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Abstract: Colorectal cancer (CRC) is the third most common cancer, but despite advances in treatment,
it remains the second most common cause of cancer-related mortality. Prevention may, therefore,
be a key strategy in reducing colorectal cancer deaths. Given reports of an inverse association
between fruit and vegetable consumption with colorectal cancer risk, there has been significant
interest in understanding the metabolism and bioactivity of flavonoids, which are highly abundant
in fruits and vegetables and account for their pigmentation. In this review, we discuss host and
microbiota-mediated metabolism of flavonoids and the potential mechanisms by which flavonoids
can exert protective effects against colon tumorigenesis, including regulation of signaling pathways
involved in apoptosis, cellular proliferation, and inflammation and modulation of the gut microbiome.
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1. Introduction

Colorectal cancer is the third most common cancer worldwide [1]. Despite advances made in the
treatment of colorectal cancer with improvement in survival rates with chemotherapy, colorectal cancer
remains the second most common cause of cancer-related mortality and metastatic colorectal cancer
remains an incurable disease [1]. An effective strategy for reducing colorectal cancer-related mortality
is prevention, which includes screening, and indeed, increased screening with colonoscopies has been
associated with reduced incidence of colon cancer [2]. Therefore, screening for colorectal cancer is
recommended for people aged 50 and over [3]. However, while the rates of colon cancer in adults
aged 50 and older have declined, there has been a disturbing increase in colorectal cancer incidence in
adults younger than 50, who have not been typically not screened [4]. In fact, since 1994, there has
been a 51% increase in colorectal cancer in patients aged 20–49, and this increase is not clearly linked
to a genetic predisposition, suggesting that other factors, such as diet and/or physical activity may
underlie the increase incidence in this population [5]. For these reasons, the American Cancer Society
has lowered the recommended age to start colorectal cancer screening to 45. Regardless, there is a clear
need to define strategies to reduce colorectal cancer risk in addition to cancer screening.

As in most cancers, colorectal cancer is largely driven by the accumulation of genetic mutations
in oncogenes and tumor suppressor genes that occur in a stepwise fashion [6,7], and therefore,
increasing age and inherited mutations, such as in the adenomatous polyposis coli (Apc) tumor
suppressor gene, are significant risk factors for the development of colorectal cancer [8]. This sequential
accumulation of mutations is generally associated with the stepwise progression from normal intestinal
epithelium to the development of a premalignant tumor, or adenoma, to a frank adenocarcinoma [6].
These mutations promote neoplastic transformation by disrupting cell biological processes that underlie
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the hallmarks of cancer, including evasion of apoptosis, increased cellular proliferation, and tumor
invasion/metastases [9,10]. Another key promoter of colon carcinogenesis is chronic inflammation
as it can lead to the production of growth factors inducing cellular proliferation, DNA-damaging
oxygen radical species, extracellular matrix-modifying enzymes that can facilitate tissue invasion,
and survival factors that lead to decreased apoptosis, resulting in a microenvironment conducive to
tumorigenesis [10]. Indeed, patients with inflammatory bowel disease have a substantially higher risk
of developing colorectal cancer than normal, healthy individuals [11]. Environmental factors can also
contribute to colon carcinogenesis; specifically, physical activity, diet, and smoking, and alcohol intake
can all influence colorectal cancer risk [12]. However, the mechanisms by which these activities affect
colorectal cancer pathogenesis remains to be fully elucidated.

There is increasing evidence that the gut microbiome can also contribute to colorectal cancer risk,
and changes in the gut microbiome are strongly linked to the diet, which in turn, has been associated
with colorectal cancer risk [13,14]. The gut microbiota performs several vital functions for the human
host, including dietary metabolism, colonization resistance against invasive pathogens, detoxification
of potential carcinogens, and promotion of immune homeostasis [15,16]. More specifically, the gut
microbiota can regulate regulatory T cell development and Th17 responses, both of which have
been implicated in colon cancer progression and in development of inflammatory bowel disease,
a major risk factor for colon cancer [17,18]. In addition, the gut microbiota can generate a significant
number of metabolites that can have both local and systemic effects, notably secondary bile acids,
which can promote colon cancer, and short-chain fatty acids (SCFAs), which have anti-inflammatory
and epithelial regulatory activities that can protect against colorectal cancer development and can
regulate epithelial repair and proliferation [19]. Thus, perturbations in the microbiome can affect host
inflammatory and cell proliferative responses, which, in turn, can also impact colon tumorigenesis.
Consistently, patients with colorectal cancer have an altered composition of the gut microbiome
compared to healthy individuals, with reduced overall diversity and accumulations in certain bacterial
populations including Fusobacterium nucleatum, entertoxigenic Bacteroides fragilis, and polyketide
synthase-positive (pks+) Escherichia coli [20–26], and studies in mice have suggested that changes in the
gut microbiome can directly contribute to colon tumorigenesis [27]. Thus, it is now presumed that
pathologic alterations in the composition of the gut microbiome, also commonly referred to as dysbiosis,
may lead to the accumulation of pro-inflammatory, pro-tumorigenic bacteria and/or the depletion of
protective bacteria that have anti-inflammatory or tumor-suppressive activities [27]. How dysbiosis
occurs remains unclear; however, both host genetics, inflammation, and carcinogenic stimuli, which can
affect colon cancer susceptibility, can also cause changes in the gut microbiome [27,28]. Moreover,
environmental and lifestyle factors that affect colorectal cancer risk, such as diet and smoking, can also
potentially affect the microbiota composition [29,30]. Thus, nutritional intervention may be one strategy
to modify the gut microbiome, inflammatory responses, and colorectal cancer risk.

Dietary interventions have generated significant interest as associations have been observed
between consumption of certain foods and colorectal cancer risk with the strongest evidence suggesting
a link between red meat consumption and increased risk, while foods containing wholegrains or
dietary fiber are associated with decreased risk [12]. Diets high in fruits and vegetables have been
inversely associated with many different types of cancers including colorectal cancer [31–33]. A class
of compounds particularly abundant in these types of foods are flavonoids, and are rich in fruits,
vegetables, red wine, and green tea, which have generally been associated with protective effects
against cancer. In fact, a meta-analysis revealed that high intake of certain dietary flavonoids is
associated with decreased risk of colon and rectal cancer [34]. However, the mechanisms by which
flavonoids may suppress colon carcinogenesis remain to be fully elucidated, but have been related to
their anti-inflammatory, antioxidant, and pro-apoptotic properties. In addition, certain members of the
gut microbiota significantly contribute to the metabolism of flavonoids, and there is increasing evidence
that flavonoids can also alter the composition of the gut microbiome, potentially giving the microbiota
a central role in the bioactivity of flavonoids. In this review, the metabolism and bioavailability
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of flavonoids as well as potential mechanisms of action behind the protective effects against colon
tumorigenesis using some of the more well-studied flavonoids as examples will be discussed.

