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Abstract

CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and
apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory.
Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls
cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating
CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a
dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating
homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-
deficient mice with Lymphocytic Choriomeningitis Virus (LCMV). We found that FOXO3 deficiency induced a marked
increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically,
the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of
cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit
accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater
accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly
increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was
durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have
identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance
vaccine-induced protective immunity against intracellular pathogens.
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Introduction

The ability of the immune system to respond rapidly and

vigorously to antigen re-exposure is termed immunological

memory, which is one of the tenets of adaptive immunity [1,2].

Induction of memory B and T cells is the basis of immunological

memory induced by infections or vaccinations [2–4]. As compared

to naı̈ve T cells, memory T cells are hyper-reactive to antigenic

stimulation and swiftly proliferate and/or differentiate into effector

cells to confer protective immunity expeditiously [5–8]. The ability

of memory T cells to confer protective immunity depends upon

the number and quality of memory T cells [5,9–13]. Understand-

ing the mechanisms that regulate the quantity and quality of T cell

memory is fundamentally important for the development of

effective vaccines.

During a CD8 T cell response, engagement of the TCR, along

with appropriate co-stimulatory and inflammatory signals, activate

naı̈ve T cells to proliferate and differentiate into effector cells

[1,4,8,13,14]. In the case of LCMV infection, the peak of T cell

expansion is reached at 8–10 days after infection, and the majority

of the newly generated effector cells present at the peak of the

response are short-lived and fated for deletion [15–17]. But, a

small subset of the effectors, termed memory precursor effector

cells (MPECs), possesses the potential to survive and differentiate

into long-lived memory cells [16,17]. The number of memory

CD8 T cells generated depends largely upon the magnitude of the

expansion of MPECs during the T cell response. Substantial

progress has been made in deciphering the extracellular signals

and transcription factors that regulate the differentiation of

MPECs [1], but the signaling pathways that govern the number

of MPECs, their differentiation into memory CD8 T cells, and the

maintenance of CD8 T cell memory are not fully understood.

The FOXO family of transcription factors plays a crucial role in

governing cellular proliferation, apoptosis, energy metabolism, and

stress resistance in response to dynamic alterations in stress and

abundance of nutrients and growth factors in many cell types [18–

26]. In mammals, the FOXO family consists of at least four

members: FOXO1, FOXO3, FOXO4, and FOXO6 [22,27,28].

The activity of FOXOs is regulated by post-translational

modifications, most notably, phosphorylation [25,26,29–31]. In

resting, quiescent cells, FOXOs exist in a hypo-phosphorylated

state and localize to the nucleus to control the transcription of their

target genes such as p27Kip1, p21Cip1, p300, BIM, Fas ligand that

are involved in regulating cellular proliferation or apoptosis

[25,32–43]. However, in response to stimulation with growth

factors or cytokines that stimulate the PI3K/AKT signaling
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pathway, activated Akt phosphorylates FOXO leading to its

exclusion from the nucleus and degradation by proteolysis in the

cytoplasm [18,25,29,44,45]. As a result, the transcription of

FOXO target genes is diminished, which in turn facilitates cell

cycle entry and/or survival. T cells express FOXO1 and FOXO3,

and there has been a recent surge in interest to elucidate the

importance of FOXOs in regulating T cell biology [46–53].

Phosphorylation-mediated inactivation of FOXOs and downreg-

ulation of p27Kip1 appear to be obligatory steps for T cells to enter

the cell cycle in response to TCR engagement [24,41,53]. FOXO1

has been shown to control several aspects of T cells including the

expression of adhesion molecules like L-selectin and CCR7,

cytokine receptors like the IL-7 receptor, development of

regulatory T cells, and protection against autoimmunity [51,54].

Unlike FOXO1, the role of FOXO3 in T cell homeostasis is less

well understood.

It was first reported that global deletion of FOXO3 results in

lymphadenopathy and spontaneous activation of T cells, but

other independent studies have failed to confirm these results,

possibly due to differences in the genetic background of mutant

mice [19,40,49]. Nonetheless, elegant studies from the Hedrick

group have showed that FOXO3 inhibits the primary expansion

of CD8 T cells in the spleen by regulating IL-6 production by

dendritic cells [49]. However, the T cell intrinsic role of FOXO3

in regulating various phases of the polyclonal multi-epitope-

specific CD8 T cell response to an acute viral infection in

lymphoid and non-lymphoid organs remains to be determined. In

this study, using global and conditional T cell-specific FOXO3

knockout mice, we have systematically examined the role of

FOXO3 in regulating the: (1) expansion and function of

polyclonal antigen-specific CD8 T cells in lymphoid and non-

lymphoid organs; (2) antigen-driven in vivo proliferation of virus-

specific CD8 T cells; (3) differentiation of CD8 T cells into short-

lived effector cells (SLECs) and MPECs; (4) contraction of

antigen-specific CD8 T cells in lymphoid and non-lymphoid

organs; (5) the numbers and function of memory CD8 T cells; (6)

proliferative renewal of memory CD8 T cells; (7) secondary CD8

T cell responses and protective immunity. These studies show

that FOXO3 regulates the clonal expansion of polyclonal CD8 T

cells in a tissue-specific fashion by T cell intrinsic mechanisms.

The enhanced expansion of CD8 T cells was clearly not due to

an increased proliferation rate, but was instead associated with

reduced cellular apoptosis. Furthermore, we show that FOXO3

deficiency markedly enhances the size of the memory CD8 T cell

compartment without affecting the phenotype or quality of

memory CD8 T cells. These findings have implications in the

design of effective vaccines that engender potent and effective

protective cellular immunity against intracellular pathogens and

tumors.

Results

Dynamic, in vivo phosphorylation of Akt, FOXO, and
mTOR in antigen-specific CD8 T cells

FOXO3 has emerged as a key regulator in a number of

physiological outcomes, including metabolism, ageing, and

vascular reactivity [21–23,27,46,55]. More recently, in the

immune system, there is increasing evidence that FOXO3 is a

critical regulator of T cell homeostasis [46,47,52,53,55]. While a

number of signaling pathways and post translational modifica-

tions may be involved in controlling the activity of FOXO3,

phosphorylation mediated through a PI3K-Akt centric signaling

module primarily regulates FOXO3 function in T cells

[29,45,56,57]. In order to fully understand the role of the Akt/

FOXO3 axis in the control of CD8 T cell homeostasis, we

developed a phospho-specific, flow cytometric method to quantify

in vivo phosphorylation levels of key proteins implicated in

FOXO3 activity: the upstream kinase Akt, FOXO3 itself, as well

as a potential downstream substrate of Akt, the kinase,

mammalian target of Rapamycin (mTOR) (Figure 1A).

Figure 1A illustrates the kinetics of phosphorylation of Akt

(Thr308), FOXO1/3 (T24/T32), and mTOR (S2448) in antigen-

specific CD8 T cells during an acute LCMV infection. The

phosphorylation of Akt (Thr308) and mTOR (S2448) was highest

at day 5 post-infection (PI), and subsided to steady-state levels by

days 10 and 8 PI respectively. Interestingly, the phosphorylation

dynamics for FOXO1/O3 were different from that of Akt and

mTOR; the phosphorylation levels for FOXO1/O3 dropped

between days 5 and 8 PI, but gradually increased back to steady-

state levels by days 10–15 PI. Note that the phosphorylation

kinetics of NP396-specific CD8 T cells after day 8 PI was slightly

delayed, as compared to those in GP33-specific CD8 T cells. In

summary, these findings demonstrate that the in vivo phosphor-

ylation levels of Akt, FOXO1/O3, and mTOR are highly

dynamic, and of note, the phosphorylation kinetics of Akt

correlated with mTOR phosphorylation but not with phosphor-

ylation of FOXO1/O3 during a T cell response to LCMV.

