses to salt are a feature of SS hypertension.

It is well-known that SS hypertension is associated with 
more severe target organ damage than SR hypertension and 
that this may be explained by worse endothelial dysfunction 
in the former (Franco and Oparil, 2006). It is therefore 
highly conceivable that ET-1-dependent and IR-dependent 
endothelial dysfunction are important determinants of the 
early and severe target organ damage of SS hypertension, 
and thus explain the poor prognosis associated with 
this phenotype.

Adipokines in Insulin Resistance and 
Hypertension
As a key element of metabolic syndrome, obesity closely 
relates with both hypertension and insulin resistance. Increased 
adiposity is proposed to contribute to both blood pressure 
and glucose homeostasis through secretion of various 
adipokines. One such is chemerin, an adipocyte-derived factor 
responsible for the development and differentiation of adipocytes 
(Goralski et  al., 2007). Chemerin has vasoconstrictive effects 
through its actions on vascular smooth muscle (Ferland et al., 
2017) and endothelium (Lobato et  al., 2012) in both human 
and animal vasculature (Kennedy et  al., 2016) and decrease 
in whole body chemerin by chemerin antisense oligonucleotides 
reduces blood pressure in normal-fed rats (Ferland et  al., 
2018) as well as in Dahl salt-sensitive (DS) rats fed high-salt 
and high fat diets (Ferland et al., 2019). In humans, chemerin 
has been found to associate with higher risk of hypertension 
in a large population-based study including 3,986 subjects 
(Zylla et  al., 2017).

In addition, chemerin regulates glucose metabolism and its 
actions in skeletal and cardiac muscles have been linked with 
insulin resistance in several studies (Sell et  al., 2009; Becker 
et  al., 2010; Zhang et  al., 2014). Rodent models of obesity/
diabetes demonstrated significantly elevated serum levels of 
chemerin; exogenous chemerin administration further 
exacerbated glucose intolerance (Ernst et al., 2010). Nevertheless, 
human studies have not shown a consistent relationship between 
insulin sensitivity and serum chemerin levels and its exact 
role in whole body insulin resistance remains controversial 
(Takahashi et  al., 2008; Alfadda et  al., 2012; Helfer and Wu, 
2018; Karczewska-Kupczewska et  al., 2020).

Another factor produced by adipose tissue that has overlapping 
roles in obesity, insulin resistance, and hypertension is leptin. 
Data from human as well as animal studies suggest that leptin 
plays a major role in the neurohormonal mechanisms of obesity-
induced hypertension (Simonds et  al., 2014). Obese subjects 
display high circulating levels of leptin and an insensitivity 
to the anorexigenic effects of exogeneous leptin, known as 
leptin resistance (Izquierdo et  al., 2019). Leptin is proposed 
to affect blood pressure through its sympathetic activity and 
leptin levels directly associated with blood pressure changes 

in rodent models of obesity, which is not seen in models of 
leptin deficiency. Humans with loss-of-function mutation in 
leptin or leptin receptor have been found to be protected from 
hypertension despite obesity (Simonds et al., 2014), nevertheless, 
exogenous leptin administration does not increase blood pressure 
in leptin deficient states including congenital leptin deficiency 
and lipodystrophy (Brown et  al., 2015). Importantly, obesity 
secondary to leptin resistance was found to result in increased 
salt sensitive blood pressure response to high salt in SHHF 
rat, a model of spontaneous hypertension. The increase in salt 
sensitivity was driven by endothelin and was obliterated by 
bosentan (Radin et  al., 2003). In another study, high salt diet 
has been demonstrated to cause leptin resistance, obesity as 
well as high blood pressure and insulin resistance in mice, 
further implying a link between leptin resistance, high salt-
associated hypertension, and insulin resistance (Lanaspa 
et  al., 2018).

Leptin also has important pro-inflammatory effects, which 
may play a role in insulin resistance and hypertension. Leptin 
activates monocytes to produce inflammatory cytokines such 
as tumor necrosis factor (TNF)-α, IL-6, and IL-12(Gainsford 
et  al., 1996), while suppressing the anti-inflammatory Th2 
response (Fernández-Riejos et  al., 2010). The chronic 
inflammatory state observed in high adiposity, whether partially 
driven by leptin or not, seems to play a major role in the 
interplay between insulin resistance and hypertension.