2. General Overview of Flavonoids

Dietary polyphenols are natural compounds that have been used for years as nutraceuticals due to
their various beneficial effects on human health. They are prevalent in fruits, vegetables, whole grains,
and plant-derived beverages. Polyphenols are characterized by hydroxylated phenyl moieties with
different number of phenolic rings and substituting groups. It is a large heterogeneous group of
compounds which can be generally classified into flavonoids and non-flavonoids [35]. Flavonoids
are the largest class of polyphenols and the most important in plant pigmentation. Aside from being
pigments, flavonoids provide various biochemical functions in seed maturation, protection from
different biotic and abiotic stresses, and heat acclimation and freezing tolerance, and act as detoxifying
and defensive agents [36].

There are over 9000 flavonoids that have been described [37]. The core structure of flavonoids
is a diphenylpropane skeleton (C6-C3-C6), which contains two phenyl rings and one heterocyclic
ring (Figure 1) [38]. Their antioxidant capacity has largely been attributed to the presence of multiple
3- and 5-hydroxyl groups as well as 3′- and 4′-catechol groups [39]. Based on their chemical structure,
flavonoids can be classified further into six major subclasses: flavones, flavanones, flavanols, flavonols,
isoflavones, and anthocyanins/anthocyanidins (Figure 1) [40,41]. Other flavonoids may include
compounds such as biflavonoids (e.g., ginkgetin), flavanonols (e.g., taxifolin), prenylflavonoids (e.g.,
artocarpin), flavonolignans (e.g., silibinin), glycosidic ester flavonoids, and chalcones [40,42]. In plants,
the majority of flavonoids exist in the form of glycosides [43].
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Figure 1. Basic structure of flavonoids and their subclasses. The core structure of flavonoids is a
diphenylpropane skeleton (C6-C3-C6), which contains two phenyl rings and one heterocyclic ring.
Based on their chemical structure, flavonoids can be further classified further into flavones, flavanones,
flavanols, flavonols, isoflavones, and anthocyanins/anthocyanidins.
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2.1. Flavones

Flavones are a group of flavonoids characterized by a double bond between C-2 and C-3 in the
flavonoid skeleton, and a non-saturated C-3 chain. Flavones are widely distributed among the higher
plants and play a variety of important roles. They are the primary pigments or co-pigments in white
and blue flowers, respectively [44]. The major flavones studied are apigenin and luteolin. Apigenin
is one of the most prominent flavone aglycones. It is commonly found in vegetables, herbs and
plant-derived beverages such as wine, beer, and chamomile [45,46]. Celery, artichokes, and parsley
also contain high amounts of apigenin [47], while apigenin-7-glucoside (A7G) is present at high
levels in red wine, artichokes and chamoumile [47]. Apigenin has shown prominent antibacterial,
anti-inflammatory and antispasmodic effects [43]. Luteolin, like apigenin, occurs in many vegetables
and fruits such as broccoli, celery, carrots, parsley, cabbages, peppers and apple skins [43]. As an
antioxidant that scavenges reactive oxygen species (ROS) and as a pro-oxidant due to auto-oxidation,
luteolin exhibits anti-cancer, anti-allergy, and anti-inflammatory effects [43].

2.2. Flavanones

The backbone structure of flavanone is 2,3-dihydro-2-phenylchromen-4-one [41]. Flavanones
represent one of the largest subgroups of flavonoids. They are extensively disseminated in plants and
especially rich in Citrus species. In the diet, orange juice is the foremost food that provides flavanones.
Common flavanones are the aglycones such as naringenin, hesperetin, eriodictyol, isosakuranetin,
and their respective glycosides [41]. Naringenin and its derivatives are typically found in grapefruit
and sour oranges, while hesperetin and its derivatives are characteristic flavanones of sweet oranges,
tangelos, lemons and lime [40]. Flavanones, of which naringenin has been studied the most extensively,
are biologically active with antioxidant, anti-inflammatory, and anti-microbial activities [43,48,49].
The antioxidant activity of flavanones is highly dependent on a hydrophilic environment and the
presence of a catechol group [43].

2.3. Flavanols

Flavanols constitute a very complex group of flavonoids with the backbone structure of
2-phenyl-3,4-dihydro-2H-chromen-3-ol, also known as flavan-3-ol [41]. Flavanols exist primarily in
tea, wine, cocoa, apples and fruit juices or jams [41]. Catechins, which are known as the major building
blocks of tannins, are the most important representatives of flavanols. Catechins are found abundantly
in green and black tea. Different types of catechins include catechin, gallocatechin, catechin 3-gallate,
gallocatechin 3-gallate, epicatechin, epigallocatechin, epicatechin 3-gallate, and epigallocatechin
3-gallate (EGCG) [43]. Proanthocyanidins are dimers, oligomers, and polymers of catechins, which are
known as a type of condensed tannin [50].

2.4. Flavonols

Flavonols are a class of flavonoids with a 3-hydroxy-2-phenylchromen-4-one backbone [41].
This class of flavonoids are well-known for their antioxidant properties and other biological
activities [43]. They are the most common flavonoids in fruit and vegetables, accumulating mainly in
skin and leaves. Onions, leeks, kale, apples, berries, grapes, and grape products are all major food
sources of flavonols [43]. The main representatives of flavonols are quercetin, kaempferol, myricetin,
and isorhamnetin.
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Quercetin is found in onion, broccoli, apple, tea and red wine [46]. It is a water-soluble plant
pigment with high antioxidant and anti-inflammatory activity [51–54]. Kaempferol is a flavonol
antioxidant occurring in spinach, kale and broccoli [43]. It has been shown to regulate various
signaling protein related to angiogenesis, apoptosis, metastasis and inflammation [55]. Myricetin is
commonly found in berries, vegetables and in plant-derived teas and wines [56]. It occurs naturally in
both free and glycosidically-bound forms and is poorly soluble in water [57]. Myricetin exhibits a wide
range of biological activities including antioxidant, anti-cancer, anti-diabetic, and anti-inflammatory
effects [56]. Isorhamnetin is the 3-methyl metabolite of quercetin but also occurs naturally in plants.
It is extracted from herbal medicines such as Persicaria thunbergii H. and Hippophae rhamnoides L. [58].
Although it is less well-studied compared to quercetin, it has been demonstrated to have anti-cancer,
anti-viral, and antioxidant effects [58–61].

2.5. Isoflavones

Isoflavones possess a 3-phenylchromen skeleton which is derived from the 2-phenylchromen
system [43]. Soybeans and soy foods are the richest source of isoflavones [41], and red clover and kudzu
also contain high amount of isoflavones [62]. Genistein and daidzein are the two major isoflavones,
and have been studied extensively. Genistein, known as a phytoestrogen, can modulate steroid
hormone receptors and multiple metabolic pathways, making it an important dietary ingredient that
can prevent and treat common disorders [63]. Daidzein, another isoflavone present in soy, is an inactive
analog of genistein. Daidzein is also a phytoestrogen that binds to estrogen receptors with both weak
estrogenic and weak anti-estrogenic effects [64].