However, the specific role of FOXO3 in regulating different

phases of the CD8 T cell response has not been carefully

examined.

Regulation of CD8 T cell expansion by FOXO3 is tissue
specific

Infection of mice with LCMV elicits a potent, multiple epitope-

specific, CD8 T cell response wherein virus-specific CD8 T cells

are distributed to both lymphoid and non-lymphoid organs

[58,59]. To examine the role of FOXO3 in regulating CD8 T

cell responses to an acute viral infection, groups of wild type (+/+)

and FOXO3-deficient (FOXO32/2) mice were infected with

LCMV. At day 8 PI, we quantified CD8 T cells that are specific to

three immuno-dominant LCMV epitopes in lymphoid (spleen and

lymph nodes) and non-lymphoid (liver) tissues. Figure 1B shows

that the numbers of LCMV-specific CD8 T cells in spleens of

FOXO32/2 mice were significantly (P,0.05) higher than in +/+
mice. Surprisingly, the numbers of virus-specific CD8 T cells in

Author Summary

CD8 T cells are vital for controlling infections with viruses,
intracellular bacteria and protozoa. Induction of T and B
cell memory is the basis of vaccinations and cellular
immunity to intracellular pathogens depends upon the
number and quality of memory CD8 T cells. Understanding
the mechanisms that control various facets of CD8 T cell
memory is of fundamental importance for development of
effective vaccines. In this study, we have identified the
transcription factor FOXO3 as a crucial regulator of the
magnitude of CD8 T cell memory. During a T cell response,
FOXO3 limits the number of memory CD8 T cells by
inhibiting the accumulation of memory precursor effector
cells that give raise to long-lived CD8 T cells. Loss of
FOXO3 activity in T cells led to a durable increase in the
number of memory CD8 T cells, and the functional quality
of FOXO3-deficient memory CD8 T cells was unaffected by
FOXO3 deficiency. Thus, our studies suggest that targeting
FOXO3 activity may be a fruitful strategy to augment
vaccine-induced CD8 T cell memory and protective
immunity.

FOXO3 Controls CD8 T Cell Memory
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the lymph nodes and liver of FOXO32/2 mice were comparable

to those in +/+ mice (Figure 1B). These data suggested that

FOXO3 downregulates the accumulation of CD8 T cells in a

tissue-specific fashion during an acute LCMV infection.

Next, we assessed whether FOXO3 deficiency affected the cell

surface phenotype of LCMV-specific effector CD8 T cells at day 8

PI. The expression levels of CD44, CD62L, CD27, and CD122 on

FOXO32/2 LCMV-specific CD8 T cells were comparable to

those on +/+ CD8 T cells (Figure 2A). The population of

LCMV-specific CD8 T cells in the spleen is comprised of at least

two subsets of effector cells based on the cell surface expression of

IL-7 receptor a (CD127) and KLRG-1: the SLECs (KLRG-1HI/

CD127LO) a majority of which are destined for apoptosis, and the

MPECs (CD127HI/KLRG-1LO), which are poised to differentiate

into memory CD8 T cells [16,17,60]. Figure 2B shows that

FOXO3 deficiency significantly enhanced the absolute numbers of

both SLECs and MPECs in the spleen at day 8 PI. Of note is the

marked increase in the total number of MPECs in FOXO32/2

mice. In summary, these data suggested that FOXO3 deficiency

increased the clonal expansion of CD8 T cells without disrupting

the differentiation of SLECs and MPECs.

FOXO3 deficiency does not affect the function of effector
CD8 T cells

To detect possible differences in the functionality of antigen-

specific CD8 T cells from +/+ and FOXO32/2 mice, we

assessed their ability to produce the cytokines IFNc, TNFa, and

IL-2 in response to antigenic stimulation directly ex vivo

(Figure 2C). The MFIs of IFNc staining for FOXO32/2 and

+/+ effector CD8 T cells were similar (Figure 2C). Additionally,

the percentages of epitope-specific, CD8 T cells that produced two

cytokines (IFNc and TNFa) or three cytokines (IFNc, TNFa, and

IL-2) in FOXO32/2 mice were similar to those in +/+ mice

(Figure 2C). The MFIs for TNFa and IL-2 were also comparable

between +/+ and FOXO32/2 CD8 T cells (data not shown). As

a surrogate marker of the lytic function of effector CD8 T cells, we

compared granzyme B expression between +/+ and FOXO32/2

LCMV-specific effector CD8 T cells directly ex vivo. The levels of

granzyme B in FOXO32/2 CD8 T cells were similar to those in

+/+ CD8 T cells (Figure 2D). Taken together, data in Figures 1
and 2 suggested that FOXO3 deficiency increased the expansion

of virus-specific CD8 T cells without affecting their phenotype or

function. Consistent with normal CD8 T cell effector function,

Figure 1. Loss of FOXO3 leads to a tissue-specific increase in expansion of effector CD8 T cells. (A) Dynamic, in vivo alterations in
phosphorylation of FOXO- associated signaling proteins in LCMV-specific CD8 T cells. C57BL/6 mice were infected with LCMV, and at the indicated
days PI, splenocytes were stained with anti-CD8, MHC-I tetramer (Db/NP396 or Db/GP33) and either the anti-P-Akt (T308), P-FOXO-1/3a (T24/T32), or
P-mTOR (S2448) antibodies. As controls, these antibodies were pre-incubated with their specific antigenic peptide before adding on to the cells.
Representative flow plots (left) gated on tetramer-binding CD8s from day 5 PI mice indicate specific antibody staining in relation to the peptide
blocked controls. Plotted data (Corrected MFI) is expressed as the difference of observed MFI for the phospho-specific protein and peptide-blocked
control (right), divided by the peptide-blocked control. Data are representative of at least three independent experiments. (B) +/+ and FOXO32/2
mice were infected with LCMV, and at 8 days PI, LCMV specific CD8 T cells were quantified in spleen, liver and lymph nodes by staining with anti-CD8
and MHC-I tetramers. Data are representative of 4 independent experiments with 4–6 mice/group/experiment.
doi:10.1371/journal.ppat.1002533.g001

FOXO3 Controls CD8 T Cell Memory
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LCMV control in FOXO32/2 mice was similar to that in +/+
mice (not shown).

Increased accumulation of CD8 T cells in FOXO32/2
mice is linked to reduced apoptosis and not enhanced
proliferation

To rigorously address whether the greater number of LCMV-

specific CD8 T cells in the spleen of FOXO32/2 mice was due

to increased proliferation, we utilized two different approaches,

Ki67 staining and BrdU incorporation. First, we quantified

proliferation of LCMV-specific CD8 T cells by staining for the

nuclear antigen Ki67 directly ex vivo (Figure 3A) during the peak

clonal expansion phase (days 6 and 8 PI) of the CD8 T cell

response. For the second approach, we measured BrdU incorpo-

ration by LCMV-specific CD8 T cells in vivo from days 6–8 PI

(Figure 3B). As shown in Figures 3A and 3B, the percentages

of of Ki67+ve LCMV-specific CD8 T cells and BrdU+ve LCMV

epitope-specific CD8 T cells in spleens, liver, and lymph nodes of

FOXO32/2 mice were similar to those in +/+ mice. Measure-

ment of Ki67 expression at day 5 PI also showed that FOXO3

deficiency did not alter the proliferation of LCMV-specific CD8 T

cells (Figure S1) Taken together, these data indicated that

enhanced proliferation was not sufficient to explain the increase in

antigen-specific CD8 T cells in FOXO32/2 mice during LCMV

infection.