Immunity in Obesity and IR
Obesity is characterized by high levels of plasma inflammatory 
cytokines (Villarreal-Calderón et  al., 2019) and a low-grade 
inflammatory state in visceral adipose tissue, which is a critical 
contributor to the development of insulin resistance (Winer 
and Winer, 2012). The innate immune system plays an important 
role in the proinflammatory state seen in obesity (Patel et  al., 
2013). Macrophages of the inflamed adipose tissue are polarized 
to the M1 state with enhanced antigen-presenting and 
proinflammatory cytokine-producing properties, to the detriment 
of M2 macrophages that produce anti-inflammatory mediators 
such as IL-10 and TGF-β (Orliaguet et al., 2020). M1 production 
of TNF-α, IL-1β, and IL-6, IL-12, and iNOS activates serine 
kinases that phosphorylate IRS proteins and insulin receptors, 
thus hindering insulin signaling (Mantovani et al., 2002; Olefsky 
and Glass, 2010). This paracrine process in the adipose tissue 
has local and also systemic effects due to leakage of cytokines 
into circulation, which can be detected with plasma measurements 
(Olefsky and Glass, 2010).

The adaptive immune system is also activated in obesity. 
T cells accumulate in the adipose tissue and interact with 
macrophages to enhance the inflammatory response 
(Nishimura et al., 2009). Indeed, obesity and insulin resistance 
are associated with predominance of CD8+ and CD4+ Th1 
T cells with IFN-γ secretion in visceral adipose tissue that 
promotes the M1 polarization of macrophages described 
above (Winer and Winer, 2012). In mice fed a high-fat 
diet, depletion of CD8+ T cells reduces local adipose tissue 
inflammation and insulin resistance, whereas conversely, 
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transfer of CD8+ cells into CD8 deficient mice induces 
insulin resistance (Nishimura et  al., 2009).

Immunity in Hypertension
Hypertension is also strongly associated with inflammation. T 
cells and macrophages infiltrate the perivascular space and 
kidneys in animal models of hypertension (Kirabo et  al., 2014; 
Caillon et  al., 2017) and relate to hypertensive end organ 
damage. Mice lacking T cells or the T cell cytokine IL-17A 
are protected from angiotensin II-induced hypertension and 
related vascular dysfunction (Crowley et  al., 2010; Madhur 
et al., 2010). Moreover, immunosuppression has antihypertensive 
effects in animal studies (McMaster et  al., 2015).

Hypertension is associated with T cell clonal expansion, a 
hallmark of antigen-presentation found in various immune 
pathologies including autoimmune disease (Acha-Orbea et  al., 
1998), atherosclerosis (Paulsson et al., 2000), and obesity (Yang 
et  al., 2010). By examining T cell receptor (TCR) usage, 
we  showed that accumulation of an oligoclonal CD8+ T cell 
population in the kidney contributes to hypertension by inducing 
endothelial dysfunction and vascular rarefaction as well as 
sodium and volume retention (Trott et al., 2014). More recently, 
we  found that the CD8+ T cell populations in the adipose 
tissue of hypertensive high-fat fed mice are more clonal and 
demonstrate enrichment for positively charged amino acids, 

particularly arginine, which is a characteristic previously reported 
in TCRs associated with obesity and insulin resistance 
(McDonnell et al., 2018). Furthermore, two of the TCR clonotypes 
found in abundance in adipose tissue of high-fat fed mice 
were previously identified diabetogenic clonotypes (McDonnell 
et  al., 2018).

In multiple hypertensive models, we showed that hypertension 
is associated with production of isolevuglandins (IsoLGs; 
alternatively named Isoketals or γ-ketoaldehydes) in murine 
dendritic cells (DCs) and human monocytes (Figure 2). IsoLGs 
are highly reactive products of lipid peroxidation and adduct 
to lysine residues on proteins, leading to alteration of protein 
function and formation of neoantigens (Kirabo et  al., 2014). 
These immunogenic proteins lead to T cell activation and 
hypertension (Kirabo et  al., 2014), and contribute to the 
oligoclonal T cell expansion in the adipose tissue of high-fat 
induced obesity (McDonnell et al., 2018). These protein adducts, 
owing to their negative charge (McDonnell et  al., 2018) 
particularly associate with TCRs found in obese adipose tissue, 
which are enriched with positively charged amino acids. IsoLGs 
represent a potential interventional target, since administration 
of isoLG scavengers prevents the inflammatory responses and 
the development of hypertension (Kirabo et  al., 2014).