2.6. Anthocyanins and Anthocyanidins

Anthocyanins and anthocyanidins are a group of water-soluble pigments with significant
antioxidant activity responsible for the blue, red, purple, and orange colors present in many fruits
and vegetables, such as red-skinned grapes, apples, pears, radishes, and red/purple cabbage [65–67].
Anthocyanidins have the backbone structure of 2-phenylchromenylium [41], and are formed by the
addition of glycose (mainly glucose), acyl, hydroxycinnamic acid or other moieties to the main structure
of major anthocyanidins [68]. Anthocyanin, for example, is the glycoside form of the anthocyanidin,
aglycone. Cyanidin, pelargonidin, delphinidin, malvidin, petunidin, and peonidin are the most
commonly found anthocyanidins [65]. Cyanidin is a strong antioxidant present in most red colored
berries such as bilberry, blackberry, blueberry, cherry, cranberry, elderberry, hawthorn, loganberry,
and raspberry, and in other fruits such as apples, pears, peaches, and plums [65,69]. Pelargonidin
is an anthocyanidin that produces an orange color [65] and is present in all berries, but primarily
strawberries [70]. Delphinidin is an anthocyanidin that provides the blue-red colors of flowers, fruits,
and red wine [65] while malvidin is responsible for the pigments in red grapes and blueberries.
Malvidin possesses significant antioxidant capacity and exhibits anti-inflammatory effects [66,67].
Petunidin is an O-methylated anthocyanidin derived from delphinidin and provides blue-red pigments
to flowers, fruits, and red wine. Peonidin is also an O-methylated anthocyanidin that gives purplish-red
hues to flowers such as the peony as well as berries and vegetables.

3. Host Metabolism of Flavonoids

The bioavailability of flavonoids is generally poor, but can vary significantly among different
classes as well as individual flavonoids [71]. Factors that affect bioavailability and absorption of a
flavonoid include its molecular weight, the nature of glycosylation and metabolic conversion by host
conjugating enzymes, and the composition of the gut microbiota [71]. Flavonoids occur in plants in
several different forms, such as aglycones, esters, and glycosides [72] although the majority of plant
flavonoids exist as glycosides [73–75]. The sugar moiety is coupled to the aglycone as O-glycosides
via a hydroxy group and less frequently as C-glycosides [75]. After ingestion, flavonoid glycosides
are absorbed in the small intestine where they are deglycosylated and further conjugated, while the
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rest pass into the colon where they are metabolized by the gut microbiota [73,76–79]. Two enzymes in
the human small intestine have been identified to deglycosylate flavonoids [80–82]. Lactase-phlorizin
hydrolase, a brush border enzyme, was reported to hydrolyze O-glucosides of quercetin, genistein,
and daidzein in vitro [80]. Cytosolic beta-glucosidase in the enterocytes was reported to hydrolyze
O-glucosides of quercetin, genistein, daidzein in cell-free extracts from human intestine [83].

Once deglycosylated, the produced flavonoid aglycons enter the intestinal epithelial
cells, where phase II enzymes catalyze conjugation reactions [82]. Three types of
phase II enzymes—uridine-5’-diphosphate-glucuronosyltransferases, sulfotransferases,
and catechol-o-methyltransferases—have been identified that are capable of metabolizing
flavonoids [82,84–86]. The conjugated flavonoids are subsequently absorbed into the circulation
and transported to the liver where they undergo additional conjugation such as methylation and
sulfation [82,87]. These flavonoid metabolites can then circulate systemically and exert their biological
effects, or can return to the intestine via the bile [75,82,86–90]. Upon return into the intestine,
flavonoid metabolites can be deconjugated by the gut microbiota and reabsorbed or act locally in the
tissue [75,82,91]. This recycling of flavonoids through the enterohepatic circulation contributes to the
improved plasma levels of flavonoids in humans [92].

4. Microbial Metabolism of Flavonoids

As many flavonoid glycosides are poorly absorbed in the small intestine, resulting in substantial
quantities in the colon [73,76–78], the gut microbiota can have a crucial role in the biotransformation
of flavonoid glycosides. The diversity of the gut bacteria and enzymes they contain allow the
formation of a variety of bioactive metabolites from flavonoids with varying anti-inflammatory,
antioxidant, and anti-tumor activities [82,93,94]. For example, microbial metabolites of anthocyanins
have been shown to affect the proliferation and viability of colon cancer cell lines in vitro although the
concentrations used were quite high in the 10–100 µM range [95,96]. Thus, a better understanding of
the bacterial populations and activities in flavonoid metabolism and bioavailability will be important
to harness the beneficial effects of flavonoids for colorectal cancer prevention.

Flavonoids can be extensively metabolized into a range of products by the gut microbiota.
Intestinal bacteria, including specific species such as Clostridium, Eubacterium, Lactococcus,
and Parabacteroides, have the capacity to catalyze O-deglycosylation, C-deglycosylation, demethylation,
dehydroxylation, ester cleavage, reduction of carbon–carbon double bonds, isomerization, ring fission,
extension and truncation of the aliphatic carbon chain, and decarboxylation [75]. Heterogeneity in
the composition of the gut microbiome may result in very different profiles of flavonoid metabolites
between individuals as exemplified by a study of the metabolite profiles obtained from in vitro
incubations of fecal-derived human microbiota from 10 different human subjects with extracts from
black tea and a mixture of red wine and grape juice. There were significant inter-individual differences
in the types and levels of metabolites produced [75,97], likely reflecting differences in bacterial
populations and their respective activities between individuals.

Deglycosylation, the hydrolysis of glycosidic bonds, is usually the first step of microbial
conversion of flavonoids to produce flavonoid aglycons. While some human glycosidases may
hydrolyze O-glucosides, deglycosylation of C-glucosides and other C- and O-glycosides can only by
performed by gut bacteria [75]. Specific human gut bacteria have been reported for O-deglycosylation
of flavonoid glycosides, including a number of Bifidobacterium species [50,98,99], Lactobacillus
species [50,98,99], Enterococcus species, and Bacteroides species [100–103]. The deglycosylation of
flavonoid C-glycosides has not been well-investigated thus far. Some members of Lachnospiraceae,
Enterococcaceae, and Streptococcaceae were reported to cleave the C-coupled flavone and isoflavone
glucosides [103–107].