CD8 T cell homeostasis is not simply determined by alterations

in proliferation, it is also regulated by alterations in cell death.

During the clonal expansion phase of the CD8 T cell response,

there is concomitant proliferation and apoptosis [61], and

therefore the magnitude of clonal expansion is dependent upon

the relative rates of proliferation and apoptosis. To assess cellular

apoptosis, we determined the percentages of Annexin VHI LCMV-

specific CD8 T cells in spleens of +/+ and FOXO32/2 mice at

day 6 PI, directly ex vivo. Data in Figure 4A shows that the

percentages of Annexin VHI LCMV-specific CD8 T cells in

spleens of FOXO32/2 mice were significantly lower than in

spleens of +/+ mice. These data suggested that FOXO3 controls

the accumulation of effector CD8 T cells by promoting cellular

apoptosis during an acute LCMV infection. During antigen-driven

proliferation, the competing pro-apoptotic effects of TGF-b and

the anti-apoptotic effects of IL-15 regulate the apoptotic rate of

Figure 2. Absence of FOXO3 does not affect the phenotype or function of effector CD8 T cells. (A) At 8 days after LCMV infection,
splenocytes from +/+ and FOXO32/2 mice were isolated and stained for expression of CD44, CD62L, CD27 and CD122 on NP396- (top) and GP33-
(bottom) specific CD8 T cells. Representative histograms in panel A are gated on CD8 and MHC-I tetramer positive populations with the numbers
indicating MFI for the indicated protein in either +/+ or FOXO32/2 mice. (B) Total splenocytes were stained with MHC-I tetramer, anti-CD8, anti-
CD127 and anti-KLRG-1, and the total number of SLECs (KLRG-1high/CD127low) and MPECs (CD127high/KLRG-1low) were quantified by flow cytometry.
Data are from 4 to 6 independent experiments with 3–6 mice/group/experiment; error bars represent the SEM and * indicates statistical significance
at p,.05. (C) On day 8 PI, Splenocytes from +/+ or FOXO32/2 mice were stimulated with LCMV epitope peptides for 5 hours directly ex-vivo.
Following stimulation, cells were stained for cell surface CD8 and intracellular IFNc, IL-2 and TNFa. Panel C shows cytokine production by effector CD8
T cells. Representative dot plots (left) are gated on total lymphocytes with the top number indicating observed MFI for IFNc staining in peptide-
stimulated CD8 T cells and the bottom number indicating percentage of total splenocytes that are CD8 and IFNc positive. Dot plots (right) represent
the percentage of IL-2 and/or TNFa producing cells among IFNc+ve CD8 T cells. (D) Intracellular staining for Granzyme B. The FACS histograms are
gated on LCMV-specific CD8 T cells from +/+ (BLUE) and FOXO32/2 (RED) mice. The green histogram represents staining with isotype control
antibodies. The data are MFIs for Granzyme B expression +/2 SD.
doi:10.1371/journal.ppat.1002533.g002
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CD8 T cells [61]. Because apoptosis of LCMV-specific CD8 T

cells was dampened by FOXO3 deficiency (Figure 4A), and IL-

15 has been reported to induce phosphorylation of FOXO3 [62],

we hypothesized that FOXO3 might downregulate clonal

expansion by reducing the viability of CD8 T cells that are

deprived of IL-15. The balance in the levels of the anti-apoptotic

molecule Bcl-2 and the pro-apoptotic molecule BIM controls the

susceptibility of a T cell to apoptotic stimuli [36,38,39,63–65].

Since BIM is a target gene for FOXO3, we tested whether

deficiency of FOXO3 might lead to lower expression of BIM in

proliferating CD8 T cells (day 6 PI), by comparing the levels of

BIM in +/+ and FOXO32/2 LCMV-specific CD8 T cells after

culture with or without IL-15. As shown in Figure 4B and

Figure S2, BIM expression in +/+ CD8 T cells was higher than

in FOXO32/2 CD8 T cells, when cultured in media without IL-

15. However, IL-15 reduced BIM expression in +/+ CD8 T cells

to levels seen in FOXO32/2 CD8 T cells; IL-15 did not affect

BIM expression in FOXO32/2 CD8 T cells. These data

suggested that FOXO3 might control BIM expression in IL-15-

deprived CD8 T cells. When analyzing for BIM in direct relation

to Bcl-2, we observed that after 6 days of infection, LCMV-specific

CD8 T cells from +/+ mice exhibit an increased BIM to Bcl-2

ratio, as compared to FOXO32/2 CD8 T cells (Figure 4B).

Thus, we propose that FOXO3 might downregulate the

accumulation of proliferating CD8 T cells by inducing BIM

expression.

Contraction of CD8 T cells in FOXO32/2 mice
Next, we examined whether FOXO3 deficiency regulated the

contraction of CD8 T cells in lymphoid and non-lymphoid tissues

during an acute LCMV infection. Virus-specific CD8 T cells were

quantified in spleen, liver, and lymph nodes at days 8, 11, 15, and

30 PI (Figure 5A). Overall, the slopes of the contraction curves for

LCMV-specific CD8 T cells in FOXO32/2 mice were

comparable to those of +/+ mice. Thus, the contraction of

LCMV-specific CD8 T cells was minimally affected by FOXO3

deficiency. Next, we assessed whether FOXO3 regulated prolif-

eration of LCMV-specific CD8 T cells during the contraction

phase. In vivo BrdU incorporation studies showed that the

percentages of LCMV-specific CD8 T cells that incorporated

BrdU between days 8–11 or 12–15 PI in FOXO32/2 mice were

similar to those in +/+ mice (Figure 5B).

FOXO3 deficiency enlarges the size of the memory CD8 T
cell compartment in a tissue-specific fashion

The number of memory CD8 T cells is a function of the

magnitude of expansion and contraction during the T cell

response [5]. Here, we determined whether increased clonal

expansion of MPECs in FOXO32/2 mice (Figure 2B)

translated to inflation of LCMV-specific memory CD8 T cells in

lymphoid and non-lymphoid organs. We observed that

FOXO32/2 mice exhibit a substantial increase in the numbers

of NP396- (P,0.001), GP33- (P,0.01), and GP276- (P,0.04)

specific CD8 T cells in spleen at 180 days PI (Figure 6A).

Interestingly, there was no detectable increase in the numbers of

LCMV-specific memory CD8 T cells in either the liver or lymph

nodes at day 180 PI (Figure 6A). It should be noted that the

magnitude of increase in the number of memory CD8 T cells in

FOXO32/2 mice reflected the increased accumulation of

MPECs during the primary response (Figure 2B). High numbers

of memory CD8 T cells were maintained in FOXO32/2 mice

stably until at least day 300 PI (data not shown). These data

strongly imply that FOXO3 plays an important role in

downregulating the magnitude of CD8 T cell memory in the

spleen following an acute viral infection.