Moreover, we  reported that elevated interstitial Na+ is a 
potent stimulus for IsoLG-adduct formation in murine DCs. 

FIGURE 2 | Activation of ENaC in antigen presenting cells (APC) leading to isoleuvoglandin (IsoLG) formation and activation of CD8+ T cells. Elevated interstitial 
sodium (Na+) enters APCs, in particular dendritic cells, through ENaC and triggers intracellular calcium entry via the sodium calcium exchanger. The increased 
intracellular calcium activates protein kinase C (PKC), which in turn activates NAPDH oxidase via phosphorylation of p47phox. Superoxide and ROS formation by 
NAPDH oxidase leads to IsoLG production, which adduct to the lysine residues in proteins and form IsoLG adducts that are presented as neoantigens and trigger 
CD8+ T cells activation. The figure created with BioRender.com.
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Na+ enters DCs through amiloride-sensitive ENaC channels 
and promotes calcium (Ca2+) entry into the cell via the Na+/
Ca2+ exchanger. Increased intracellular Ca2+ activates protein 
kinase C (PKC), which phosphorylates and activates the NADPH 
oxidase. The increased superoxide and ROS formation by 
NADPH oxidase promote IsoLG formation and subsequent 
DC activation (Barbaro et  al., 2017). These high-salt treated 
DCs produce IL-1β and induce T cell production of 
pro-hypertensive cytokines IL-17A and IFN-γ (Barbaro et  al., 
2017). Other studies of mice have also shown increased circulating 
IL-17 levels in response to high salt diet, leading to endothelial 
dysfunction (Faraco et  al., 2018). These findings indicate that 
elevated tissue Na+ may contribute to the development of 
hypertension and salt sensitivity through immune cell activation. 
Indeed, previous studies suggested altered regulation of the 
hyperosmolar Na+ storage in tissue in the pathogenesis of salt 
sensitivity (Laffer et  al., 2016). Whether differences in tissue 
Na+ or differences in the immune response to tissue Na+ play 
a role in the salt sensitive phenotype is yet to be  discovered.

The relationship between the immune system and interstitial 
Na+ stores is complex. It is pretty clear that interstitial Na+ 
storage triggers immune system activation. Alternatively, the 
immune system regulates interstitial Na+ storage. As discussed 
earlier, interstitial Na+ storage in tissue, primarily in muscle 
and skin, may be  an important buffer system for high salt 
intake that may determine SSBP. Innate immune cells have 
been suggested to play a role in the regulation of the amount 
of Na+ that can be  stored in the interstitium, which in turn 
may activate adaptive immune cells through ENaC mediated 
Na+ entry into antigen presenting cells (APCs) as described 
above. The mononuclear phagocyte system (MPS) and 
macrophages have been shown to regulate tissue Na+ 
accumulation through modulating interstitial Na+ clearance. 
The high salt diet-induced increase in skin Na+ relates with 
hyperplasia of the lymphatic capillary network, through 
activation of TonEBP and consequent secretion of VEGF-C 
by macrophages (Machnik et al., 2009). This lymphangiogenesis 
provides a buffer for extra sodium and water in tissue as 
shown by the fact that either depletion of MPS or inhibition 
of VEGF action augmented interstitial hypertonic water 
retention and salt-induced blood pressure elevation (Machnik 
et  al., 2009). The MPS/TonEBP/VEGF-C pathway belongs to 
the physiological anti-inflammatory phenotype of M2 subtype 
of macrophage polarization (Machnik et  al., 2010). Shifting 
the balance of macrophage polarization into the 
pro-inflammatory M1 subtype associated with insulin resistant 
states, may disrupt MPS modulation of interstitial Na+. This 
most likely converted the salt resistant rats into a salt sensitive 
phenotype (Machnik et  al., 2010) in the experiments above.