The flavonoid aglycons can be further metabolized into a variety of metabolites [82]. The phenolic
rings of flavonoids often carry hydroxy- and methoxy- groups [75], and either dehydroxylation or
demethylation can occur via the enzymatic activity of Eubacterium, Blautia, Eggerthella, Adlercreutzia,
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and Escherichia [108–114]. Moreover, some human gut bacteria, for example, Eubacterium ramulus
and Flavonifractor plautii, can also degrade aglycones of the different flavonoid subtypes into small
molecules with bioactivity [75,79,100,115–121]. These metabolites include various ring-fission products.
For example, the B-ring of the flavanonols may be converted into hydroxyphenylacetic acids
and the A-ring into short-chain fatty acids (SCFAs) [75]. The C-ring of the flavanones may be
transformed into dihydrochalcones [75]. Degradation of isoflavone aglycones may result in equol
or O-desmethylangolensins, which may be further cleaved into small phenolic products [75,82].
These metabolites are generally bioavailable from the colon, and may have potent activities locally and
systematically. Whether the relative abundances of specific bacterial populations in the gut determine
flavonoid metabolite profiles and the relative potency of these metabolites in mediating colorectal
cancer risk remains to be determined. Intriguingly, quercetin, for example, can be metabolized and
degraded into the SCFAs acetate and butyrate, which have been associated with cytoprotective effects
in the intestinal epithelium and protection against colon tumorigenesis [79,122,123]. Thus, it is possible
that the efficacy of a flavonoid is largely dependent on the ability of an individual’s microbiota to
generate specific bioactive metabolites with anti-tumor activity.

5. Anti-Colorectal Cancer Effects of Major Flavonoids

5.1. Anthocyanidins

Anthocyanins and their metabolites, anthocyanidins, provide a variety of health benefits attributed
to their antioxidant, anti-inflammation, and anti-cancer activities [39,41,124–126]. Anthocyanins have
been reported to reduce both colorectal cancer and inflammatory bowel disease, a major risk factor for
the development of colorectal cancer. Its protective activities have been largely attributed to its ability
to negatively regulate inflammatory signaling pathways including nuclear factor kappa light chain
enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), c-Jun N-terminal
kinase (JNK) and signal transducer and activator of transcription (STAT). It is also capable of inhibiting
cell proliferative pathways such as the Wnt signaling pathway, which is upregulated in the majority
of sporadic colorectal cancers [79,127]. The anthocyanidins delphinidin and cyanidin, for example,
have been shown to have direct cytotoxicity against metastatic colon cancer cell lines in vitro [128],
leading to apoptosis. This was not necessarily related to its antioxidant effects as both, in fact,
acted as pro-oxidants with ROS accumulation in tumor cells that may increase oxidative stress and
induce an apoptotic response [129]. Interestingly, this effect was not observed for all anthoycanidins,
as malvidin (the 3′,5′-methoxy derivative of delhinidin) and pelargonidin did not have any anti-tumor
activity and moreover, the protective effect of delphinidin and cyanidin was not observed with all
colorectal cancer cell lines. Delphinidin, in particular, upregulated the expression of p53, which can
induce cell cycle arrest and apoptosis [130]. Consistently, there was increased expression of the
pro-apoptotic factor B-cell lymphoma 2-associated X protein (Bax) and concomitant decrease in
expression of the anti-apoptotic factor (B-cell lymphoma 2) Bcl-2 associated with inhibition of NFκB,
a regulator of Bcl-2 and Bax expression [130]. Bcl-2, the anti-inflammatory effect of anthocyanin was
confirmed in a mouse model of chemically-induced colitis by dextran sulfate sodium (DSS), a chemical
which directly injures the intestinal epithelium causing a bacterial-driven inflammatory response,
using either 1 or 10% anthocyanin extract derived from bilberries [131]. In addition, treatment of
Balb/c mice with a 10%, but not 1%, anthocyanin-rich extract reduced the number of tumors that
developed in a mouse model of inflammation-associated colon tumorigenesis in which mice are first
injected with an experimental carcinogen, azoxymethane (AOM), followed by multiple rounds of water
containing dextran sulfate sodium (DSS) to induce chronic inflammation that mimics inflammatory
bowel disease in humans (AOM/DSS model), although there are features of this model that also
recapitulate human sporadic colon cancer [131,132]. In another study using the AOM/DSS model,
C57BL/6 mice fed an extract containing black raspberry anthocyanins (purity >90%), consisting
mostly of cyanidin-O-glucoside, cyanidin-O-xylosylutinoside, and cyanidin-O-rutinoside, reduced
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both inflammation and tumor numbers compared to that of control mice. Interestingly, the addition of
anthocyanin extracts reversed potentially pathologic changes in the gut microbiome as determined
by terminal restriction fragment length polymorphism (T-RFLP) analysis after AOM/DSS treatment,
namely a reduction in the pro-inflammatory Enteroccoccus species while increasing Eubacterium rectale,
Faecalibacterium prausnitzii, and Lacobacillus that have typically been associated with anti-inflammatory
and anti-proliferative capabilities [133]. In addition, changes were observed in the expression of
the DNA methyltransferases DNMT31 and DNMT3B, that can lead to promoter demethylation
of genes involved in tumor suppression, for example, secreted frizzled-related protein 2 (SFRP2),
an antagonist of the Wnt pathway, which is disrupted in the majority of colorectal cancers [127,133].
Consistently, an effect on demethylators was also observed in another study after addition of black
raspberry-derived extract to various colon cancer cell lines [134]. Although the dose of extract used
was relatively high, another study using a bilberry extract resulting in a dietary anthocyanin content
of 0.3%, an amount more achievable in humans, resulted in reduced adenoma formation in ApcMin

mice, which harbor a mutation in the Apc tumor suppressor gene that commonly occurs in human
sporadic colon cancers [135,136].

The most compelling evidence of a protective anti-inflammatory and anti-proliferative effect for
anthocyanidin came from human studies in which the ingestion of an anthocyanidin-rich bilberry
extract ameliorated colitis and was associated with reduced NFκB activation and production of
pro-inflammatory mediators in colon biopsies from inflammatory bowel disease patients [137,138] and
reduced cellular proliferation in tumor samples from colorectal cancer patients [139]. Consumption
of black raspberry powder was also associated with changes in methylation status of various
tumor suppressor gene promoters, increased apoptosis, and decreased surrogate markers of cellular
proliferation in biopsies of colorectal cancers and normal adjacent tissue [140]. These studies, however,
were small and also involved extracts and freeze-dried black raspberry powder, and therefore can
contain numerous other bioactive compounds with anti-tumor activity. Therefore, additional studies
in a larger population with purified compounds will be needed to determine more precisely the
anti-tumor effects of particular anthocyanidins.

