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Abstract: The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been high-
lighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and
anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which
functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo.
It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell
based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits
and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct
stage of the CAM assay procedure, including cultivation techniques, treatment applications and
methods of determining an angiogenic response using this assay. We detail the angiogenic effect
of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM
assay, while also highlighting the testing of genetically modified cells. We also present a detailed
exploration of the advantages and limitations of different CAM analysis techniques, including visual
assessment, histological and molecular analysis along with vascular casting methods and live blood
flow observations.

Keywords: chorioallantoic membrane (CAM); angiogenesis; blood flow; cancer; tumour; microcirculation

1. Introduction

The appropriate delivery of metabolites and removal of waste products is essential
in maintaining tissue homeostasis in the body. For this to occur, the presence of a vast
well-connected microvascular blood vessel network is crucial. In the absence of this
system, negative effects such as oxygen deprivation and tissue death can occur [1,2]. The
microvasculature is also essential for an array of physiological responses including hormone
responses and inter-organ communication, and injury responses including immune and
inflammatory responses. Angiogenesis is the process by which new blood vessels form from
pre-existing vessels, a phenomenon required in normal physiology, development, growth
injury and disease [3]. There are two types of angiogenesis, sprouting and intussusceptive
angiogenesis. Sprouting angiogenesis is where blood vessels form as a result of sprouts
of endothelial cells [4,5]. Intussusceptive angiogenesis was more recently discovered and
entails pre-existing blood vessels “splitting” down the middle to form two new branching
blood vessels [6]. Angiogenesis is an organised cascade of events, regulated by several
pro- and anti-angiogenic growth factors. Pro-angiogenic growth factors include fibroblast
growth factor (FGF) [7], vascular endothelial growth factor (VEGF) [8], transforming growth
factor-o (TGF-ox) [9], TGF-f [10], hepatocyte growth factor [11], and tumour necrosis factor-
o (TNFx) [12]. However, thrombospondins (TSP) [13], angiostatin [14] and endostatin [15]
can lead to anti-angiogenic effects. The growth of new blood vessels is induced by the
delicate balance between pro-angiogenic and anti-angiogenic factors [16]. The release of
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these factors activates proteolytic enzymes to remodel the extracellular matrix (ECM) of
blood vessels, leading to sprouting and reorganisation of new blood vessels [17].

Cancer therapeutic research and the targeting of VEGF have been major impetuses in
expanding interest in angiogenesis in more recent times. Nonetheless, our understanding
of these angiogenic factors and signalling pathways are still being investigated and more
studies are required to fully explore the understanding of the basic mechanisms, and
subsequent translation of this to potential therapeutic use. As a result, the development
and standardisation of angiogenic assays, both in vitro and in vivo are vitally important in
facilitating this research.

Several angiogenic assays have shown particular benefit in the study of microvasculari-
sation, both in vitro and in vivo. These include in vitro assays such as the use of endothelial
cells in culture (migration, proliferation, survival and morphogenesis assays), the rat and
mouse aortic ring assays, the embryoid body assay and the mouse metatarsal assay [18-21].
Angiogenic in vivo assays include the corneal micro pocket, the rodent mesentery assay, the
dorsal skin fold procedure and the use of subcutaneous sponge/matrix plugs in conjunction
with rodent models and the chick chorioallantoic membrane (CAM) assay [22-25].

In vivo investigation is often considered to be more informative than in vitro as it
accounts for the interaction of several physiological pathways that cannot be mimicked
using cell culture. However, issues such as high-cost, ethical approval and animal sacri-
fice are drawbacks for most in vivo assays. The CAM assay is an underutilised in vivo
angiogenic assay, as it is not subject to these aforementioned drawbacks [26,27]. The CAM
is a highly vascularised membrane found in fertilized chicken eggs, with a vast vascular
network of capillaries, veins and arteries, which can be easily manipulated and observed
for experimental study of angiogenesis (Figure 1) [28-30]. The CAM assay can be seen
as a bridge which links cell based in vitro studies with in vivo animal experimentation,
providing a method to study complex biological procedures while adhering to the “Three
R strategy” established by Russell and Burch to reduce animal suffering [31].

Figure 1. Image of 7-day-old chick embryo with associated chick chorioallantoic membrane (CAM) and
its vast vascular network of capillaries, veins and arteries visible. Image taken at 25x magnification.

2. CAM and Chick Development

The CAM is a highly vascularised membrane used for nourishment, gaseous exchange
and excretion found in the fertilized eggs of amniotes such as birds and reptiles, analogous
to the placenta in mammals [26,30]. The CAM consists of three layers, chorionic epithelium,



Int. . Mol. Sci. 2022, 23, 452

30f29

the mesenchyme epithelium and the allantoic epithelium, each of which carry out their
own specific function [30]. The allantoic membrane, derived from the mesoderm is where
the primitive blood vessels and vascularisation develop from day 3, with the fusion of the
chorionic epithelium and allantoic epithelium occurring at day 4 to produce the double
layered chorioallantoic membrane [32]. The CAM consists of several ECM proteins such as
laminin, collagen type IV and fibronectin, which allow for the mimicking of the normal
physiological microenvironment of warm blooded animals, including humans [33].

Hamburger and Hamilton in 1951 characterised the development of the growing chick
embryo, carried out by dividing the 21 days of chick development into forty-six distinctive
stages [34]. The CAM grows for the latter 15-16 days of development, expanding alongside
the chick embryo until day 21 when the embryo cracks the shell and the egg hatches [30].
Until approximately day 12 the growth of the chick embryo and the CAM vascularisation
is undergoing accelerated development. Therefore, the efficacy of any pro-angiogenic or
anti-angiogenic factor applied up until this time will be heightened [17]. Consequently, it is
recommended to carry out angiogenic assays in the days following day 11, where any new
blood vessel generation is more likely resulting from the treatment and not the naturally
growing chorioallantoic membrane [27,35].

In the absence of a fully developed immune system until development day 18, the
CAM is capable of hosting allogeneic or immune-incompetent acellular matrix or tissue
graft until this point. Therefore, the CAM is best employed within a limited window of time
in order to accurately assess an angiogenic response and avoid immune reactions. [17,30,36].

The understanding of chick and CAM development is essential for its application as
an experimental model. The CAM angiogenic assay procedure follows a basic four-stage
process: activation, cultivation, treatment and harvest (Figure 2).

Stage 1: Activation
(Day 1-4, stage 1-20)

}

Stage 2: Cultivation
(Day 2-4, stage 14-20)
Stage 4: Harvest

(Day 8-15, stage 34-41) / \

Stage 3: Treatment
(Day 3-11, stage 16/17- 37)

L — |

Figure 2. Schematic of four-stage CAM assay process, along with approximate embryonic devel-

opment days where this stage typically takes place. Stage 1: Activation is where eggs are put in
a rotating incubator at 50% humidity to allow for preliminary development. Stage 2: Cultivation
allows for visualisation of the embryo and CAM through either ex ovo cultivation where the eggshell
is cracked with contents then transferred into a sterile petri dish, or in ovo cultivation where a saw
tool is used to excise a window in the surface of the eggshell. Stage 3: Treatments such as cells,
drugs or growth factors are applied. This can be through a variety of methods such as application of
on-plants, pipetting directly onto the CAM surface or injection into the CAM vasculature. Finally,
upon completion of the experiment, the chick embryo is sacrificed and the CAM is removed for
analysis. Analysis can include visual observations of angiogenesis, histological examination, or
molecular investigation.