Phenotypic analysis of LCMV-specific memory CD8 T cells in

FOXO32/2 and +/+ mice suggested that FOXO3 deficiency

did not affect the expression of molecules that control T cell

trafficking (CD44) or cytokine receptors (CD122 and

CD127)(Figure 6B). In addition, assessment of CD62L levels

on antigen specific CD8 T cells indicated that both central

(CD62Lhigh) and effector (CD62Llow) memory frequencies were

unaffected by FOXO3 deficiency (Figure 6C). Furthermore,

functional analysis of antigen-triggered cytokine production did

not reveal alterations in cytokine producing ability of LCMV-

specific memory CD8 T cells from FOXO32/2 mice when

Figure 3. In vivo proliferation of LCMV-specific CD8 T cells. (A) At either 6 (top) or 8 (bottom) days PI, lymphocytes from spleen, liver and
lymph nodes were collected and stained with anti-CD8, MHC-I tetramers and anti-Ki67. The percentage of Ki67 positive cells amongst tetramer
positive CD8 T cells was determined by flow cytometry. Data are the mean of at least 9 mice from 2 experiments. (B) +/+ and FOXO32/2 mice were
administered BrdU between days 6–8 PI. At day 8 PI, lymphocytes from spleen, liver and lymph nodes were collected and stained with anti-CD8,
MHC-I tetramers and anti-BrdU. The percentage of BrdU -positive cells amongst tetramer positive CD8 T cells was determined by flow cytometry. Data
are the mean of 6 mice per group from 2 independent experiments.
doi:10.1371/journal.ppat.1002533.g003

FOXO3 Controls CD8 T Cell Memory
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compared to their +/+ counterparts (Figure 6D). In summary,

data presented in Figure 6 showed that FOXO3 deficiency

increased the quantity of CD8 T cell memory without affecting the

quality.

It is well established that memory CD8 T cells are maintained

for extended periods of time by proliferative renewal, driven by

homeostatic cytokines IL-7 and IL-15 [11,56,66–68]. Although it

is known that IL-7 and IL-15 signaling triggers phosphorylation of

FOXO3 [56,62], the effect of FOXO3 deficiency on proliferative

renewal of memory CD8 T cells has not been examined. Using

three approaches, we compared the cytokine-driven proliferative

renewal of memory CD8 T cells in +/+ and FOXO32/2 mice.

First, in vivo BrdU incorporation studies showed that the

percentages of BrdU+ve LCMV-specific memory CD8 T cells in

FOXO32/2 mice were comparable to those in +/+ mice

(Figure 7A). Likewise, the percentages of Ki67+ve LCMV-specific

CD8 T cells were unaffected by FOXO3 deficiency (Figure 7A).

To further examine the effect of FOXO3 deficiency on the

proliferative renewal of memory CD8 T cells, CD8 T cells from

the spleens of LCMV-immune +/+ and FOXO32/2 mice were

labeled with CFSE and adoptively transferred into congenic

uninfected mice. Thirty days after cell transfer, flow cytometric

analysis of CFSE staining revealed that donor LCMV-specific

CD8 T cells from +/+ and FOXO32/2 mice proliferated equally

in the recipient mice (Figure 7B). Taken together, data in

Figure 7 provided strong evidence that FOXO3 deficiency did

not alter the homeostatic turnover of LCMV-specific memory

CD8 T cells.

Secondary CD8 T cell responses and protective immunity
in FOXO32/2 mice

To observe the effect of FOXO3 deletion on recall responses of

memory CD8 T cells and protective immunity, LCMV-immune

+/+ and FOXO32/2 mice were challenged with LCMV clone

13, a strain of LCMV that establishes a chronic infection in naı̈ve

immunocompetent mice. At day 5 after challenge, the numbers of

NP396- (P,0.01), GP33- (P,0.01) and GP276- (P,0.03) specific

CD8 T cells in FOXO32/2 mice (Figure 8A) were significantly

higher than in +/+ mice. The increased number of LCMV-

specific CD8 T cells in spleens of LCMV clone 13-Challenged

FOXO32/2 mice correlated with the increased numbers of

memory CD8 T cells (Figure 6A). As in a primary infection

(Figure 1B), we did not see a statistically significant increase in

the numbers of LCMV-specific CD8 T cells in either the liver or

lymph nodes (Figure 8A). Staining for Ki67 illustrated that

Figure 4. Activated CD8 T cells in FOXO32/2 mice display decreased apoptosis. To address whether the increase in antigen-specific cells
observed in FOXO32/2 mice at day 8 was in fact the result of decreased apoptosis, we assessed the relative expression levels of a number of cell
survival or cell death markers. (A) Splenocytes isolated from day 6 PI mice were stained with anti-CD8, MHC-I tetramers and Annexin V directly ex
vivo. Data is expressed as percentage of Annexin V positive cells amongst tetramer-binding CD8 T cells. Data are from at least two independent
experiments with 4 mice/group/experiment; error bars represent the SEM and * indicates statistical significance at p,.005 (B) At day 6 PI, splenocytes
from +/+ and FOXO32/2 mice were cultured for 6 hours with or without IL-15. After culture, cells were stained with MHC I tetramers, anti-CD8, anti-
BIM, and anti-Bcl-2. The MFI of staining for BIM and Bcl-2 in tetramer-binding CD8 T cells was assessed by flow cytometry (left and middle); adjacent
checkered bars are the MFIs with isotype control antibodies. In B, bar graphs on the right show the ratios of BIM:Bcl-2 MFI.
doi:10.1371/journal.ppat.1002533.g004
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FOXO3 deficiency did not affect the proliferation of LCMV-

specific CD8 T cells during a secondary response (Figure 8B).

Secondary effector CD8 T cells in spleens of FOXO32/2 mice

produced comparable levels of IFNc, TNFa, and IL-2

(Figure 8C). LCMV titers in tissues were comparable in +/+
and FOXO32/2 mice, which indicated that protective immunity

was not compromised in the absence of FOXO3 (Figure 8D).

FOXO3 regulates CD8 T cell Expansion by T cell intrinsic
mechanisms

To address whether FOXO3 has a T cell intrinsic role in

regulating polyclonal CD8 T cell responses to LCMV, we used a

cre-loxP knockout strategy to generate the FOXO3L mice that

lacked FOXO3 only in T cells [69,70]. T cell-specific loss of

FOXO3 in FOXO3L mice was confirmed by western blot and

flow cytometry (Figure S3). FOXO3L and littermate +/+ mice

were infected with LCMV and virus-specific CD8 T cell responses

were analyzed at day 8 PI. In the spleen, FOXO3L mice exhibited

a statistically significant increase in the numbers of LCMV-specific

CD8 T cells (NP396 P,0.02; GP33 P,0.01; GP276 P,0.04) over

their +/+ littermate controls (Figure 9A). It should be noted that

the observed increase in the expansion of CD8 T cells in global

FOXO32/2 mice (Figure 1B) was fully recapitulated in

FOXO3L mice (Figure 9A). To assess whether greater accumu-

lation of effector CD8 T cells in spleens of FOXO3L mice was

driven by increased proliferation, we measured Ki67 expression

and BrdU incorporation during the clonal expansion phase of the

CD8 T cell response to LCMV. At day 6 PI, the percentages of

both Ki67+ve and BrdU+ve LCMV-specific CD8 T cells in

FOXO3L mice were comparable to those in +/+ mice, which

suggested that enhanced accumulation of effector CD8 T cells in

FOXO3L mice are not linked to an altered proliferation rate

(Figure 9B). Likewise, percentages of Ki67+ve CD8 T cells at day

5 PI were comparable in +/+ and FOXO3L mice (Figure S4).

However, the percentages of Annexin VHI LCMV-specific CD8 T

cells in spleens of FOXO3L mice were significantly lower than in

+/+ mice (Figure 9B). These data suggested that FOXO3

controls the accumulation of CD8 T cells during a primary

response by regulating apoptosis of proliferating cells. Conditional

deficiency of FOXO3 in T cells did not affect the cell surface

phenotype (data not shown) or antigen-triggered cytokine

production by LCMV-specific effector CD8 T cells at day 8 PI

(Figure 9C).