5.2. Apigenin

Apigenin, one of the flavones, has multiple activities that promote its anti-colorectal cancer
effect. Although there have been no clinical trials conducted to date evaluating the effects of apigenin
supplementation on colorectal cancer prevention, in one prospective study, 87 high-risk patients who
either had a history of resected colorectal cancer or a polypectomy for an adenoma were given a
flavonoid mixture consisting of 10 mg apigenin and 10 mg epigallocatechin-gallate or nothing over a
period of 2–5 years with 67% of treated patients taking the flavonoid supplement more than 1 year with
no adverse side effects. Although there was no statistically significant difference in colon cancer or
adenoma recurrence rates between the treated and control groups, there was a trend for more favorable
outcomes in the treatment group with cancer recurrence in 20% of controls and none in the treated
group. However, the combined recurrence for neoplasia (cancer and adenoma) was significantly lower
in the treatment group compared to that of the control group [141]. In addition, in the Polyp Prevention
Trial, a dietary intervention trial in which 2079 subjects were randomized to either a control arm or to
a low-fat, high fruit and vegetable diet, high apigenin intake was inversely associated with advanced
adenoma recurrence [142].
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Most data supporting the protective effect of apigenin against the development of colorectal cancer
are largely from preclinical studies using colorectal cancer cell lines and animal models. Apigenin can
induce G2/M cell cycle arrest of multiple colon cancer cell lines including SW480, HCT116, HT-29,
and Caco-2 to varying degrees, which was associated with decreased expression of cyclin B1 proteins
and the cyclin dependent kinase p34(cdc2) [143–146]. The induction of apoptosis may be related to
its ability to its pro-oxidative effect, leading to increased ROS production and oxidative stress [147].
Like anthocyanidins, apigenin can also promote apoptosis by inducing the expression of p53 and
altering the Bax/Bcl-2 ratios [148,149].

Apigenin can also affect multiple signaling pathways involved in cellular proliferation.
For example, apigenin can inhibit Wnt signaling in colorectal cancer cells in vitro, possibly through an
autophagy-dependent pathway with subsequent downregulation of Wnt target genes such as cyclin
D1 and c-myc that are involved in colon epithelial proliferation [150–152]. Other inflammatory and
cell proliferative pathways such as MAPK and extracellular signal-regulated kinase (ERK) can be
affected by apigenin in colon cancer cells although how these different pathways interact to affect
colon tumorigenesis remains to be fully elucidated [153].

In vivo studies using mouse models of colon cancer have not yielded consistent robust anti-tumor
effects. In CF-1 mice injected with either a single dose of azoxymethane for 4 or 6 weeks to induce
aberrant crypt foci, a lesion believed to precede the development of carcinoma, only 0.025%, but not
0.1% apigenin-fed mice exhibited a reduction in tumor incidence [154]. In the ApcMin mouse model,
there was also no significant difference, although the relevance of this model for human colon cancer
given the predominance of tumors in the small intestine has been disputed [136,154,155]. However,
in rats injected with AOM, a significant decrease in the number of aberrant crypt foci was observed in
the group fed 0.1% apigenin diet group for 10 weeks prior to AOM injection, associated with reduced
proliferating cells and increased apoptosis [156]. Whether the discrepancy in results from results
reflect differences in the animal model used, the diet preparation, the purity of apigenin, and length of
exposure remains to be determined.

It is possible, however, that maximal effects of apigenin may be more evident in the context of
inflammation given its ability to inhibit pro-inflammatory pathways [157,158]. Consistently, in both
models of inflammatory bowel disease and colitis-associated colon cancer, mice exhibited reduced
NFκB activation and STAT3 activation, which has been linked to increased epithelial proliferation [158],
and decreased expression of pro-inflammatory cytokines and chemokines [159]. Additional insight
into the ability of apigenin to inhibit inflammation and inflammation-induced colon tumors was
provided by another study which implicated a role for the gut microbiota and innate immune signaling.
In particular, when C57BL/6 mice treated with apigenin were cohoused with a second cohort of
wildtype control mice not exposed to apigenin to allow microbiome transfer between mice, the control
mice were similarly protected from DSS-induced colitis as the apigenin-treated mice, suggesting that
the protective, anti-inflammatory effect of apigenin was mediated in part by the gut microbiota [160].
Indeed, it was demonstrated that ingestion of apigenin was associated with changes in the composition
of the gut microbiome, namely, an expansion of Rikenellacae, Bacteroidales, and Bacteroides, and depletion
of Clostridium and Lachnospiraceae, a phenotype similarly observed in control mice after cohousing.
Interestingly, these changes were not observed in apigenin-treated mice deficient in the innate immune
receptor NLRP6, and consistently, apigenin-treated NLRP6-deficient mice were more susceptible to
DSS-induced colitis compared to apigenin-treated wildtype mice, strongly suggesting a role for NLRP6
in mediating the protective effect of apigenin as well. In fact, apigenin was capable of inducing NLRP6
expression within the intestinal epithelium. NLRP6 is a member of the Nod-like receptor (NLR)
family of innate immune receptors that are capable of sensing microbes and tissue damage and has
been shown to be important for regulating the composition of the gut microbiota and for protecting
against the development of colitis as well as inflammation-associated tumorigenesis [28,161–164].
The mechanism by which NLRP6 regulates microbiome composition remains unclear although it
appears to be dependent on IL-18, which can upregulate expression of antimicrobial proteins [28,161].
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Consistently, mice deficient in the antimicrobial peptide Reg3III that is regulated by NLRP6 are
also not protected from colitis after treatment with apigenin [160]. An effect of apigenin on gut
bacteria was also verified in vitro in which apigenin was added to anaerobic cultures of human fecal
microbiota as well as single bacterial isolates, which affected the growth and gene expression of certain
bacteria [165]. How these effects ultimately translate into protection against colon tumorigenesis
remains to be determined; clearly more studies are needed to clarify the relative importance of the
different apigenin-protection mechanisms in colon cancer suppression.

5.3. Quercetin

As with other classes of flavonoids, the flavonol quercetin has been demonstrated to have
anti-tumor activity against colon cancer cells both in vitro and in vivo. Mechanisms for its cytotoxic
activity against colon cancer cells include induction of apoptosis via activation of p53 and inhibition
of NFκB [166,167], cell cycle arrest as a result of downregulation of cell cycle genes [168–170],
and suppression of inflammation via downregulation of Cox2, which is commonly upregulated
in colon cancer [171]. Quercetin is also capable of regulating multiple signaling pathways involved
in inflammation and cellular proliferation such as the Wnt pathway [169,172], NFκB, PI3K, MAPK,
and protein kinase B (Akt) [166,173]. Another potential mechanism by which quercetin can affect
cellular proliferation of colon cancer cells is by upregulating expression of the G-protein coupled
cannabinoid receptor, CB1-R, which in turn can bind to quercetin, resulting in inhibition of cell growth
and migration via Wnt, PI3K, Akt, and STAT3 pathways [174]. This effect was abrogated in the
presence of a CB1-R antagonist.