Makanya et al. used light microscopy, ultrastructural analysis and immunohistochem-
istry to identify and characterise the three specific phases of the 21 day CAM development;
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phase I (day 8-13, stage 34-39), phase II (day 13-18, stage 39—44) and phase III (day 18-20,
stage 44—45) with most rapid growth seen in phase I, less in phase Il and even regression
observed in phase III [30]. This study reinforces ideas previously expressed by Baum
et al. where VEGF-A expression in the CAM peaked during various times in these phases
triggering intussusceptive angiogenesis [8]. The understanding of these phases of develop-
ment has to be considered in the design of a CAM angiogenic assay, with inconsistency
possibly leading to hyperinflated interpretation of results in relation to the angiogenic
responses observed.

3. CAM Assay Procedures

In the CAM experimental method, there are two basic processes: In ovo cultivation and
ex ovo cultivation, based on the Latin for “in the egg” and “outside the egg” respectively
(Figure 3). Initially for both methods, eggs are kept in a humidified incubator at a constant
humidity and at a temperature of 37 °C for the initial days of development before extraction
of the shell from the embryo for visualisation [37].

(A) (B)

Figure 3. 4-day old chick embryo and associated chorioallantoic membrane (CAM) following
(A) In ovo and (B) Ex ovo cultivation. The CAM expands as the embryo grows. Ex ovo culti-
vation is beneficial through the larger surface area available for experimentation, however embryo
survival is impacted.

In ovo cultivation is where a small hole is created at the apex of the egg and 2-3 mL of
albumin is removed to lower the embryo and CAM away from the eggshell. A mini-saw
tool is used to excise a window in the surface of the eggshell. The created window is
covered with a sterile laboratory wrap or plastic cover to ensure sterility and maintain
humidity [38-40]. The eggs are then returned to a 50-80% humidified incubator for several
days before experimentation can begin. This method of cultivation is minimally invasive on
the growing chick embryo, providing a relatively unchanged environment for its growth,
and generally improves the survival rate for the experiment.

Alternatively, ex-ovo (also referred to as shell-less cultivation) is where the eggshell
is cracked or sawed and the embryo, yolk sac and contents of the egg are transferred to
a petri dish, cell culture dish or sterile weigh boat and allowed to develop [28,41]. There
are few reports of survival rates of embryos during either in ovo or ex ovo cultivation
method. However, Dohle et al. have produced a specialised protocol for optimum survival
with ex ovo cultivation, indicating survival rates of 50% over 14 days [28]. Lokman et al.
report survival with in ovo cultivated embryos of 70% at day 14 [33]. It can be inferred
that in ovo shows improved survival compared to shell-less cultivation as it involves less
displacement of the embryo, with sterility and humidity issues also reduced. Nonetheless,
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a limitation with in ovo cultivation is that there is reduced visibility and surface area for
experimentation compared to the fully exposed embryo on a petri dish [36].

Naik et al. 2018 suggest an alternative, outlining a detailed protocol where instead of
a petri dish or weigh boat, the contents of the eggshell are transferred to a cling film pocket
suspended in a plastic cup; this method has shown success, with survivability of >70%
reported while still providing the benefit of larger surface accessibility for experimenta-
tion [42]. However, despite this apparent success, no other research group has reported use
of this method of cultivation to date.

4. CAM Experimental Treatments

The CAM has also proven successful with focus on specific areas of research not
limited to angiogenic investigation. Successful assays using the CAM have been devel-
oped, including but not limited to metastasis, inflammation and propagation, and the
grafting of tumour cells [28]. The application of cells in an engraftment onto a CAM was
first successfully carried out in 1913, using sarcoma cells to develop tumour growth [43].
Subsequently, the CAM has been subjected to a myriad of treatments, including modified
and un-modified cells, tumours, peptides, proteins, plasmids, micro-RNA (miRNA) and
pharmacological agents, drugs, metabolites, biomaterials nanoparticles, plant extracts, and
growth factors. These treatments were also applied to the CAM by diverse means involving
several different scaffolding techniques [44,45].

4.1. Scaffolds and Delivery Methods

CAM assay experiments have been adapted to incorporate a wide variety of scaffolding
and treatment methods. Outlined in Table 1 are examples of the various scaffolds used in
conjunction with the CAM assay, with both biological and non-biological approaches used.
Although the test substance in experimentation is important, consideration should also be
taken when choosing a suitable scaffold to support the delivery of the treatment. In 2001,
Zwadlo-Klarwasser et al. investigated the angiogenic and inflammatory responses of the
various biomaterials often used as scaffolds or supports in conjunction with the CAM assay.
This research observed increased angiogenesis and cell infiltration due to an inflammatory
response when irregular materials such as collagen or filter paper were applied, compared
to smoother substances such as PVC or Tecoflex [46]. Considering this, thought should
be given when choosing a scaffold, as confounding or skewed results can occur due to
the scaffold used or the mechanical influences such as shear stress or stretch, as well as
other forces of certain on-plants themselves can trigger an angiogenic response [47,48].
A solution to this issue is the comparison of different scaffolds for the same treatment,
as seen in the work by Mangir et al., 2019, where estradiol treatment is applied both by
direct pipetting onto the CAM surface and also by encapsulation in a hydrogel scaffold [49].
However, direct application to the surface may not be feasible with certain treatments,
such as non-clustering cells, which may require adequate support for survival, and a
suitable scaffold to allow containment of cells to within a localised treatment area [50]. The
basement membrane matrix Matrigel has been used frequently to fulfil this role. Matrigel,
is a basement-membrane matrix taken from Engelbreth—-Holm-Swarm mouse sarcomas,
consisting of several ECM proteins such as laminin, collagen, heparan sulfate proteoglycans,
entactin/nidogen, and a number of growth factors to support cell survival [51,52]. The
Matrigel is liquid below 10 °C, therefore it is pre-cooled to mix with cells, and then applied
to the warmer CAM surface where it polymerises encapsulating the cells [50]. However,
due to the biologically sourced nature of Matrigel, inconsistencies in composition and
mechanical properties can occur both between batches and even within batches. This can
lead to issues in experimental reproducibility, therefore it has been suggested a move to
synthetic polymer scaffold could be a possible resolution [53].
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Table 1. Examples of various forms of scaffolds and delivery techniques for a variety of pro angiogenic
and anti-angiogenic treatments used on the CAM assay.

Scaffold/Delivery Method Reference
Collagen [54-57]
Filter disc [58-65]
Gelatin sponge [66-71]
Glass discs [72,73]
Hydrogel [41,74-77]
Injected [78-84]
Matrigel [16,85-90]
Methylcellulose disc [15,91-94]
Microspheres [95,96]
Pipetted onto surface [97-103]
Plastic ring [75,104-111]
Scaffold [108,112-117]
Thermanox coverslip [118-122]
Tumour [5,123-126]
Pellet [127-129]

4.2. Drugs, Metabolites, miRNAs and Other Treatments

A wide array of both biological and non-biological treatment options has been de-
veloped, optimised and applied successfully to the CAM assay. The term biological can
apply to both cell and tissue on-plants, or other factors which come from a living source
such as hormones, growth factors, metabolites, miRNA and antibodies, with non-biological
treatments usually involving drugs, chemicals or nanoparticles.