Since both CD8 and CD4 T cells lack FOXO3 activity in

FOXO3L mice, it could be argued that increased clonal expansion

of CD8 T cells might result from enhanced CD4 T cell help in

FOXO3L2/2 mice. To address this issue, we depleted CD4 T

cells in +/+ and FOXO3L mice and quantified CD8 T cell

Figure 5. Effect of FOXO3 deficiency on contraction of CD8 T cells. (A) +/+ and FOXO32/2 mice were infected with LCMV and at the
indicated days PI, cells from spleen, liver and lymph nodes were stained with anti-CD8 and MHC-I tetramers. Data are representative of 3 to 8
independent experiments with 4–6 mice/group/experiment for each indicated time point. (B) +/+ and FOXO32/2 mice were infected with LCMV
and given a BrdU injection at either 8 or 12 days PI and administered BrdU in drinking water between either days 8–11 or 12–15 PI. At the end of each
BrdU pulse (day 12 or day 15), splenocytes were stained with anti-CD8, MHC-I tetramers and anti-BrdU. The percentage of BrdU positive cells amongst
tetramer binding CD8 T cells for each pulse (8–11, or 12–15 days PI) was determined by flow cytometry. Data are the mean of at least 6 +/+ or
FOXO32/2 mice/group.
doi:10.1371/journal.ppat.1002533.g005
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responses to LCMV in the absence of CD4 T cells. At day 8 PI,

.95% of the CD4 T cells were depleted in spleen of both +/+ and

FOXO3L mice (data not shown). The number of LCMV-specific

CD8 T cells in spleen of CD4-depleted FOXO3L mice was

substantially higher than in CD4 T cell-depleted +/+ mice

(Figure 9D). Thus, in the apparent absence of CD4 T cells,

FOXO3 deficiency in CD8 T cells was sufficient to increase the

accumulation of virus-specific CD8 T cells during an acute LCMV

infection.

T cell-specific deletion of FOXO3 enhances the
magnitude of CD8 T cell memory

To determine whether deletion of FOXO3, exclusively from the

T cell compartment, would affect CD8 T cell memory generation,

FOXO3L and +/+ mice were infected with LCMV and virus-

specific memory CD8 T cells were quantified in lymphoid and

non-lymphoid tissues at 180 days PI. We observed a significant

increase in the number of memory CD8 T cells that are specific to

the three immuno-dominant LCMV epitopes (NP396 P,0.02;

GP33 P,0.01; GP276 P,0.05) in spleens of FOXO3L mice over

the +/+ mice (Figure 10A). These data indicated that FOXO3

regulates the magnitude of CD8 T cell memory by T cell intrinsic

mechanisms.

Next, we examined whether conditional deficiency of FOXO3

in T cells affected the phenotypic and functional attributes of

memory CD8 T cells. The expressions of CD44, CD62L, CCR7

and LFA-1 on +/+ and FOXO3L memory CD8 T cells from

spleen, liver and lymph nodes were similar (Figure 10B).

Additionally, the relative proportions of effector (CD62LLo) and

central (CD62LHI) memory CD8 T cells were unaffected by

FOXO3 deficiency (Figure 10B). In response to antigenic

stimulation, virus-specific memory CD8 T cells in LCMV-immune

FOXO3L2/2 mice produced IFNc, TNFa, and IL-2 at levels

comparable to those in +/+ mice (Figure 10C). As was the case in

our studies of global FOXO3-deficient mice (Figure 7), memory

CD8 T cells in FOXO3L mice exhibited no difference in

homeostatic turnover, as evidenced by BrdU incorporation from

day 120 PI mice, pulsed for 8 days and by parallel Ki67 staining

Figure 6. FOXO3 deficiency leads to a tissue-specific increase in the size of the CD8 T cell memory compartment with no effect on the
quality of memory CD8 T cells. (A) +/+ and FOXO32/2 mice were infected with LCMV, and virus-specific CD8 T cells were quantified by flow
cytometry at 180 days PI by staining with anti-CD8 and MHC-I tetramers. Data are from two independent experiments with 5–7 mice/group/
experiment; error bars represent the SEM and * indicates statistical significance at p,.03. (B) At 180 days PI, LCMV-specific CD8 T cells in +/+ and
FOXO32/2 mice were examined for expression of CD44, CD122 and CD127. Representative plots are gated on tetramer-binding CD8 T cells. The
numbers represent MFI of staining for each marker in +/+ or FOXO32/2 mice. (C) Splenocytes were stained with MHC-I tetramer, anti-CD8, and anti-
CD62L. The percentage of LCMV-specific CD8 T cells with high expression of CD62L was determined by flow cytometry and graphed accordingly.
Error bars represent the S.E.M from at least 3 independent experiments with 4 mice/group/experiment. (D) Cytokine production by LCMV-specific
memory CD8 T cells was assessed by intracellular cytokine staining. Representative dot plots are gated on total splenocytes, with the top number
indicating the MFI for IFNc and the bottom number denoting the percentage of total splenocytes that are CD8 and IFNc positive (left). The
percentage of double positive (IFNc+ve and IL-2+ve or IFNc+ve and TNFa+ve) and triple positive (IFNc+ve, IL-2+ve, and TNFa+ve) populations (right) is
shown for the indicated epitope.
doi:10.1371/journal.ppat.1002533.g006
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(Figure 10D). Taken together, data presented in Figure 10
strongly suggested that FOXO3 regulates the quantity, with no

apparent loss in quality, of CD8 T cell memory by T cell intrinsic

mechanisms.

Discussion

The FOXO transcription factors are important regulators of

cell cycle progression, apoptosis, and energy metabolism

[21,23,26,28,56]. In the T cell compartment, FOXOs have been

implicated in regulating homing of T cells, cytokine receptor

expression, and development of regulatory T cells [48,51,53,54].

While it has been reported that FOXO3 may control CD8 T cell

expansion, albeit through non T cell intrinsic mechanisms, a role

for FOXO3 in memory T cell survival has also been posited [49].

What has not been thoroughly addressed, however, is the T cell

intrinsic role of FOXO3 in governing different facets of the

physiological polyclonal T cell response to foreign antigens,

including the in vivo generation and maintenance of CD8 T cell

memory. In the present study, we have systematically examined

the T cell-intrinsic role of FOXO3 in controlling the expansion,

contraction, and memory phases of the polyclonal CD8 T cell

response to an acute viral infection. These studies have provided

strong evidence supporting a T cell intrinsic role for FOXO3 in

limiting the magnitude of expansion and the number of memory

CD8 T cells in a tissue-specific fashion during a physiological

response to an acute LCMV infection. These findings have

advanced our mechanistic understanding of CD8 T cell

homeostasis, and are expected to have implications in the

development of effective vaccines.