Consistent with its in vitro effects, there are multiple studies that demonstrate the efficacy of
quercetin in reducing tumor numbers in both mice and rats treated with azoxymethane [175–178].
Quercetin has also been shown to stimulate the growth of specific bacteria when exposed to human fecal
microbiota in vitro with increases in the relative abundance of bacteria belonging to the Actinobacteria,
Firmicutes, and Bacteroides phyla [179]. In vivo, alterations in the gut microbiome associated with
quercetin treatment have also been reported [180]. Specifically, in an adoptive T-cell transfer
model of colitis in which T cells depleted of regulatory T cells were transferred into T-cell deficient
Rag2−/− as well as the DSS chemically-induced colitis model, administration of quercetin resulted
in amelioration of colitis that was associated with macrophages expressing an anti-inflammatory
gene signature [180]. In addition, quercetin treatment resulted in reduced abundance of Proteobacteria,
which commonly blooms in colitis and during inflammation and in patients with inflammatory bowel
disease (IBD) [181,182], as well as an increase in Bacteroides and segmented filamentous bacteria (SFB),
which promotes pro-inflammatory Th17 responses [183]. Decreases in Actinobacteria were also noted,
which is inconsistent with what was observed in vitro and may reflect greater microbial complexity
in vivo [179,180]. However, these changes were observed on day 45 after adoptive transfer when colitis
is already present, and therefore, it is possible that the observed alterations in the composition of the
gut microbiota reflect the severity of inflammation rather than a direct effect from quercetin. Whether
quercetin induces changes in the gut microbiota that are beneficial prior to the onset of inflammation
remains to be determined.

To date, there are no studies that demonstrate positive effects of quercetin supplementation on
colorectal cancer risk in humans. Its potential chemopreventive effects have largely been extrapolated
from case-control studies correlating quercetin content based on food frequency questionnaires,
that may not have accurately quantified all food sources of flavonoids, with colorectal cancer
incidence. For example, in an Italian study, consumption of flavonols of which quercetin, myricetin,
and kaempferol were the major constituents evaluated significantly decreased the risk of colorectal
cancer [184]. In the Polyp Prevention Trial, although high intake of flavonols, including quercetin,
was associated with a significant decreased risk in advanced adenoma recurrence, there was no
association between quercetin alone and adenoma recurrence [142]. In addition, in the Women’s
Healthy Study and Health Professionals Followup Study, two prospective cohort studies consisting of
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71,976 and 35,425 evaluable women and men, respectively, there was no association between quercetin
intake or even total flavonoid intake with colorectal cancer risk, although the authors of the study
noted that the questionnaire used was not designed to accurately assess flavonoid intake and that
dietary changes may not have been captured with a one-time questionnaire [185]. It is also possible that
the dietary source of quercetin may be important as a case–control study demonstrated that increased
quercetin intake was associated with a small reduction in risk of proximal colon, but not distal colon
cancers, and this effect was observed only with high fruit, but low tea intake [186]. This suggests that
the food source of quercetin may affect bioavailability. Indeed, it was demonstrated that higher plasma
concentrations of quercetin was achieved from the consumption of onion powder as compared to apple
peel powder, and similarly, higher bioavailability was achieved with ingestion of quercetin-enriched
cereal bars compared to powder filled capsules [71,187,188]. Alternatively, the presence of other
bioactives in foods may interact with quercetin and further modulate tumor risk. Thus, additional
studies will be needed to understand the relationship between quercetin intake and colon cancer.

5.4. Epigallocatechin-3-Gallate

The beneficial effect of tea has largely been attributed to its epigallocatechin-3-gallate (EGCG),
rather than epicatechin and epigallocatechin, content [41]. EGCG is the main flavonoid in green tea
(~10–15% in an extract from green tea leaf), and there have been several studies demonstrating a
protective effect of green tea against the development of recurrent adenomas and colon cancer [189–192].
Although these effects are likely not entirely due to the activity of EGCG alone, in vitro studies
suggest a variety of anti-tumor mechanisms similar to those reported for other flavonoid subtypes.
EGCG can inhibit not only the growth of colon cancer cells, but also their spheroid forming ability,
an indicator of stem cell function [193,194]. This may, in part, be due to its ability to downregulate
Wnt signaling [195], since activation of the Wnt pathway by lithium chloride can reverse the effects
of EGCG and its ability to induce apoptosis [194]. EGCG can also inhibit Akt and NFκB pathways
leading to reduced cyclooxygenase-2 (Cox-2) expression [196]. Moreover, although its hydroxyl groups
can act as potent scavengers of reactive oxygen species, EGCG, as well as other flavonoids, can also
undergo auto-oxidation to generate oxidizing radicals which, in turn, can act as a stress signal to
activate pathways such as JNK to initiate cyctochrome c release and apoptosis [197–199]. Although
it has been debated whether auto-oxidation is a phenomenon that occurs only in vitro as oxygen
levels within tissues tend to be lower than that of culture media, at least one study demonstrated
increased oxidative stress in lung xenograft tumors in the presence of EGCG [200,201]. Nonetheless,
the relative antioxidant and pro-oxidant properties of EGCG and what actually occurs in vivo to affect
tumor susceptibility will require further study. EGCG can also affect DNA methylation by regulating
the expression of DNA methyltransferases [202]. For example, EGCG administration to HCT116
colon cancer cells can lead to the downregulation of DNMT3a gene expression as well as increased
degradation of the protein [203]. Consistently, EGCG treatment resulted in reduced methylation
of colon cancer-related genes, such as RXRα, Apc, and hMLH1 [204]. However, it remains unclear
whether this is a predominant mechanism by which EGCG contributes to inhibition of colorectal
carcinogenesis as the data is correlative only.
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Animal studies indicate that EGCG is capable of reducing colon tumorigenesis. In rats,
EGCG reduced the number of tumors that developed with AOM treatment [205,206]. The decreased
tumorigenesis was associated with reduced Wnt signaling and Cox2 expression [205]. In mice,
EGCG administration resulted in a significant decrease in tumors after treatment with AOM/DSS that
was associated with changes in the microbiota at 8 weeks, namely Bifidobacterium and Lactobacillus
(that have potential anti-inflammatory effects) were increased. As inflammation itself can alter the
composition of the gut microbiota, whether the observed changes in abundance in certain bacterial
populations with EGCG directly contribute to tumor suppression or merely reflect changes in the
severity of inflammation remain to be determined and can be better addressed using gnotobiotic mice.
In humans, the consumption of green tea resulted in changes in the gut microbiome, including
increases in short-chain fatty acid-producing bacteria such as Lachnospiraceae, Bifidobacteriaceae,
and Ruminococcaceae, and decreases in potentially proinflammatory bacteria, such as Prevotella,
which was reported to be increased in patients with colorectal cancer [20,162,207,208]. However,
whether these changes are due to EGCG and responsible for its protective effects is not known.