Outlined in Table 2 are examples of both biological and non-biological substances
which have been applied to the CAM assay and have provided a positive angiogenic
response, through increased vasculogenesis and neoangiogenesis. In the case of these pro-
angiogenic treatments, examples of biological substances are seen much more abundantly,
with growth factors such as fibroblast growth factor (FGF), transforming growth factor
(TGF) and the known pro-angiogenic vascular endothelial growth factor (VEGF) in several
isoforms most commonly described.

Wang et al., investigated the precise mechanism growth factor TGF-f3 employs to
trigger angiogenesis. In this research, the integral role miRNA-29a has in TGF-f induced
angiogenesis is explored [130]. MicroRNAs, also known as miRs, are small, non-coding
RNA which play a pivotal role in gene regulation [131]. In recent years, it has become
evident that miRs play an important role in many cellular processes, including angiogene-
sis [132]. However, the role miRs have in angiogenic induction or inhibition in the CAM
assay has been sparsely investigated. Huan et al., through their research on ameliorating
ischaemia in the diabetic foot, have presented and validated a pro-angiogenic miR (miR-
21-5p), delivered through exomes [133]. MiR-21-5p induces an increase in vascularisation
through upregulation of several angiogenic pathways [133]. Similarly, exomes derived
from chronic myeloid leukaemia cells [134] and mesenchymal stem cells [133] also result in
stimulating angiogenesis in the CAM.

Direct genetic modification of the CAM is an area also not yet fully explored, with few
studies applying gene vectors such as plasmids or recombinant viruses. Transfection of an
FGF-1 expression plasmid into the CAM induced significant blood vessel growth [135], and
the application of a microgel releasing VEGF-GFP lentivirus vector releasing microgels [136],
elicited similar effects, as seen in Table 2.
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Table 2. Examples of non-cellular treatments applied to the CAM which elicited a pro-angiogenic response.

Treatment Delivery Method Angiogenic Outcome Ref.
Connective tissue Scaffold Significant increase in blood vessel number and diameter [137]
rowth factor (CTGF) following software quantification
& Thermanox Coverslips A dose dependent increase seen by appearance of spoke [138]
p wheel pattern of blood vessels radiating from on-plants
Platelet-derived erowth Thermanox Coverslips Macroscopic observations indicated thickening of CAM, but [139]
factor (PD G%:) P no vascular response
actor Scaffold An increased blood vessel density converging towards [140]
Scaffold on-plant observed along with thickening of CAM membrane
Basic Fibroblast Growth Plastic rin Significant increase in number of blood vessels converging [110]
Factor (bFGF/FGF-2) & towards on-plant
Significant increase in mean fluorescent vascular density, [141]
Filter disc measured by pixel intensity
Increased number of branch points in a region around [142]
on-plants
Tr?gcstfgfgl?rgcg;_og; th Filter disc Radial formation of new vessels seen in area around on-plants [143]
. . Significant increase in tube length and size as measured by
TNFo Filter disc angiogenic software [144]
Filter disc A dose responsive increase in blood vessels in defined area [145]
observed
Hvdrogel A time-dependent increase in blood vessel diameter and [146]
VEGEF-165 yaros branching points, measured using angiogenic software
. Macroscopic observations saw a dose dependent increase in
Thermanox Coverslips angiogenesis [139]
. Macroscopic observations noticed a change in vascular
Thermanox Coverslips pattern under the treatment area [147]
VEGF-121 Filter disc Software quantified a dose responsive increase in total blood [148]
vessel network length
. . Significant increase in sprouting blood vessels within a
Filter disc defined area [149]
Scaffold Increased blood vessel density observed within a defined area [140]
. Microvascular mapping of the blood vessel network following
Matrigel FITC injection resulted in increased blood vessel density [150]
VEGF-A Glass fibre filter disc Significant increase in vessels number quantified in a random [151]
square areas of CAM surface
L Angiogenic software indicated a significant increase in
Plastic ring number of branchpoints and average vessel length [111]
Significant increase in vessel length, number and [74]
Hydrogel vasculogenic index
Significant increase in vessel number in a region around [152]
on-plant
Hvdrowel Significant increase in vessel number in a region [152]
VEGE-C ydarog around on-plant
Methvlcellulose disc Increase in sprouting blood vessels present within a [153]
y defined area )
Thyroxine Hydrogel Significant increase in vascular penetration of on-plants [154]
Heparin Hvdrowel Significant increase in vessel number in a region [40]
P ydros around on-plant
Significant increase in sprouting blood vessels present within
VEGEF-D Hydrogel a defined area [152]
Calculation of percentage of CAM surface covered by
Plastic rin endothelial cells resulted in a significant increase in the mean [49]
& vessels count
i Angiogenic software quantified a significant increase in
Estradiol number of branchpoints and average vessel length [
Scaffold Increase in angiogenic response seen by measurement of [117]

vasculogenic index
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Table 2. Cont.

Treatment Delivery Method Angiogenic Outcome Ref
Estradiol Filter disc Increased vascular branching observed within a defined area [155]
The number of primary, secondary, tertiary, and quaternary
L-Arginine Filter disc blood vessels counted with a significant increase in number of [3]
quaternary blood vessels
. TGF-3 1nduced. Pipetted Significant increase in number of blood vessels around [130]
miR-29a upregulation on-plant observed
Fibroblast growth . Significant increase in number of blood vessels in a region
factor-1 expression Pipetted [135]
- around on-plant observed
plasmid
VEGF-GFP LV Microgels Increased blood vessel development quantified [136]
MSCs-exomes N ioned Significant promotion of new blood vessel formation [133]
miR-21-5p OF exomes ot mentione & P
Transthyretin Plastic ring Significant increase in number of blood vessels growing [110]
towards on-plants
Counting blood vessels which intersected a concentric circle
Terbutaline Plastic disc projected around on-plants observed a significant increase in [64]
number of blood vessels
B2AR antagonist Coverslip Increased number of b'loo.d vessel branch points observed [156]
within on-plants
Angiogenin Thermonox discs Visibly increased numbe.r qf blood vessel spoke wheel pattern [157]
seen radiating from on-plants
Dose dependent increase in vascular density observed in a [158]
Adenosine region around on-plant
ADP Elvax Polymer pellet Observation of spoke wheel pattern of blood vessels radiating
ATP from on-plants, with a positive result observed in majority of ~ [127]
Lactic Acid samples
Malate
Exosomes derived from . . . . .
. . L Treatment with a higher concentration resulted in an increase
chronic myeloid Plastic ring in neovasculature [134]
leukaemia cells (K562)
. L Angiogenic software calculated a significant increase in
2-deoxy-D-ribose Plastic ring number of branchpoints and average vessel length [111]
Sclerostin Gelatin sponge Increased number of blood vessels converging towards [159]
on-plants observed
Roxarsone Gelatin sponge Increased number of neovessels and blood vessel length [160]
Leptin Gelatin sponge Software measured significantly mfireased blood vessel tube [71]
length and size
. . . Dose dependent increase in blood vessel number observed,
Arsenic Filter disc however higher doses resulted in negative effects [1e1]
Y203 nanoparticles Scaffold Improved blood vessel formation, vascular branching and [162]

blood vessel diameter within the area around scaffolds

Although the study of pro-angiogenic treatments focus on the amelioration of vas-
cular conditions such as ischaemia, much of the research involving the CAM assay and
anti-angiogenic treatments are oncological, through the reduction in vascularisation of a ma-
lignant (growing) tumour [163,164]. Table 3 summarises the application of anti-angiogenic
treatments on the CAM assay, which resulted in a range of negative effects in the devel-
opment of new blood vessels. The success of these anti-angiogenic substances may prove
useful in the development of cancer treatments.