FOXOs are known to maintain cellular quiescence by

mechanisms including the induction of cell cycle inhibitors like

p27KIP1 and p21Cip1 [30,34,37,38]. Downregulation of FOXO

activity is believed to be an obligatory step for cell cycle entry in

response to mitogenic stimuli [30]. The observed phosphorylation

of FOXO1/O3 in LCMV-specific CD8 T cells was readily

detectable at day 5 PI but exhibited a sharp decline by day 8 PI.

The drop in the phosphorylation in FOXO1/O3 between days 5

and 8 PI coincides with declining viral load and decreased

antigenic stimulation. However, we observed a rebound in the

phosphorylation of FOXO1/O3 between days 8 and 11 PI. What

controls the dynamics of FOXO1/O3 phosphorylation during a

CD8 T cell response? In addition to TCR signaling, FOXO1/O3

phosphorylation is regulated by signaling via cytokine receptors

such as IL-2, IL-7, and IL-15 [38,56,66]. It is possible that

FOXO1/O3 is phosphorylated by different extracellular signals at

different phases of the T cell response. For example, during the

phase of antigen-driven proliferation, IL-7R expression is known

to be very low [68], and TCR signaling along with IL-2/IL-15

might drive the phosphorylation of FOXO1/O3. However, after

antigen clearance, IL-7 signaling might drive phosphorylation on

the surviving IL-7 receptor-expressing MPECs, and eventually

their resultant memory cells.

FOXO3 has been reported to suppress expansion of CD8 T

cells indirectly by inhibiting IL-6 production by dendritic cells

[49]. In this report, however, the T cell intrinsic role of FOXO3

was not assessed in polyclonal CD8 T cells, and monoclonal TCR

transgenic CD8 T cells may not always mimic the responses of

polyclonal CD8 T cells. In the present study, global FOXO3-

deficient mice exhibit increased expansion of polyclonal CD8 T

cells specific to multiple epitopes during an acute LCMV infection.

Furthermore, infection of T cell-specific conditional FOXO3-

deficient mice with LCMV, fully recapitulated the enhanced CD8

T cell expansion seen in global FOXO32/2 mice; even in the

absence of CD4 T cells. Therefore, our data implies that FOXO3

suppresses CD8 T cell expansion in vivo by T cell intrinsic and

extrinsic mechanisms. This inference is also supported by the

reported T cell intrinsic regulation of regulatory T cell

development by FOXO1 and FOXO3 [71,72]. One of the most

interesting findings presented in this manuscript is that the effect of

FOXO3 deficiency on CD8 T cell expansion and memory is

observed in the spleen, but not in the liver or lymph nodes. The

enhanced accumulation of effector CD8 T cells preferentially in

spleens of FOXO32/2 mice could not be explained by tissue-

specific differences in BIM expression in CD8 T cells directly ex

vivo; regardless of the tissue (spleen, liver, or lymph nodes), BIM

levels in FOXO32/2 CD8 T cells were slightly lower than in +/

+ CD8 T cells (Figure S5). Additionally, the selective increase in

the number of memory CD8 T cells in spleens of FOXO32/2

mice could not be linked to alterations in the expression of

molecules such as CD62L, LFA-1, CCR7, and CD44 that regulate

T cell trafficking (Figure 10B). Tissue-specific effects were

observed in both global and T cell-specific conditional FOXO3

knockout mice, which suggests that the local immunological milieu

influences the effects of FOXO3 in T cells. It is possible that

FOXO3-deficient T cells are hyper-responsive to cellular and

environmental cues unique to the spleen during or after cessation

of antigen-driven proliferation. Tissue-specific alterations in CD8

T cell homeostasis are not unique to FOXO3 deficiency because

lymph node-specific effects on CD8 T cell numbers have been

Figure 7. FOXO3 deficiency does not alter the homeostatic
turnover of antigen- specific memory CD8 T cells. (A) +/+ and
FOXO32/2 mice were infected with LCMV and given a BrdU injection
at 282 days PI and administered BrdU in drinking water for the next 8
days. At the end of an 8 day BrdU pulse, splenocytes were stained with
anti-CD8, MHC-I tetramers and anti-BrdU or anti-Ki67. The percentages
of BrdU (top) or Ki67 (bottom) -positive cells amongst tetramer positive
CD8 T cells were determined by flow cytometry. Graphs represent data
from at least 4 mice/group. (B) To further investigate whether FOXO3
plays a role in homeostatic turnover, at 230 days PI, T cells were purified
from the spleens of +/+ and FOXO32/2 mice, labeled with CFSE and
adoptively transferred into naı̈ve congenic B6/Ly5.1 mice. Thirty days
after transfer, the dilution of CFSE in donor LCMV-specific, CD8 T cells
was measured by flow cytometry. Representative histograms are gated
on Ly5.2+ve CD8 T cells that are specific for either the NP396 (top) or
GP33 (bottom) epitope. Numbers represent percentages of divided
cells.
doi:10.1371/journal.ppat.1002533.g007
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reported in mice deficient for Fas and BIM [64]. Future

experiments will address the mechanisms underlying the tissue-

specific effects of FOXO3 in regulating CD8 T cell homeostasis.

FOXO3 is known to regulate both proliferation and apoptosis

by controlling the transcription of genes like p27Kip1, p130, BIM,

and Fas ligand [26,34,35,63,64]. Therefore, the observed increase

in the accumulation of LCMV-specific CD8 T cells in FOXO32/2

mice could be attributed to altered proliferation and/or

apoptosis. Analysis of in vivo proliferation by multiple strategies

indicated that FOXO3 deficiency did not alter proliferation

rates of LCMV-specific CD8 T cells in vivo. Clonal expansion

of CD8 T cells is associated with concomitant proliferation and

apoptosis, therefore, cellular accumulation is the result of the

proliferation rate exceeding the apoptotic rate. The competing

effects of TGF-b and IL-15 are known to dictate the apoptotic

rate of proliferating CD8 T cells, but the signaling mechanisms

involved are not well defined [61]. We theorized that IL-7/IL-

15 deprivation during antigen-driven proliferation might dimin-

ish FOXO3 phosphorylation, and augment the expression of

BIM. We find that at day 6 PI, apoptosis of LCMV-specific

CD8 T cells was significantly reduced in spleens of FOXO32/

2 mice. Additionally, IL-15 deprivation was indeed associated

with higher BIM levels in +/+ CD8 T cells than in FOXO32/

2 CD8 T cells, which suggested that proliferating FOXO32/2

CD8 T cells might be less susceptible to cytokine withdrawal-

induced apoptosis during the expansion phase of the CD8 T

cell response. During the early contraction phase (day 8–11 PI),

a substantial number of LCMV-specific CD8 T cells are still in

cycle (Figure 5A), but during this interval the apoptotic rate

presumably exceeds the proliferation rate resulting in a net loss

of CD8 T cells. Interestingly, FOXO3 deficiency minimally

altered the contraction of LCMV-specific CD8 T cells. These

data suggest that mechanisms controlling apoptosis of CD8 T

cells during expansion and contraction are likely distinct.