6. Conclusions

Despite the mounting evidence that high consumption of fruits and vegetables are inversely
associated with colorectal cancer risk, observational studies have not provided consistent results
regarding the relationship between flavonoid intake and colorectal cancer risk. For example, a recent
large European cohort study consisting of 477,312 adults showed no association between intake of
individual flavonoid subclasses as estimated by dietary questionnaire with colorectal cancer risk
after an average of 11 years of follow-up [209] (Table 1). On the other hand, a meta-analyses of
18 cases involving 559,486 participants with 6–26 years of follow-up showed a potential colon cancer
risk-reducing effect of specific flavonoid subclasses [210]. Differences in outcomes may, in part, reflect
the limitations in the dietary questionnaires used and available food databases to accurately estimate
flavonoid content as well as the significant inter-individual genetic and microbiome differences that
exist among human subjects. However, multiple in vitro and in vivo preclinical studies, as reviewed
above (Table 2), have demonstrated anti-tumor effects of specific flavonoids. The discrepancy between
observational and preclinical studies may be due to the dosing of flavonoids in rodents and in cell
culture that may not be achievable through the diet in human studies and more importantly, highlights
the difficulty in translating preclinical data to clinical trials. Regardless, results from a limited number
of small intervention trials, such as the Polyp Prevention Trial, hold promise for flavonoids as colon
cancer chemoprevention agents [142].

Thus, much remains to be learned about the specific effects of the different flavonoids and their
respective metabolites on colon cancer progression, which may allow the design of a nutritional
intervention that optimizes the concentrations of the most bioactive compounds. Complicating this
problem further is the ability of flavonoids and other dietary components to affect the growth of specific
bacterial populations, which, in turn, can impact the metabolism and bioavailability of flavonoids as
well as influence the development of colorectal cancer.
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Table 1. Select human studies of flavonoids and colorectal cancer.

Type of Food/Flavonoid Subjects Type of Study No. of Subjects Dose Length of Study Outcome Reference

Anthocyanidin-rich
bilberry extract Ulcerative colitis Intervention 13 10 mg/mL 6 weeks; 9 weeks

follow-up

Reduced NF-κB activation and
production of pro-inflammatory

mediators in colon biopsies
[137,138]

Anthocyanidin-rich
bilberry extract Colorectal cancer Intervention 25 0.5–2.0 g 7 days Reduced cellular proliferation

in tumors [139]

Black raspberry powder Colorectal cancer Intervention 20 60 g 1–9 weeks

Decreased methylation of various
tumor suppressor gene promoters,
increased apoptosis, and decreased

surrogate markers of cellular
proliferation in colorectal cancer and

normal adjacent tissue biopsies

[140]

Apigenin/(-)-epigallocatechin
gallate (EGCG)

Polypectomy and
resected CRC patients 2-arm intervention 87 20 mg apigenin, 20 mg EGCG 304 years Decreased recurrence rate of

neoplasia (adenoma or CRC) [141]

Quercetin Healthy versus CRC
patients Case–control 2664

Quercetin intake
estimated based on food
frequency questionnaires

Inverse association between
proximal, but not distal colon cancer

risk and quercetin intake
[186]

Flavonoids/quercetin,
myricetin, kaempferol Healthy Observational 71,976 women,

35,425 men

Total flavonoid and
individual flavonol intake
based on food frequency

questionnaire

No association between flavonoid
intake CRC risk [185]

Flavonols History of
adenomatous polyp

Randomized
intervention trial 1905

Low-fat, high fiber,
high vegetable and fruit

intake vs. no intervention
control questionnaire

4 years

High intake of flavonols was
associated with significantly
decreased risk of advanced

adenoma recurrence

[142]

EGCG Polypectomy patients Randomized
intervention trial 136 1.5 g green tea extract tablets

(52.5 mg EGCG) 1 years Reduced incidence of
adenoma recurrence [192]

Green tea Healthy Intervention 400 mL green tea liquid 2 weeks

Alterations in the gut microbiome,
including increased short-chain fatty

acid-producing bacteria and
decreased pro-inflammatory bacteria

[207]

Flavonoid Healthy Observational 477,312
Flavonoid intake

based on food
frequency questionnaires

Mean follow-up
11 years

No association between total
flavonoid intake and risk of CRC or

any CRC subtype
[209]

NF-κB: nuclear factor kappa light chain enhancer of activated B cells; CRC: Colorectal cancer.
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Table 2. Preclinical studies of effect of flavonoids on colon tumorigenesis.

Type of Flavonoid Class Dose Model Results Reference

Black raspberry anthocyanin extract Anthocyanidin
5% or 10% extract, or 3.5 µmol/g

and 7.0 µmol/g anthocyanin
concentration in diet

Azoxymethane (AOM)/dextran sulfate
sodium (DSS) model of C57BL/6 mice

Reduction in colon carcinogenesis;
reduction of pathogenic bacteria [133]

Black raspberry-derived
anthocyanins Anthocyanidin 0.5, 5 and 25 µg/mL Human colorectal carcinoma cell line

HCT116, Caco2, and SW480 cells
Suppressed activity and protein expression of

DNMT1 and DNMT3B [134]

Cyanidin and delphinidin Anthocyanidin 25–100 µM Human colorectal carcinoma cell line Caco-2,
LoVo/ADR cells Induced cell death [128]

Delphinidin Anthocyanidin 30–240 µM Human colon cancer HCT116 cells Induced cell death; inhibition of NFκB [130]

Dried bilberries or 1 or 10%
anthocyanins (ACs) Anthocyanidin 1 and 10% ACs Acute and chronic dextrane sodium sulphate

(DSS) colitis of Balb/c mice Amelioration of acute as well as chronic colitis [131]

Mirtoselect, an anthocyanin mixture
from bilberry Anthocyanidin 0.1% and 0.3% (w/w) ACs in diet Apc(Min) mice, a genetic model of human

familial adenomatous polyposis Reduced adenoma load dose-dependently [135]

Apigenin Flavone 50–80 µM Human coloncarcinoma cell lines SW480,
HT-29, and Caco-2

Cell-cycle arrest at G2/M; p34(cdc2) and
decreased cyclin B1 protein expression [143]

Apigenin analogs (acacetin, chrysin,
kampherol, luteolin, myricetin,

naringenin, and quercetin)
Flavone 40–80 µM Human SW480 and Caco-2 colonic

carcinoma cells G2/M cell-cycle arrest [144]

Apigenin Flavone 20–80 µM HT29-APC cells G2/M cell-cycle arrest; induction of APC
protein expression [145]

Apigenin Flavone 10 µM in vitro; 25 and 50 mg/kg
in vivo

Human colorectal cancer cells HCT-116,
SW480, HT-29 and LoVo; APCMIN+ mice Reduced polyp numbers; increased p53 activation [148]