Interestingly, anti-angiogenic treatments are frequently seen in literature involve the
use of chemical substances, such as the chemotherapy drug doxorubicin [129,165] as well
as thalidomide derivatives [59]. The application of nanoparticles such as gold [60,84],
green [166], zinc tungstate [61] and chitosan derived nanoparticles [94] have high efficacy
in the inhibition of blood vessel development, with significant reductions in blood vessel
number, length and density reported.
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A method of anti-angiogenic activity with proven potential is the inhibition of various
angiogenic growth factors via treatment with targeted antibodies. A WHO approved
chemotherapy drug, Avastin® (bevacizumab) is used globally in the treatment of several
forms of cancer [167]. Bevacizumaub is an anti-VEGF antibody which has shown potent re-
sults by reducing blood vessel density in the CAM assay in several studies [3,80], and other
anti-VEGF antibodies have elicited similar effects [168,169]. Equally, the use of anti-human
placental growth factor (PGF) [170] and anti-laminin [171] antibodies has led to a significant
inhibition of angiogenesis and a delay in blood vessel network development respectively.

Table 3. Examples of protein, viral, micro-RNA and pharmacological treatments applied to the CAM
which elicited an anti-angiogenic response.

Treatment Delivery Method Angiogenic Outcome Ref.
Nicotinamide adenine
1 1 0,
dmucllf;)rtlﬁi t(eNAD) 10% Evse?l%}tmlymer No spoke wheel pattern was observed radiating from on-plants [127]
Succinate Fumarate citrate
. . Significantly less vascular nodes and branches were quantified within a
Avastin (Bevacizumab) Injected . . . . dofined area [80]
EG-VEGF Antibodies No significant differences in vessel density observed, but dilated medium [168]
and large vessels observed
Methyl blue Microspheres No spoke wheel pattern was observed radiating from on-plants [96]
. - Combination of doxorubicin and chloroquine resulted in strong
Chloroquine & Doxorubicin Agarose pellet . . - a1 [129]
_ anti-angiogenic effect on capillaries near on-plants
Avastin (Bevacizumab) Pipetted Significant decrease 11;) pergentage of surface area occupied [165]
y microvessels
o . The number of primary, secondary, tertiary, and quaternary blood vessels
Vitamin C Pipetted was counted, with decrease in quaternary blood vessels quantified 31
MART-10 (Vitamin D analog) Pipetted Reduced vessel branch point numbers observed within a defined area [172]
Green nanoparticles Gelatin sponge Decrease in vessels length and branch number within a defined area [166]
Rhaponticin Filter disc Software determined a significant reduction in total blood vessel length [173]
Thalidomide derivatives Filter disc Reduction in vessel nurnber,1 branch points, neovascularization and total [59]
i o - ength of vessels
High affinity PGF-specific Filter disc Significant inhibition of angiogenesis within a defined area [170]
Nanobody
Antithrombin Filter disc Potent antiangiogenic activity in .blood .vessel tubules, networks and [174]
_branching points )
Zinc tungstate nanoparticles Filter disc A dose dependent reduction in percentage of surface area occupied by [61]
blood vessels was calculated
Filter disc Software determined a dose dependent reduction in blood vessel size, [60]
Gold nanoparticles length and branch points
Ini Software determined a significant reduction in vessel length and number
njected : . [84]
of junctions and complexes
miR-7 mimics Nitrocellulose rings A reduction in vascular density within a defined area was visible [175]
Sumtm}b (regep tor tyrosine Nitrocellulose rings A reduction in vascular density within a defined area was visible [175]
kinase inhibitor)
Vasohibin Adenovirus Matrigel Macroscopic observations saw inhibition of blood vessel growth [16]
Chitosan derivatives Methylcellulose disc Reduction in number of blood vessels in contact with on-plants observed [94]
nanoparticles Y o . ) ; o p
Anti-VEGF Antibody Methylcellulose disc Visible anti-angiogenic activity observed through [169]
semi-quantitative evaluation
Anti-laminin antibody Methylcellulose disc Macroscopic observations saw a delay in capillary network development [171]

Anginex

Angiotensinogen

Obtustatin («131 inhibitor)

Significant decrease in intersections of blood vessels with concentric rings
3 C [176,177]
projected onto images

First and second order centripetal blood vessels around on-plants were [178]
counted, with inhibition of smaller blood vessels observed
Following FITC injection, blood vessel density, length and number of

Plastic ring

Plastic ring

branch points were quantified highlighting inhibition of smaller [29]
blood vessels
Decrease in the number of small new vessels growing towards on-plants [179]

The use of the CAM assay for such a variety of both pro-angiogenic and anti-angiogenic
factors: drugs, metabolites and biological substances really enforces the efficiency and
applicability of the CAM as a screening tool to model the microcirculation and angiogenic
effects of various substances.

4.3. Cell and Gene Modified Cell On-Plants

In order to ensure successful tumour cell growth, an array of physiological mechanisms
such as vessel co-option, intussusceptive microvascular growth, glomeruloid angiogenesis,
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postnatal vasculogenesis, vasculogenic mimicry and most famously the “angiogenic switch”
work together to establish a successful and vast angiogenic network. However, the precise
details of many of these mechanisms remain elusive [127,180]. When first applied to the
chorioallantoic membrane, tumours undergo a 72 h avascular period before blood vessel
infiltration occurs [27].

The use of cell/tumour on-plants in conjunction with the CAM assay has had widespread
use. The CAM microenvironment provides all the growth factors, nutrients required for
successful cell growth, and the occurrence of the angiogenic switch allows the secretion of
Tumour Angiogenic Factors (TAFs) [181] which in turn, induce angiogenesis and allow the
penetration of host blood vessels into the applied grafts [182].

Through the injection of cancer cell lines or application of cells with other scaffolds
such as Matrigel or collagen encapsulation, or topically through the pipetting or placing of
fully formed tumours onto the membrane, the CAM can be used to monitor and investigate
the mechanisms of tumour growth, metastasis, and angiogenesis. Based on the current
understanding of the angiogenic switch, it is usually expected that following the application
of cancer cells or tumour masses onto the CAM, a pro-angiogenic response occurs.

Table 4 outlines examples of un-treated cells, both from cancerous and healthy cell
lines, which have been applied to the CAM assay with the aim of observing their angiogenic
effect. In the case of most cancer and tumour cell lines, an increase in angiogenic response
can be seen, with only some exceptions, such as in the case of SW480 colon carcinoma [151]
and Burkitt’s Lymphoma cell lines (BL2) [183] which fail to elicit the anticipated increased
vascularisation. Interestingly, the application of non-cancerous cells such as skin grafts
and human ovarian tissue can also induce a significant angiogenic response, indicating
suitability of the CAM in supporting cell survival.

Table 4. Examples of cellular treatments/ tumours applied to CAM which affected angiogenesis.