Role of the Inflammasome
The inflammatory responses seen in both hypertension and 
obesity induced insulin resistance include inflammasome 
activation. NOD-like receptor family pyrin domain containing 
3 (NLRP3) inflammasome, is a member of the nucleotide-
binding oligomerization domain leucine-rich repeat (NLR) PRR 

family and drives sterile inflammation in response to damaged 
cell derived “danger-associated molecular patterns,” leading to 
caspase-1 activation and subsequent IL-1β and IL-18 secretion 
(Chen and Nunez, 2010; Van Tassell et  al., 2013; Lamkanfi 
and Dixit, 2014).

NLRP3 has also been suggested to produce inflammatory 
responses in adipose tissue, since they can be  triggered by 
ceramides, a product of fatty acid metabolism, as well as 
oxidized LDL and cholesterol (Duewell et  al., 2010). The 
common end point of NLRP3 inflammasome activation is a 
chronic systemic inflammatory state because the locally secreted 
inflammatory cytokines are released into blood with subsequent 
development of global insulin resistance (Xu et  al., 2003; Zhou 
et  al., 2014). In animal models, elimination of NLRP3 
inflammasome protects from high-fat induced insulin resistance, 
while in obese diabetic individuals, adipose tissue expression 
of NLRP3 inversely correlates with the increase in insulin 
sensitivity after weight loss (Vandanmagsar et al., 2011). Analysis 
of UKBiobank revealed that individuals with a gene variant 
increasing NLRP3 mRNA expression was associated with higher 
prevalence of diabetes (Schunk et  al., 2021).

Hypertension has also been related with the activation of 
NLRP3 inflammasome. IL-1β and IL-18, the main products of 
NLRP3 activation, are elevated in plasma and monocytes of 
hypertensive individuals (Dörffel et  al., 1999; Li et  al., 2005; 
Rabkin, 2009) and associate with renal and vascular dysfunction 
(De Miguel et  al., 2021). Hypertensive patients also have high 
concentrations of NF-κB, a crucial intracellular trigger of NLRP3 
activation, in tissue and inflammatory cells (De Miguel et  al., 
2021). NF-κB inhibition ameliorates hypertension and prevents 
hypertension-induced organ damage in mice (Zambom et  al., 
2019). NF-κB may also play a role in the interplay between 
salt sensitivity and insulin resistance, since the association between 
these two traits in Dahl salt sensitive rats was partially NFkB 
dependent. Pyrrolidine dithiocarbamate (PDTC), an inhibitor 
of NFκB, significantly improved blood pressure as well as insulin 
sensitivity and insulin mediated vasorelaxation in this salt sensitive 
rat model (Zhou et al., 2010). Indeed, NLRP3 (Sun et al., 2017) 
and NALP3 (Fu et al., 2018) inflammasomes mediate endothelial 
dysfunction, main contributors to both salt sensitivity and insulin 
resistance as proposed earlier. Moreover, eNOS and NO pathways, 
which are disrupted in salt sensitivity, are in part regulated by 
the NLRP3 inflammasome (Sogawa et  al., 2018). Importantly, 
NLRP3 inflammasome is activated by NADPH oxidase and ROS 
(Abais et  al., 2014; Cui et  al., 2014; Banoth and Cassel, 2018), 
which are crucial mediators of IsoLG formation.

Immunity and the Link Between  
SSBP and IR
While inflammation has been shown to separately contribute 
to the pathogenesis of both insulin resistance and salt sensitive 
hypertension, is not known whether it has a causal role in 
the link between these two traits (Figure  3). Animal models 
extensively used as a paradigm for salt-sensitive hypertension 
in humans provide some evidence in this regard. In DS rats, 
inflammation and oxidative stress were found to associate with 
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both hypertension and insulin resistance (Zhou et  al., 2010). 
Furthermore, treatment with tempol, an intracellular antioxidant, 
improved inflammatory markers, vascular insulin signaling, 
endothelium-dependent relaxation, and insulin sensitivity. 
Similarly, the angiotensin receptor blocker candesartan, a 
commonly used antihypertensive, also improved inflammatory 
markers and insulin sensitivity (Zhou et  al., 2009).

The potential role of inflammation in the pathogenesis of 
SS may also have further implications regarding the increased 
cardiovascular risk in individuals with SS. Considering that 
pro-inflammatory status is consistently associated with increased 
risk of cardiovascular disease (Sorriento and Iaccarino, 2019), 
it is plausible that inflammatory activation related to SS 
development may also link with higher cardiovascular risk. 
Furthermore, if elevated, interstitial Na+ may indeed lead to 
a systemic immune activation through infiltration of T cells 
in various organs, an altered tissue Na+ storage may potentially 
predispose the salt sensitive population to poor 
cardiovascular outcomes.