Remarkably, the numbers of memory CD8 T cells in the spleen

of both FOXO32/2 and FOXO3L mice were substantially

higher than in +/+ mice. The number of memory CD8 T cells is

dictated by the magnitude of expansion (clonal burst size) and

contraction of effector CD8 T cells [5]. The magnitude of increase

in the number of memory CD8 T cells in FOXO32/2 or

FOXO3L mice reflects enhanced expansion of MPECs

(Figure 2B) during the primary CD8 T cell response. Impor-

tantly, enhancement in the number of memory CD8 T cells

induced by FOXO3 deficiency was not associated with detectable

Figure 8. The secondary CD8 T cell response in FOXO3 deficient mice. +/+ and FOXO32/2 mice were infected with LCMV-Armstrong and
after 90 days PI, these mice were challenged with 2.56106 PFU of LCMV clone 13. (A) Five days after LCMV clone13 infection, mononuclear cells from
spleen, liver and lymph nodes were collected and the total number of LCMV-specific CD8 T cells was determined by staining with anti-CD8 and
LCMV-specific MHC-I tetramers. Data are from 4–6 mice/group; error bars represent the SEM and * indicates statistical significance at p,.05. (B)
Splenocytes from +/+ or FOXO32/2 mice were stained with anti-CD8, MHC-I tetramers and anti-Ki67. The percentage of Ki67 positive cells amongst
tetramer positive CD8 T cells was determined by flow cytometry. (C) Splenocytes were stimulated ex vivo with LCMV-specific peptides for 5 hours.
Following stimulation, cells were stained for surface expression of CD8 and intracellular expression of IFNc, IL-2 and TNFa. The top number in the
plots on the left is the MFI of staining for IFNc. The bottom number in the plots indicates the percentage of total splenocytes that are CD8 and IFNc
positive. The plots on the right are gated on IFNc+ve CD8 T cells and the numbers are the percentages of cells that produced IFNc and IL-2, IFNc and
TNFa, or IFNc, IL-2, and TNFa. (D) LCMV titers in serum and lung were determined by plaque assay using a vero cell monolayer. Each symbol
represents the viral titer of an individual mouse.
doi:10.1371/journal.ppat.1002533.g008
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alterations in phenotype or effector function. Memory CD8 T cells

in LCMV-immune FOXO32/2 mice exhibit strong recall

responses and provide effective immunity against a persistent

LCMV infection. Thus, FOXO3 deficiency increased the quantity

of CD8 T cell memory without affecting their phenotype or

effector functions.

Memory CD8 T cells are maintained by IL-7 and IL-15-driven

proliferative renewal and phosphorylation of FOXO3 is an

integral component of the signaling circuitry triggered by IL-7/

IL-15 signaling [11,54,66,67]. Additionally, we have previously

shown that deficiency of the cell cycle inhibitor p27Kip1, a target

gene for FOXO3, enhances the homeostatic turnover of memory

CD8 T cells [43]. Surprisingly, despite the suggested importance

of FOXO3 in regulating the homeostasis of memory T cells,

FOXO3 deficiency exerted minimal effects on the proliferative

renewal of antigen-specific memory CD8 T cells in vivo [48].

Studies of human memory T cells have ascribed a negative

regulatory role for FOXO3 in the persistence of memory CD4 T

cells and FOXO3 deficiency would be expected to increase the

number of effector memory cells [48,73]. However, FOXO3

deficiency did not affect the relative proportions of central and

effector memory CD8 T cells. It is plausible that FOXO3 might

regulate the persistence of central/effector memory CD4 T cells,

and not CD8 T cells. Alternatively, FOXO3 function may be

redundant in maintaining fully differentiated memory CD4 and

CD8 T cells.

In conclusion, this manuscript documents that FOXO3 plays a

critical role in controlling the clonal burst size and the magnitude

of CD8 T cell memory by T cell intrinsic mechanisms.

Furthermore, the enhanced number of memory CD8 T cells

induced by FOXO3 deficiency, is maintained for extended periods

without compromising its quality. These findings have important

implications in vaccine development, and suggest that modulation

of FOXO3 activity during the expansion phase might be a fruitful

Figure 9. FOXO3 regulates CD8 T cell expansion through T cell-intrinsic mechanisms. (A) +/+ and FOXO3L mice were infected with LCMV.
At 8 days PI, mononuclear cells from spleen, liver and lymph nodes were stained with anti-CD8 and MHC-I tetramers. Data are from 3–4 independent
experiments with 4–6 mice/group/experiment; error bars represent the SEM and * indicates statistical significance at p,.03. (B) Investigation of in
vivo proliferation and apoptosis by BrdU incorporation/Ki67 staining and Annexin V staining. +/+ and FOXO3L mice were infected with LCMV and
given a BrdU injection at 6 days PI and administered BrdU in drinking water between days 6–8 PI. At the end of the BrdU pulse, splenocytes were
stained with anti-CD8, MHC-I tetramers and anti-BrdU. The percentage of BrdU positive cells amongst tetramer positive CD8 T cells was determined
by flow cytometry (top panel). In parallel studies, mononuclear cells were stained with anti-CD8, MHC-I tetramer and anti-Ki67 (middle panel) or
Annexin V (lower panel). The percentage of Ki67 or Annexin V positive cells amongst tetramer positive CD8 T cells was determined by flow cytometry.
Data are from 2–3 independent experiments; Graphs represent data from 6–8 mice/group/experiment; error bars represent the SEM and * indicates
statistical significance at p,.001. (C) At day 8 PI, splenocytes were stimulated in vitro with LCMV specific peptides for 5 hours. Following stimulation,
cells were stained for surface expression of CD8 and intracellular expression of IFNc, IL-2 and TNFa. Representative dot plots (left) are gated from total
lymphocytes with the top numbers indicating the MFI for IFNc on CD8 T cells while the bottom number in the plot indicates the percentage of total
splenocytes that are CD8 and IFNc positive. Dot plots (right) represent the percentages of IL-2 and/or TNFa producing cells among IFNc+ve CD8 T
cells. Representative plots from 1 of 6 individual experiments are illustrated. (D) To deplete CD4 T cells, +/+ and FOXO3L mice were injected with
100 ug of the monoclonal antibody, GK1.5, at days 0 and 4 relative to LCMV infection. At day 8 PI, splenocytes were stained with anti-CD8 and MHC-I
tetramers to determine the total number of LCMV-specific CD8 T cells. Bars represent data collected from at least 4 mice; error bars represent the SEM
and * indicates statistical significance at p,.01.
doi:10.1371/journal.ppat.1002533.g009
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strategy to bolster vaccine-induced CD8 T cell memory and

protective immunity.

Materials and Methods

Mice and viral infection
The generation and characterization of the global FOXO3-

deficient (FOXO32/2) mice on the C57BL/6 (B6) background

have been described previously [40]. The control wild type B6 (+/

+) mice were either littermates or purchased from the National

Cancer Institute (Bethesda, MD). Derivation of mice carrying the

floxed FOXO3 alleles has been described elsewhere [69,70]. Mice

carrying the floxed FOXO3 alleles were bred with the CD4-Cre

mice at UW-Madison to generate the T cell-specific FOXO32/2

(FOXO3L) mice. Littermate +/+ mice were used as controls with

the FOXO3L mice. Mice used in experiments were between the

ages of 6–8 weeks and all experiments were performed in

accordance with the protocols approved by the University of

Wisconsin School of Veterinary Medicine Institutional Animal

Care and Use Committee (IACUC). The animal committee

mandates that institutions and individuals using animals for

research, teaching, and/or testing much acknowledge and accept

both legal and ethical responsibility for the animals under their

care, as specified in the Animal Welfare Act (AWA) and associated

Animal Welfare Regulations (AWRs) and Public Health Service

(PHS) Policy. Mice were infected with 26105 PFU of lymphocytic

choriomeningitis virus (LCMV) Armstrong strain by intraperito-

neal (IP) injection. Mice that have recovered from an infection

with LCMV Armstrong were challenged with LCMV-Clone 13

(26106 PFU by intravenous injection). Tissue viral titers were

quantified by plaque assay with Vero cell monolayers [74].