Response Treatment Delivery Method Angiogenic Outcome Ref.
Ghob;?:lt;n;auzancer Alginate scaffold Increased blood vessel number converging towards on-plants [114]
Human umbilical vein Cvlindrical scaffold Increased number of blood vessels and blood vessel [115]
endothelial cells (HUVECs) y penetration into on-plant -
Cylindrical scaffold Increased number of l?loo.d vessels and blood vessel [115]
penetration into on-plant
Adipose derived stem cells Hydrogel Significant increase in vessel r.‘lu.mber, vessel length and [74]
vasculogenic index
Seeded on a scaffold Increased number of blood vessels converging [108]
towards on-plants
g i i ini i
£ Matrigel Fo'llov'vmg von Wlllebra.n‘d factpr staining and. semi [184]
&0 quantitative scoring, a significant increase in angiogenesis
S Burkitt’s Lymphoma cell . Following tissue sectioning increase in blood vessel
%D lines (BL2B95 and BL74) Matrigel diameter determined [183]
& Human Liver Cancer Matrigel Increased number of blood vessels converging [86]
&~ (HepG2) cells & towards on-plants
Prostate Cancer Cells Matrigel A change in blood vessel number within a defined [185]
(LNCaP) & area observed -
Colon carcinoma (SW620) Matrigel Increase in angiogenic index was observed [54]
Neuroblastoma Matrigel Following desmin staining, increased micro-vessel formation 56]
(NB15/FOXO3 cells) g was observed g
Glioblastoma (U87 MG) Matri Increased observation of spoke wheel pattern of blood vessels
. atrigel . [55]
Cell lines radiating from on-plants
Human Cardiopoietic Scaffold Blood vessel density within a defined area was increased [186]
Stem Cells
Multiple myeloma Gelatin sponge Induction of an increased vasculogenic index was calculated [66]

plasma cells




Int. |. Mol. Sci. 2022, 23, 452

11 of 29

Table 4. Cont.

Response Treatment Delivery Method Angiogenic Outcome Ref.
Mouse Melanoma (B-16) Plastic ring Development of v1s1ble'spoke wheel pattern of blood vessels [187]
converging towards on-plants
Human Melanoma (C8161) Plastic ring . . . . .
Hydrogel Significant increase in area occupied by endothelial cells [75]
Human Prostate Cancer observed within a defined area
(PC3) Plastic ring
Skin graft Plastic ring .Photoblomodulatmn along W'lth C(?ll appl.lca.tmn res.ulted in [104]
increased number of vascular junctions within a defined area
Visual estimation of area occupied by blood vessels compared
é Human Ovarian Tissue Plastic ring to total surface area resulted increased angiogenesis and [188]
&0 neovascularisation
S R .
& Melanoma Tumour Tissue Tumour Spoke wheel pattern of capillaries converging towards [189]
= on-plants observed
) Recurrent respiratory Increase in blood vessel number within a defined
& . . Tumour [125]
papilloma tissue (RRP) area observed
Hepatocellular Carcmoma Tumour Increased micro vessel density within a defined area observed [190]
Tumour tissue
Human Malignant Ovarian Increase in the pattern, density, and size of the CAM blood
Tumour . . [191]
tumours vessels near the tumour implants visible
Adenocarcinoma Increase in the pattern, density, and size of the CAM blood
. Tumour . . [191]
Tumour Tissue vessels near the tumour implants visible
. . Macroscopic observations indicated tumours became
Glioma cells (C6) Injected vascularised by CAM blood vessels 78]
Pancreatic carcinoma Inject{ Macroscopic observations indicated tumours became 78]
(10AS) ) vascularised by CAM blood vessels
E Colon carcinoma (SW480) Collagen No Induction of angiogenesis or increased angiogenic index [54]
&
8
3 e N —
£ Burkitt s Lymphoma cell Matrigel Following tissue sectioning reduced blood vessel [183]
= lines (BL2) diameter observed
5
<
Angiogenesis is a hallmark of cancer [182], therefore from an oncology aspect, the
angiogenic activity of cells is often an area of particular interest, and a potential target
area in the development of possible therapeutics or drugs which could hinder this effect.
Consequently, the use of the CAM assay as an efficient biological screening tool on the
focus of cell induced angiogenesis could prove paramount. Following genetic or other
forms of modifications of cells, the changes in cell behaviour or the surrounding media
(conditioned media) taken from cells can be an exciting area of focus. Table 5 outlines
examples of various cell lines which have been treated or genetically modified to elicit a
different angiogenic behaviour compared to their un-modified counterparts.
Table 5. Examples of treated and gene modified cells or conditioned media (CM) applied to CAM assay.
Gene Modification Cell Type Delivery Method Angiogenic Response Ref.
3 . . . . . Following tissue sectioning, and staining for von Willebrand
FGEF-1 expression plasmid Bovine Endothelial Cells Gelatin sponge Factor, a twofold increase in capillary number was quantified [135]
. R Endothelial Software quantified significant increase in blood vessel
9 LV miR-205 inhibition colony-forming cell CM Not mentioned density within a defined area [192]
5 Sphingosine-1-phosphate treated Osteoblast cell Increase in blood vessel number within a defined area [193]
g ophing phosp (MG-63) CM was quantified -
Eb . RS, . Hepatocellular carcinoma Visual inspection of second and third order blood vessels Jou
% miR-338-3p inhibition plasmid (HCC) CM Filter disc inferred increased blood vessel formation [194]
S N . iy
& AGO?2 expression plasmid Myeloma cell CM Significant increase in on-plant infiltrating blood [195]
vessels observed
IFN-vy treated M hvmal A significant increase in number of small blood vessels
TNF-« treated eseréceuyg\i stem Pipetted (diameter less than 1 mm) [196]

IFN-y and TNF-« treated

A significant increase in both small and large blood vessels
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Gene Modification Cell Type Delivery Method Angiogenic Response Ref.
AAV-Timpl- transduced Chinese hamster Gelatin sponge No spoke wheel pattern of blood vessels radiating [197]
ovary cells from on-plants
v medlatzﬁﬁ?\? §10p01et1n-2 Pancreatic carcinoma cells Pipetted Decrease in number of blood vessel branch points [198]
Connective tissue growth factor . L Lo
(CTGF)-shRNA OASF cell CM Pipetted Significant reduction in blood vessel count [199]
Endostatin expression plasmid COS-1 cell CM Pipetted Significant reduction in blood vessel branch points [200]
LV VEGE shRNA Hypertrlplmd renal cell Pipetted Significant decrease in blood vessel counts and total blood [201]
carcinoma CM vessel length
CCL5-shRNA Chondr%sla(i)rléc;ma cells Matrigel Significant decrease in blood vessel branches [202]
o
‘g Glioblastoma cell line Diminished observation of a spoke wheel pattern of blood
gOJD Sema3C transfected (U87 MG) Collagen vessels radiating from on-plants (5]
& AGO2-shRNA Myeloma cell CM Filter disc Lower blood vessel densities infiltrating the [195]
3 on-plants observed
£ Vascular endothelial cell growth
< inhibitor (VEGI) expression HeLa cell CM Filter disc Significant inhibition of neovascularization [203]
plasmid
Novel immunotoxin
(VEGF165-PE38) expression HEK293 cell CM . Inhibition in growth of capillary-like structures [204]
lasmi Not mentioned
plasmid
LV miR-205 OE Endothelial Visual inspection saw reduced blood vessel formation [192]
colony-forming cell CM
miR-181a-5p expression plasmid Flbrosal;cgincal\(/[HTwSO) Gelatin sponge Impairment of new blood vessel formation observed [205]
Nuclear Factor-Erythroid 2 Human colon cancer cell Matrigel Significant reduction in blood vessel branch points in circular [206]
(NRF2) shRNA CM 8 region around on-plants >
. Human Glioblastoma o . Following tissue sectioning and staining, reduced blood
P53 Isoform (A133p53) deletion (U87) cell CM Silicon ring vessels quantified [207]
LV miR-542-5p Non—csarrr:caélr C&l\l/{lung Silicon ring Significant reduction in percentage vascular density [109]

Key: CM: conditioned media; LV: Lentiviral; miR: microRNA; OE: Overexpression; shRNA: short hairpin RNA.