PPARγ, Insulin Resistance, and Immunity
The peroxisome proliferator-activated receptors are a nuclear 
receptor superfamily of ligand-inducible transcription factors 
found in humans and includes three subtypes: PPARα, PPARβ/δ, 
and peroxisome proliferator-activated receptor γ (PPARγ; 
Ahmadian et  al., 2013). PPARγ is well-known as the master 
regulator of adipogenesis and lipid metabolism and is predominantly 
expressed in white and brown adipose tissue. PPARγ is bound 
and activated by fatty acids and their derivatives endogenously 
and by thiazolidinediones (TZDs), highly specific synthetic ligands, 
exogenously. PPARγ activation has a robust insulin sensitizing 
effect, making TZDs potent insulin sensitizers and highly effective 
oral medications for type 2 diabetes, although, their clinical use 
is limited by major adverse effects including weight gain, fluid 
retention, and osteoporosis (Ahmadian et  al., 2013).

PPARγ acts through various gene networks to modulate 
glucose homeostasis. Its activation is directly related with increased 
expression of glucose transporter type 4, while also controlling 
the expression of many factors that affect insulin sensitivity, 
such as adiponectin, resistin, leptin, and TNF-α. Therefore, 
PPARγ agonists’ insulin sensitizing effects can be  explained by 
various mechanisms including modulation of cellular glucose 
update, hepatic glucose release, systemic inflammation, or food 
intake (Iwaki et  al., 2003; Tomaru et  al., 2009; Ahmadian et  al., 
2013). Indeed, PPARγ’s regulatory roles are not limited to 
adipocytes. PPARγ also has crucial functions in immune cells, 
especially in macrophages and APCs (Tontonoz et  al., 1998; 
Wahli and Michalik, 2012). PPARγ regulates lipid metabolism 
and exerts anti-inflammatory effects in macrophages, including 
polarization into the anti-inflammatory M2 subtype (Odegaard 
et  al., 2007). Mice with macrophage specific deletion of PPARγ 
exhibit disruption of M2 macrophage activation, and development 
of diet induced obesity and whole-body insulin resistance 
(Odegaard et  al., 2007). In turn, evidence suggest that TZDs 
downregulate the expression of M1 mediators (Xu et  al., 2016). 
Moreover, PPARγ also regulates the accumulation and function 
of regulator T cells in the visceral adipose tissue and expression 
of PPARγ in this unique T cell population is essential for the 
complete insulin-sensitizing activity of TZDs in obese mice 
(Cipolletta et al., 2012). PPARγ-axis dependent insulin signaling 
has also shown to drive state transition between adipose regulatory 
T cell subsets (Li et  al., 2021). PPARγ agonists have also been 
reported to suppress the progression of atherosclerosis and aortic 
aneurysmal changes by reducing the expression of TNF-α and 
other markers of inflammation (Zinn et al., 2008; Motoki et al., 
2015). These anti-inflammatory actions of PPARγ can potentially 
explain some of its beneficial effects on insulin sensitivity as 
well as blood pressure (Figure  4).

PPARγ and Hypertension
Compelling evidence suggest that PPARγ is also an important 
regulator of blood pressure. Various mutations in PPARγ, 
causing loss of function, have been shown to strongly associate 
not only with insulin resistance and diabetes but also with 
severe hypertension (Barroso et  al., 1999; Fang et  al., 2021). 
In addition to these rare mutations, common variants of PPARγ 

FIGURE 3 | The proposed interplay between insulin resistance induced 
vascular dysfunction, salt sensitivity of blood pressure (SSBP) and 
hypertension. Insulin resistance is associated with decreased nitric oxide (NO) 
production due to decreased activity of PI3K and increased endothelin-1 
(ET-1) production due to increased mitogen-activated protein kinase (MAPK) 
activity, which results in vasoconstriction in precapillary arterioles. Decreased 
vascular endothelial growth factor (VEGF) and angiogenesis also causes 
capillary rarefaction. Evidence suggests that SSBP, which strongly correlates 
with hypertension, is associated with increased availability of ET-1. Increased 
ET-1, in turn, may contribute to the development of insulin resistance via the 
action of ETB receptor in adipose tissue. Vascular dysfunction caused by 
insulin resistance and possibly SSBP leads to hypertension and its clinical 
manifestations. The figure created with BioRender.com.
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may also play a role. For example, in a meta-analysis of more 
than 5,500 Asian hypertensives (Zhang et  al., 2019), the P12A 
polymorphism was associated with the risk of hypertension. 
Furthermore, treatment with PPARγ agonists is associated with 
decreased blood pressure (Nolan et  al., 1994).