Apigenin and quercetagetin Flavone 200 µM Human colorectal colon cancer (SW480) cells Inhibition of cell proliferation; alter the expression
of bax and bcl2 transcription [149]

Apigenin Flavone 50 µM HCT116 human colon cancer cells Apoptosis- and autophagy-inducing effects [146]

Apigenin Flavone 1.5626–100 µM Colorectal cell lines HT-29 and HCT-15 Pro-oxidative stress induction [147]

Apigenin Flavone 25–100 µg/mL Human gut bacteria
Inhibited Enterococcus caccae growth; up-regulated

genes involved in DNA repair, stress response,
cell wall synthesis, and protein folding

[165]

Quercetin Flavonol Human colon cancer COLO320 DM cells Inhibited cell growth [170]

Quercetin and rutin Flavonol 2% quercetin; 4% rutin in diet Azoxymethane (AOM)-induced colonic
neoplasia in mice

Reduced hyperproliferation of colonic epithelial
cells and focal areas of dysplasia (FAD) incidence [175]

Quercetin and rutin Flavonol 2% quercetin; 4% rutin in diet AOM-induced colonic neoplasia in mice Reduced FAD [178]

Quercetin Flavonol 25–100 µM HT-29 and SW480 colon cancer cells
Inhibited cell growth and promoted apoptosis;
down-regulated ErbB2/ErbB3 signaling and

Akt pathway
[166]

Quercetin Flavonol 5–50 µM Caco-2 cells Induced cell cycle arrest; downregulated
expression of cell cycle genes [168]

Quercetin Flavonol 100 µM SW480 cells Inhibited the transcriptional activity of
β-catenin/Tcf [172]
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Table 2. Cont.

Type of Flavonoid Class Dose Model Results Reference

Quercetin, curcumin, rutin,
and silymarin Flavonol 30,000, 50, 8000,

and 5000 p.p.m, respectively AOM-induced rat colon cancer model Decreased precancerous lesions and
induced apoptosis [177]

Quercetin Flavonol 15–40 µM SW480 cells and clone 26 cells Inhibition of expression of cyclin D1 and survivin
as well as the Wnt/β-catenin signaling pathway [169]

Quercetin Flavonol 4.5 g/kg diet Azoxymethane (AOM)-induced rat colon
cancer model

Suppressed formation of early preneoplastic
lesions in colon carcinogenesis [176]

Quercetin Flavonol 100 µM in vitro; 50–100 mg/kg
in vivo

HT-29 colon cancer cells in vitro,
and xenografts

Reduced tumor growth and induced apoptosis via
5’-AMP kinase (AMPK) activation and

p53-dependent apoptotic cell death
[167]

Quercetin Flavonol 50 µM Human colon adenocarcinoma derived cell
lines Caco2 and DLD-1

Inhibited cellular proliferation associated with
increased expression of the endocannabinoid

receptor (CB1-R)
[174]

Quercetin, catechin, and puerarin Flavonol 0.15 g/L culture Gut microbiota in vitro cultures Affected relative abundances of various bacteria [179]

Quercetin Flavonol 10 mg/kg DSS induced colitis model in C57BL/6J mice Ameliorated colitis [180]

Epigallocatechin-3-gallate (EGCG) Catechin 0.01% and 0.1% green tea extract Azoxymethane-induced colon
carcinogenesis in the rat

Inhibited chemical carcinogenesis of the
gastrointestinal tract [206]

Epigallocatechin-3-gallate (EGCG) Catechin 100 µM Human colorectal carcinoma HT-29 cells Inhibited cell growth and induced apoptosis
associated with JNK activation [197]

Epigallocatechin-3-gallate (EGCG) Catechin 50–300 µM Human colorectal cancer cell lines HT-29
and HCA-7

Reduced cellular proliferation; inhibition of
COX-2 and downregulation of NF-κb, ERK1/2,

and Akt pathways
[196]

Epigallocatechin-3-gallate (EGCG) Catechin 0.1% AOM-induced rat colon cancer model
Decreased tumor numbers associated

with Inhibition of indoleamine
2,3-dioxygenase (IDO) activity

[205]

Epigallocatechin-3-gallate (EGCG) Catechin 50–150 µM HCT 116 human colon cancer cells Reduced histone deacetylase (HDAC) and DNMT
protein expression [203]

Epigallocatechin-3-gallate (EGCG) Catechin 50–200 µM
5-fluorouracil (5FU)-resistant (5FUR) CRC
cells and spheroid-derived CSC (SDCSC)

xenograft model

Suppressed Notch1, Bmi1, Suz12, and Ezh2;
inhibited tumor growth in a xenograft model [193]

Epigallocatechin-3-gallate (EGCG) Catechin 50–150 µM CIMP+ cell lines

Reduced cell viability; induced cell cycle arrest;
Decreased DNMT activity resulting in promoter

methylation changes at several cancer-related
genes such as retinoid X receptor alpha (RXRα)

[204]

Epigallocatechin-3-gallate (EGCG) Catechin 10–60 µM Human colon cancer cell lines DLD-1
and SW480

Inhibition of spheroid formation with suppression
of proliferation and Wnt/β-catenin pathway [194]

Epigallocatechin-3-gallate (EGCG) Catechin 5–40 µg/mL Colon adenocarcinoma cells COLO205 Induced chromosome instability and triggered
apoptosis and inhibition of cell division [198]

JNK: c-Jun N-terminal kinase; ERK: extracellular signal-regulated kinase; DNMT: DNA methyltransferase.
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Future studies that combine bacterial transcriptomics and metagenomics with metabolomics will,
therefore, be critical in defining specific bacterial activities that are important for the generation of
specific flavonoid bioactives or are altered by the ingestion of flavonoids. Studies involving fecal
transplant of microbiota associated with the intake of specific flavonoids or the administration of
synthetic bacterial communities effective in flavonoid metabolism in germfree mice will provide
additional evidence that flavonoid-mediated changes in the gut microbiome can be beneficial to the
host and regulate colorectal cancer susceptibility. The use of germfree mice will also be important in
identifying microbiome-specific contributions to the anti-tumor effects of flavonoids. Since there is
significant inter-individual heterogeneity in the composition of the gut microbiota [211], interventions
to modulate the gut microbiome to enhance the efficacy of flavonoids or customizing the diet to enrich
for specific flavonoids may be strategies that can be adopted in the future once a better understanding
of the interrelationship between flavonoid bioactivity and the gut microbiota is achieved. Finally,
the poor bioavailability and solubility of flavonoids makes their use as a potential chemopreventive
drug challenging and will require novel strategies to optimize their delivery, dose, and metabolism.
As flavonoids have potential anti-tumor effects not limited to colon cancer, advances made in our
understanding of the function and metabolism of flavonoids may contribute significantly to the
prevention of human cancers in general.
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