Once cells are modified to inhibit their pro-angiogenic ability, the CAM assay can be
employed as a confirmation tool in order to highlight the efficacy and mechanism of action
of the modification. Alternatively, cells can be altered to increase their angiogenic potential,
through inhibition or overexpression of certain genes. The efficacy of these cells at inducing
a pro-angiogenic response can be measured using the CAM assay [194,196,208].

It must also be noted that in the case of certain cell lines, the pro-angiogenic modifica-
tion to cells may elicit benefits, especially in areas such as cell therapy, where overexpression
of vascular factors could provide a treatment option in therapeutic angiogenesis, to improve
the vascularisation of previously ischaemic tissue [135].

Methods of adjusting the angiogenic potential of cells can vary from pre-treating
cells with drugs or inflammatory factors such as sphingosine-1-phosphate [193], interferon
or tumour necrosis factor [196], to more complex methods of genetically modifying the
angiogenic behaviour of a cell.

Studies have used gene expression plasmids to stably transfect cell lines, establishing
cells which overexpress various angiogenic or anti-angiogenic factors. The gene modified
cells, or the conditioned media of these cells is applied onto the CAM assay respectively.

Examples of angiogenic expression plasmids transfected into cells include FGF plasmid
transfection into bovine endothelial cells [135] and argonaute-2 transfected into myeloma
cells [195], both of which lead to significant increases in capillary and infiltrating blood
vessel numbers following cell-mediated delivery onto the CAM assay. Conversely, the cell-
mediated inhibition of blood vessel formation can be seen with transfected anti-angiogenic
expression plasmids such as vascular endothelial cell growth inhibitor (VEGI) [203], endo-
statin [200], or the novel immunotoxin (pVEGF165PE38-IRES2EGFP) [204].

In recent years, gene modifying agents including miRNAs (miRs) have become very
popular therapeutic targets. Overexpression or inhibition of various miRs can impact on
angiogenic potential of cells through a variety of means. Zhang et al. used an expression
plasmid to inhibit the anti-angiogenic function of miR-338 in hepatocellular carcinoma,
leading to a significant increase in small blood vessel formation in the CAM assay [194].
Conversely, Li et al. overexpressed miR-181a-5p in fibrosarcoma (HT1080) cells leading to a
reduction in CAM blood vessel formation [205].
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Interestingly, Jiang et al. focused their research on how the overexpression or in-
hibition of miR-181a-5p could both attenuate and increase the angiogenic potential of
endothelial colony-forming cells (ECFCs) in conjunction with the CAM assay. In this study,
lentiviral vector inhibition of miRNA-205 in ECFCs led to an increase in blood vessel
density. However overexpression of miRNA-205 resulted in visibly reduced blood vessel
formation [192].

Short Hairpin RNAs (shRNAs) are small, manufactured RNA molecules with a sharp
hairpin turn used to silence or knockdown gene expression through RNA interference
(RNAI) [209]. ShRNAs have been used to inhibit several angiogenic genes and miRNAs
in cells applied to the CAM assay, with delivery seen both as direct shRNA delivery,
or lentiviral mediated delivery into cells. ShRNA inhibition of potent pro-angiogenic
genes is seen throughout the literature, through the knockdown of VEGF [201], connective
tissue growth factor [199] and angiopoietin-2 [198] resulting in significant reductions in
angiogenic effects in the CAM assay;, as outlined in Table 5.

The study of cell application onto the CAM assay monitoring angiogenic response is
one with much potential. The applicability and ease of use of the CAM assay is proven by
the ease at which grafts can be applied and their survival supported. Use of the CAM assay
can provide a screening tool for the inherent angiogenic nature of the cells and the effect of
gene/chemical modifications on this inherent ability. However, this is an area which still
needs much further exploration.

5. CAM Analyses

Considering the success of on-plant treatments using the CAM assay, emphasis has
focused on the method of analysis chosen to quantify an angiogenic effect. Assessment
of the angiogenesis occurring due to stimuli can be carried out by a variety of different
methods. Some studies choose to use arbitrary quantification methods, such as visual
or macroscopic evaluation or observation of an angiogenic effect between experimental
groups [16,121,147] and define the results simply as positive or negative [210]. While other
studies indicate a positive or negative angiogenic effect due to the presence or absence of a
“spoke-wheel pattern” of blood vessels approaching an on-plant [55,127]. In the majority of
studies such as these, assessments are carried out in a blinded manner in order to prevent
bias affecting the results [64,90,104]. The use of adequate positive, negative, and internal
controls for comparison using the CAM assay is essential. Generally, neutral phosphate
buffered saline (PBS) treated vehicles or scaffolds are used as an internal control, while
known angiogenic agonists (such as VEGF) and antagonists (bevacizumab) can be used as
a positive and negative controls respectively [80].

Some studies have chosen to compare treated areas of the CAM with non-treated
areas [190], others compare the angiogenic effect of an internal control against the treatment;
an internal control usually is found in the form of an empty scaffold or a scaffold treated
with an angiogenic neutral substance, such as PBS or the solvent used for the delivery of
the treatment. Comparison of a treated area to an internal control is preferable and more
accurate as it results in less variation between test and control, while also considering the
angiogenic response that the vehicle alone can induce.

As individual scoring or assessment methods of CAM treatments can result in con-
scious or unconscious bias in either direction, a multiprong approach of using different
imaging, scoring and assessment techniques is recommended, with the cross-referencing and
correlation of results obtained essential to create an overall profile of the angiogenic effects.

5.1. Sectioning and Staining Techniques

Following the sacrificing of the chick embryos, the CAM tissue can be fixed using
paraformaldehyde or other fixative solutions, excised from the embryo, embedded in
paraffin and then undergo sectioning or ultra-sectioning in preparation for histochemical
staining for various indicators of angiogenesis such as endothelial and smooth muscle cell
markers [211]. Blood proteins such as haemoglobin [212], von Willebrand factor [184,213] or
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the filament protein desmin [56] have been studied as a measure of blood vessel density and
consequently, the vascularisation present [183]. Histological staining of endothelial cells
with biotin or fluorescent tagged lectins has also been successfully achieved to visualise
vascularisation present in CAM tissue [207,214], while immunohistochemical staining of
endothelial cells using anti-CD31 antibodies has also been employed [97,215,216].