A well-known side effect of TZD is fluid retention. TZDs 
increase renal sodium reabsorption without modulation of RAS 
system, in people with diabetes and hypertension (Zanchi et al., 
2010) and in healthy subjects (Zanchi et  al., 2004). Despite 
this, large scale clinical studies consistently show that TZDs, 
including pioglitazone (Dormandy et  al., 2005; Yoshii et  al., 
2014), rosiglitazone (Komajda et  al., 2008), and troglitazone 
(Nolan et al., 1994), lead to modest decreases in blood pressure 
(Qayyum and Adomaityte, 2006). Various cardiovascular actions 
of TZD could explain its effect on blood pressure, including 
its anti-inflammatory and endothelium-mediated vasodilatory 
actions. PPARγ activation upregulates eNOS expression and 
availability of vascular NO (Sartori-Valinotti et al., 2010; Nagao 
and Yamaguchi, 2012), while it downregulates the synthesis 
of vasoconstrictor endothelin-1 (Satoh et  al., 1999; Kang et  al., 
2017) and the expression of Angiotensin II type 1 receptor 
[AT (1)-R], thus promoting vasodilation in the vascular smooth 
muscle (Ketsawatsomkron et  al., 2012; Pelham et  al., 2012). 
Mice lacking endothelial-specific PPARγ have deficient NO 
production and increased oxidative stress markers (Kleinhenz 
et  al., 2009), and show augmented Ang-II induced endothelial 
dysfunction, a response dependent on superoxide, NADPH 
oxidase, and Rho kinase (Silva et  al., 2017). PPARγ further 
inhibits pro-inflammatory gene expression in vascular smooth 

muscle through inhibition of NF-κB activity (Mukohda et  al., 
2017) and protects against IL-1β-induced oxidative stress in 
endothelium (Mukohda et  al., 2016).

Considering the impaired vasodilatory response observed in 
salt sensitive patients and the beneficial effects of PPARγ on 
the vasodilatory system, PPARγ agonists would be  expected to 
ameliorate salt sensitivity of blood pressure (SSBP). Indeed, despite 
increased sodium retention, clinical studies demonstrated that 
TZD abolished the blood pressure response to salt in salt-sensitive 
individuals (Zanchi et  al., 2010). In animal models, TZDs also 
attenuated salt sensitivity, a result observed along with increased 
NO availability and decreased renal macrophage infiltration and 
inflammation (Sartori-Valinotti et  al., 2010). Furthermore, mice 
models of PPARγ impairment develop salt sensitive hypertension. 
Salt sensitive humans and animals demonstrate decreased renal 
blood flow and increased renal vascular resistance, and these 
abnormalities are attenuated by TZDs (Fink et al., 1980; Campese 
et  al., 1991; Wu et  al., 2021). Mice with dominant negative 
mutation of PPARγ in vascular smooth muscle start showing 
salt-induced impairment of vasodilation along with blunted NO 
responsiveness after 3 days of high salt diet, and this is followed 
by the development of salt sensitive hypertension (Wu et  al., 
2021). Regarding its actions to increase insulin sensitivity, PPARγ 
agonists can also counteract the effects of insulin resistance on 
blood pressure. In insulin resistant fatty rat models, rosiglitazone 
treatment prevents the development of hypertension and partially 
restores the vasodilatory effects of insulin, thus ameliorating 
endothelial dysfunction associated with insulin resistance (Walker 
et  al., 1999). Therefore, mounting evidence points to PPARγ as 