While the quantity of newly formed blood vessels is often the focus of many studies,
the quality should also be considered. An issue with some pro-angiogenic factors depen-
dent on dosage levels can be the development of aberrant and leaky blood vessels, inferior
to those formed from natural angiogenesis. To investigate this, Pink et al. (2012), developed
a modified version of a Miles Assay, a commonly used technique which measures vascular
leakage, allowing both the quantity and quality of angiogenesis to be assessed [110,124,217].
In this study, the leakiness of the newly formed blood vessels was quantified by spectropho-
tometrically measuring the amount of leaked Evan’s blue dye following a single bolus
injection. Alternatively, the injection of fluorescent dyes such as various FITC-dextrans
of different molecular weights [218-220] or FITC and rhodamine conjugated lectins into
CAM tissue can prove useful for measurements of vascular leakiness [211]. In this process,
fluorescent dyes are injected into the vitelline vein (Figure 4), given time for the dye to
circulate, and then observed under fluorescent light, also highlighting smaller capillaries
which would otherwise be unquantifiable.

Figure 4. A 5-day-old chick embryo highlight CAM vasculature. The white stars represent anterior
and posterior vitelline veins, while the black arrows indicate vitelline arteries and veins. The non-
branching nature of the vitelline veins make it an ideal location for injections.

5.2. Image Quantification Techniques

Automated, semi-automated and manual serological methods can be used to quantify
neovascularisation and angiogenesis. For automated methods, many software packages
exist which can be adapted to identify tubules, vessel branch points and network junctions.
Such software packages include: Angiotool [221], AngioQuant [60,73,137], Wimasis [87,101],
HetCAM [222], Photoshop CS4 [223] and Synedra view [224]. Image analysis software
such as Image ] can be used for both manual and semi-automated quantification methods.
In a semi-automated manner, pixel intensity, or percentage of binary images containing
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Blood vessels 1
0 — no branching

1 — branching inside of circle

2 — branching outside of circle

blood vessels can be used to measure blood vessel density [141,225,226]. While manually
counting tools can be used to quantify the number of blood vessels, junctions or branching
points visible within a defined area [80,227,228].

Various parameters can be chosen to assess an angiogenic effect; basic approaches
can involve simply counting the blood vessels or quantifying blood vessel length within
a circle or square area around an on-plant [215] or converging towards it. More complex
methods can involve the scoring of blood vessels based on a centripetal ordering method
(Figure 5A), where a blood vessel is order-1, continuous with the capillary network, or
order-2, formed from the convergence of two order-1 vessels [178,229]. An alternative
method is where an array of concentric circles is projected onto a CAM image with a
vascular score then assigned based on the intersection of these circles with blood vessels,
without discrimination between arterial or venous vessels (Figure 5B) [37,64,176,177,230].

Chorioallantoic
Vessels

ase of Umbilical
Vessels

45°
Implant

2 mm

A 4

o
«

(©

Figure 5. Examples of CAM analysis techniques to quantify angiogenic score following treatment.
In the case of each of these methods, each blood vessel which fits specific criteria is given a score,
with the accumulative score then determined for each on-plant/treatment. (A) Centripetal ordering
method of angiogenic scoring, where vessels are assigned a score based on the order of their branching,
with higher order vessels getting a higher score as described in DeFouw et al. [231]. (B) A range
of concentric circles projected onto an image of a CAM where the total vascular index quantified
based on the intersection of blood vessels with each of the circle, as described in Burggren et al. [230].
(C) Evaluation of a angiogenic response by scoring vessel branching as described by Ribatti et al. [32],
this method involves the assigning of an angiogenic score ranging from 0-2 based on branching and
angle of approach.
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Ribatti et al., 2007 describes a method where an angiogenic score is assigned to a blood
vessel entering an on-plant at a specific angle (Figure 5C) [32,37]. Although, this is a widely
used scoring method, issues can arise. Without discrimination of blood flow direction
in vessels, determination whether a blood vessel is growing towards or away from an
on-plant cannot be fully discerned. Another consideration is that due to the vague nature
of branching, scoring and angles as described in this method, individual interpretations
and differences in scores can result between analysts studying the same images, leading to
erroneous experimental outcomes.

Many image techniques and scoring systems fail to fully explore the changes in
microcirculation in response to a treatment. In many studies, the macroscopic observations
of larger blood vessels are the main focus, with little attention drawn towards the minute
microvessels and capillaries present. This seems to be a major oversight when the study
and investigation of pro angiogenic or anti-angiogenic treatments are considered, where
even the smallest modifications to vascularisation should be scrutinized.

5.3. Vascular Casting

A negative aspect of image quantification and study is that only sporadic random
areas of microvascularisation in the CAM are usually observed. However, the development
of a three-dimensional microvascular corrosion casting (vascular casting) method could
provide an overall thorough study of the vascular changes occurring in the CAM [232].
Corrosion casting is an anatomical method where a solid faithful replica of a biological
sample is produced from a hollow anatomical structure or space. In this process, following
perfusion to flush out the area, a flexible substance (such as rubber, resin or polyurethane)
in liquid form is injected into the space, allowed to solidify and then the surrounding tissue
is removed by enzymatic or chemical degradation [233].

This method is particularly useful in the study of vasculature in conjunction with an-
giogenic assays, where vascularisation and blood vessels distribution and organisation can
be measured [234]. Following the production of a vascular cast, examination of the normal
or abnormal blood vessel network can be carried out by scanning electron microscopy
(SEM), micro computed tomographic (LCT) imaging, or synchrotron radiation-based micro
computed tomographic (SRuCT) imaging [235].

In the case of the CAM assay, the chorioallantoic membrane is carefully incised at the
central vein, flushed with a sodium chloride (NaCl) and heparin solution to clear the blood,
and then perfused with a cast material such as Polyurethane, Clear Flex 95 or Mercox® [236].
Following this, the cast substance is given time to polymerise and then the CAM tissue is
dissolved over several days or weeks in 5-20% potassium hydroxide (KOH) or 20% sodium
hydroxide (NaOH) followed by rinsing in distilled water or formic acid [234]. Following
cast formation, a sputter-coating of gold, silver, platinum, or chromium from 10 nm to
25 nm in thickness may also be required in conjunction with scanning electron microscopy
in order to improve image quality [48,235,237].

This method of CAM examination has proven advantageous as it allows for a three-
dimensional representation of the vascular network, allowing visualisation of branch
points, and indicators of sprouting and intussusceptive angiogenesis [8,48,146], often also
being used as a validation method when investigating the efficacy of different imaging
techniques [238,239]. As a detailed representation of the CAM vasculature is produced,
with the use of the correct casting material, orientation, distribution and frequency of
endothelial cells and aberrations in blood vessels can be resolved [234].

5.4. Live Blood-Flow Observation

Many of the approaches mentioned previously involve the use of non-viable ex-
cised and fixed dead tissue, with observation of morphological characteristics. Several
approaches have been developed for the observation of real-time in vivo blood flow and
circulation in the CAM. The observation of microcirculation in real-time is advantageous
as it can monitor for vascular leaks, variations in vessel quality and density, while also
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indicating the delivery and efficacy of a treatment. Real-time blood flow can be observed
by a wide array of means, including the use of nanoparticles or fluorescently labelled ery-
throcytes injected into the CAM, or the use of fluorescent dyes or dextrans which are then
viewed using intra-vital fluorescent microscopy (IVFM) [29] (Video S1), or alternatively the
use of photodynamic therapy (PDT) [85,191].

5.5. Molecular Analysis

Although it is useful to observe a visual effect following treatment, molecular anal-
ysis of the CAM assay can also prove useful in the understanding of the biochemical
mechanisms behind the changes in vascularisation which are observed. To this end, molec-
ular approaches such as quantitative PCR, in situ hybridisation (mRNA), whole mount
immunostaining and immunoblotting (protein) can be employed [39].

Quantitative PCR is an essential form of molecular analysis which can prove useful in
measurement of changes in gene expression in CAM tissue following various treatments,
cells or tumour applications. In some cases, measurement of precise areas around the
treatment location are required, therefore laser dissection of CAM tissue can be utilised [240].
Trizol or mRNA isolation kits are often used to extract total RN A from dissected CAM tissue,
with qPCR or semi-quantitative PCR then carried out to measure expression of various
genes, including those related to angiogenic pathways. In the case of semi-quantitative PCR,
following gene amplification, the PCR products are electrophoresed on a polyacrylamide
or agarose gel with the band intensities then measured [8,71,214,241]. The use of a suitable
chicken specific primer for housekeeping gene expression is paramount in qPCR to ensure
accurate, quantifiable results to compare with genes of interest. It also can be used to
measure the quality and integrity of the RNA isolated, with -actin and GAPDH most
commonly used in the case of CAM tissue [60,71,134].

In the use of the CAM assay as a model of tumour growth and metastasis, the quantity
of human cells present within tissues extracted from chick embryos can be determined by
gqPCR amplification of the Alu repeat sequences repeats (Alu-qPCR) [54,242]. Alu elements
are non-autonomous retrotransposons, which are uniquely present in a primate genome
and absent in chicken DNA. Alu PCR can be used a DNA fingerprinting technique to
calculate the quantity of human DNA present in CAM tissue [243].

This method has been used in several studies to examine the engraftment and migra-
tion of cancer cells from a tumour placed on the CAM surface through the CAM and even
into the chick embryo itself, travelling via the vast vascular network present. In summary,
to quantify human tumour cell intravasation into the chick CAM, semi-quantitative real
time PCR is carried out to amplify Alu sequences in order to calculate the amount of
human DNA present in each CAM sample. A standard curve generated by serial dilution
of human tumour cells is then used to quantify the actual number of tumour cells present
in each CAM sample [17,244,245]. In addition to this analysis, quantification of chick DNA
present should be carried out through amplification of a chick house-keeping gene, such
as the chick GAPDH genomic DNA sequence [246]. Horst et al. optimised this process,
establishing a TagMan® based quantification method to measure human Alu sequence
amplification in genomic DNA from CAM tissue showing improved success compared to
the SYBR® Green methods used previously [247].

While study of gene expression can provide insights into the changes occurring in
CAM tissue, several studies have instead chosen to quantify the protein expression present
by means of Western blotting (immunoblotting). In this process, CAM tissue is crushed or
minced, lysed with a suitable lysis buffer such as radioimmunoprecipitation assay (RIPA)
buffer. Then the samples are denatured in a suitable loading buffer, such as Laemmli
buffer and electrophoresed on an SDS Polyacrylamide gel (SDS-PAGE). Following this,
lysates are then transferred to a membrane and probed using various primary antibod-
ies [39,248]. In immunoblotting, use of a suitable protein loading control is imperative,
chicken specific a-tubulin and (-actin antibodies have been used in several CAM tissue
immunoblots [71,151,249].
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Purification of protein extracted from CAM tissue prior to denaturing and SDS-PAGE
may be necessary to ensure success. After protein isolation from CAM tissue, immuno-
precipitation of samples can be carried out by various means to enrich for the specific
protein of interest. Ribatti et al. used Heparin-Sepharose columns to purify protein ex-
tracted from CAM tissue prior to immunoblotting and probing for bFGF [250]. Similarly,
protein A-Sepharose beads bound with suitable antibodies have also been used with much
success [58,251].

Some studies use a two-pronged approach for molecular analysis, using both methods
to measure gene, and protein expression. Mangieri et al. used RT-PCR, Western blotting and
a visual scoring method to assess increased angiogenesis in the CAM following multiple
myeloma endothelial cell treatments. In this investigation, the mRNA expression level of
various angiogenic genes, including endostatin, in CAM tissue was measured by qPCR,
while Western blotting examined for the altered protein expression of endostatin [249].
Using both methods allowed for correlation of results obtained, where both reduced gene
expression and protein secretion of endostatin was observed.

Molecular analysis used in conjunction with other methods of analysis can be ex-
tremely useful in investigating the overall effects certain treatments or cell applications can
have on the growth and development of the CAM membrane. Immunoblotting can inves-
tigate protein secretions, while qPCR examines gene up-regulation or down-regulation.
Alternative methods of molecular analysis can include transcriptome analysis of cRNA
isolated from CAM tissue following treatments [97]. Gelatin Zymography is another
molecular process, where samples are electrophoresed on a polyacrylamide gel contain-
ing gelatin, then incubated in collagenase buffer with gelatinolytic activity and finally
visualised using 0.5% Coomassie blue [252]. The aforementioned methods are useful in
identifying the signalling pathways which result from the application of pro-angiogenic or
anti-angiogenic factors.

6. Advantages and Limitations of the CAM to Study Microcirculation

Generally, it can be seen that the CAM assay offers many advantages for quantifying
angiogenesis over other in vitro and other in vivo methods. Predominantly, the low cost,
accessibility, rapid growth and enclosed mechanism of survival make it a clear choice to be
used as a research tool [28,33]. The CAM assay is flexible, with a wide variety of treatment
methods and delivery options available, with the resulting changes in vasculature assessed
by a variety of means. The outputs of a CAM assay can be seen in real time, with the
general growth period of the angiogenic window restricted to around developmental day
12. As with all animal models, the CAM has some limitations. Many molecular assessment
methods require the acquisition of less widely available chick-specific reagents, antibodies,
and probes, as well as specialised equipment and incubators for the experimental process.
The developing chick does not have a functioning immune system until development
day 18. Therefore, the application of test treatments does not illicit an immune response.
However, this can also lead to negative repercussions, the absence of an immune response in
the chick can be advantageous, however this lack of protection can hinder the survivability
of the chick following invasive techniques such as cultivation (in ovo versus ex ovo). This
along with the individual differences between eggs, leads to the requirement of larger
sample sizes (n number) of chicks in order to obtain statistical power.

In CAM image analysis, there is large flexibility in the variety of methods for assess-
ment of angiogenic responses. However, this can be misleading as there can be a lack of
clarity between different studies as to what determines a significant effect of change in
vascularisation. Flexible forms of assessment and arbitrary quantification may not con-
sider natural morphological changes due to the growing embryo alone rather than the
treatment applied.
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7. Concluding Remarks

In the scientific study of microcirculation and angiogenesis, an in vivo approach is
very advantageous over in vitro methods. The CAM assay has proven itself to be an
invaluable tool in this regard. Presently, the CAM assay is used as a research method
in the fields of biology, bioengineering, and chemistry for a wide variety of applications.
Although individual laboratory methods, treatment techniques and assessment methods
hinder the standardisation of this assay, it does have great potential to be used as an
invaluable preliminary and/or complimentary screening tool before examination in higher
order animals or a more specific in vivo experimental approach. Overall, the CAM assay
is an excellent tool for research, with a low cost, high flexibility, accessibility, with a clear
experimental approach. It should be considered greatly for vascular studies before any
experimentation using rodents or larger level pre-clinical animal models are commenced.
In this regard, the CAM is very much supporting a reduced reliance on pure animal research
and following the 3Rs (replacement, reduction, refinement) approach to animal research.
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