FIGURE 4 | The protective effects of peroxisome proliferator-activated receptor γ (PPARγ) against the development of insulin resistance and salt sensitivity. PPARγ plays a 
critical role in regulation of the expression of glucose transporter type 4 (GLUT4), adiponectin, resistin, and leptin to increase insulin sensitivity. At the same time, PPARγ 
induces endothelial nitric oxide synthase (eNOS) expression and NO synthesis and decreases endothelin-1 and angiotensin II type 1 (AT-1) receptor availabilities. These 
vasodilatory actions potentially ameliorate the vascular dysfunction seen in salt sensitivity. PPARγ activation also has anti-inflammatory effects on macrophages and 
regulatory T cells in the visceral adipose tissue, which possibly counteract the development of insulin resistance and salt sensitivity. The figure created with BioRender.com.
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a common regulator of both glucose and blood pressure 
homeostasis. As numerous mutations of PPARγ have been shown 
to result in both severe insulin resistance and hypertension, 
deficiency of physiologic PPARγ activation may be a pathogenetic 
factor linking insulin resistance and salt sensitive hypertension, 
a question that remains to be  answered in definitive manner.

Oxidative Metabolites, IR, and SSBP
Methylglyoxal (MGO), a metabolite of the glycolysis pathway 
that is increased in diabetes, has been proposed to contribute 
to the development of salt sensitivity as well as insulin resistance 
through oxidative stress and advanced glycation endproducts 
(AGE; Guo et  al., 2009). Increased levels of MGO along with 
increased levels of ROS have been found in vascular tissue of 
hypertensive animals (Chang et  al., 2005; Jia and Wu, 2007) and 
in plasma of diabetic patients. High fructose induced accumulation 
of endogenous MGO in plasma and tissue induces the development 
of hypertension and insulin resistance in rats (Wang et al., 2008).

The mechanisms by which MGO produces insulin resistance 
are multiple. Accumulation of endogenous MGO reduces IRS-1/
PI3K association and alters PI3K activity in adipose tissue, leading 
to decreased insulin stimulated glucose uptake and insulin resistance 
(Jia and Wu, 2007). Other studies have also shown that MGO 
disrupts insulin signaling pathways by formation of AGEs and 
ROS (Unoki et  al., 2007) and by direct binding to IRS1 protein. 
This inhibits IRS1 association with other proteins in cultured 
muscle cells and in adipose tissue of fructose-induced hypertensive 
rats independent of formation of ROS (Riboulet-Chavey et  al., 
2006). Furthermore, MGO directly produces a dose-dependent 
decrease in adipose tissue capillarization and blood flow, which 
associate with systemic and muscle insulin resistance (Rodrigues 
et al., 2017). Finally, MGO also alters insulin structure by binding 
to its arginine residue and decreasing its activity (Jia et al., 2006).

In addition to its role in the pathogenesis of insulin resistance, 
MGO contributes to the development of salt sensitivity of 
blood pressure by mechanisms not yet fully understood. In 
normotensive rats, MGO treatment induces both the development 
of insulin resistance and salt sensitivity. Although MGO or 
salt, given separately did not induce hypertension, 
co-administration of both significantly increased blood pressure. 
N-acetyl cysteine, a MGO scavenger, or an AGE inhibitor 
completely improved MGO-induced insulin resistance in this 

model (Guo et  al., 2009), whereas metformin improved both, 
the increase in endogenous MGO and in blood pressure observed 
in a high fructose diet model (Wang et  al., 2008).

CONCLUSION

Salt sensitivity of blood pressure, a significant cardiovascular 
risk factor, strongly associates with insulin resistance. Salt 
sensitivity and insulin resistance share several pathogenetic 
factors. They include vascular dysfunction, particularly caused 
by endothelin-1 overproduction, and immune activation primarily 
driven by CD8+ T cells action. The transcription factor PPARγ 
also modulates insulin sensitivity and hypertension through 
its anti-inflammatory and vasodilatory actions. Impairment of 
PPARγ action results in insulin resistance and hypertension 
in both animal models and humans, and perhaps is a common 
denominator linking insulin resistance and salt sensitive 
hypertension in the population. The oxidative metabolite of 
the glycolysis pathway MGO, also contributes to the development 
of both salt sensitivity and insulin resistance through yet to 
be explored mechanisms. The presence of these shared pathways 
underlying the mechanisms of both, insulin resistance and salt 
sensitivity of blood pressure, is very suggestive of a possible 
causal bidirectional relationship between these two cardiovascular 
risk factors, a contention that remains to be  proven in 
definitive manner.
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