General flow cytometry
Single cell suspensions of splenocytes were stained with

antibodies for surface markers including CD8, CD44, CD122,

CD127, CD62L, CCR7, LFA-1 and KLRG-1 (BD Biosciences,

Franklin Lakes NJ, eBIOSCEINCE, San Diego CA or Southern

Biotech, Birmingham AL) in conjunction with MHC I tetramers

(Db) specific for the class I-restricted LCMV epitopes, NP396,

GP33, and GP276 as previously described [15]. Cells were fixed in

Figure 10. Loss of FOXO3 in the T cell compartment enhances the quantity of memory CD8 T cells without decreasing their quality.
(A) At 180 days after LCMV infection, mononuclear cells from spleen, liver and lymph nodes of +/+ and FOXO3L mice were collected and stained with
anti-CD8 and MHC-I tetramers. Bars represent data from 2 independent experiments with 4–7 mice/group/experiment; error bars represent the SEM
and * indicates statistical significance at p,.05. (B) At 180 days PI, splenocytes were stained with anti-CD44, anti-CD62L, anti-CCR7 and anti-LFA-1
along with anti-CD8 and MHC-I tetramer. Representative plots for CD44, CD62L, CCR7 and LFA-1 are gated on tetramer-binding CD8 T cells. The
numbers represent the MFI for the indicated protein. (C) Cytokine production by LCMV-specific memory CD8 T cells from +/+ and FOXO3L mice.
Representative dot plots (left) are gated on total lymphocytes. The top numbers indicate the MFI for IFNc while the bottom number in the plot
indicates the percentage of total splenocytes that are CD8 and IFNc positive. Dot plots (right) represent the percentage of IL-2 and/or TNFa
producing cells among IFNc+ve CD8 T cells. The plots represent data from 1 of 2 independent experiments with 4–7 mice/group/experiment. (D) +/+
and FOXO3L mice were infected with LCMV and given a BrdU injection at 120 days PI and administered BrdU in drinking water between days 120–
128 PI (top). At the end of the BrdU pulse, splenocytes were stained with anti-CD8, MHC-I tetramers and anti-BrdU (top) or anti-Ki67 (bottom). The
percentage of BrdU or Ki67 positive cells amongst tetramer positive CD8 T cells was determined by flow cytometry. Bars represent data from at least
5 mice/group.
doi:10.1371/journal.ppat.1002533.g010
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2% paraformaldehyde (PFA) and acquired in a FACSCalibur or

LSR II flow cytometer (BD Biosciences, Franklin Lakes NJ). To

quantify intracellular cytokine production, splenocytes were

incubated for 5 hours at 37uC with LCMV epitope viral peptides

in the presence of Brefeldin A. After stimulation, cells were first

incubated with antibodies for surface markers. Next, cells were

permeabilized and stained for intracellular cytokines (IFNc, IL-2

and TNFa) using the Cytofix/Cytoperm kit (BD Biosciences,

Franklin Lakes NJ). The percentages of cytokine-producing cells

were quantified by flow cytometry.

Phospho-specific flow cytometry
Splenocytes were stained for cell surface markers as above. After

cell surface staining, cells were fixed and permeabilized using

Phosflow lysis and Phosflow PermWash I reagents (BD Bioscienc-

es, Franklin Lakes NJ) according to the manufacturer’s recom-

mendations. Next, cells were blocked for 30 minutes on ice in

blocking buffer (10% normal goat serum in 2%BSA/PBS) and

subsequently stained with either phospho-specific antibodies (Cell

Signaling Technology, Danvers MA; P-Akt [T308], P-FOXO1/3

[T24,T32], P-mTOR [S2448]) or non-phospho state-specific

antibodies (Akt, mTOR, FOXO3, BIM). As negative controls

for staining, antibodies were pre-incubated/blocked with their

specific antigenic peptide for 1 hr at room temperature before

adding on to the cells. Following incubation with antibody or

peptide blocked antibody, cells were washed twice and incubated

with secondary antibody (Goat anti-Rabbit ALEXA488; Sigma-

Aldrich, St. Louis MO) for 40 minutes. Cells were washed and

fixed with 2% PFA. The levels of phospho-specific staining were

quantified by flow cytometry. Specific levels of staining (Corrected

Mean Fluorescence Intensity [MFI]) were calculated using the

formula: difference of observed MFI for the phospho-specific

protein and peptide-blocked control, divided by the peptide-

blocked control.

Assessment of in vivo proliferation
To assess in vivo proliferation of antigen specific cells, mice were

administered an IP injection of 1.5 mg of 5-Bromo-29-deoxyur-

idine ([BrdU] MP Biomedicals, Solon OH) followed by exposure

to 0.8 mg/ml of BrdU in drinking water for the rest of the pulse

period. Splenocytes were stained for surface markers and

determination of BrdU positive cells was performed using a BrdU

staining kit (BD Biosciences).

Ki67, Bcl-2 and Granzyme B staining
Splenocytes were stained for surface markers and MHC I

tetramers as described above. After surface staining, cells were

fixed and permeabilized using FACS Lysing Solution and FACS

Permeabilization Solution 2 reagents (BD Biosciences, Franklin

Lakes NJ) and subsequently incubated with antibodies against

Ki67, Bcl-2 or Granzyme B (BD Biosciences, Franklin Lakes NJ)

for 45 minutes at room temperature. Virus-specific CD8 T cells

staining positive for Ki67, Bcl-2 or Granzyme B were visualized

using a FACSCalibur flow cytometer. Data is expressed as either a

percentage of antigen-specific CD8 T cells positive for the

respective protein or MFI for the indicated protein.

Assessment of apoptosis ex vivo
After 6 days PI, splenocytes from +/+ and FOXO32/2 or

FOXO3L mice were isolated and stained with anti-CD8 and

MHC-I tetramers as described above except no red blood cell lysis

was performed. Annexin V staining (BD Biosciences, Franklin

Lakes NJ ) was then carried out according to the manufacturer’s

protocol, with the exception that all staining was performed on ice.

The percentage of Annexin V high cells amongst antigen-specific

CD8 T cells was determined by flow cytometry and expressed

accordingly.

CD4 depletion studies
Mice were depleted of CD4 T cells through IP administration of

100 mg of the monoclonal antibody GK1.5 (eBioscience, San

Diego CA) at days 0 and 4 relative to LCMV infection.

Western analysis
T cells and non-T cells were purified from spleens of +/+ and

FOXO3L mice using the anti-CD90.2 based MACS cell

separation system (Miltenyi Biotec, Auburn CA). Purity of cells

was .93%. Cells were subsequently lysed in buffer (50 mM

HEPES, 100 Mm NaCl, 10 mM EDTA, 10 Mm NaF, 4 Mm

Na(PO4)2, 1% Triton X-100, 5 mg/ml Aprotinin, 1 Mm Phenyl-

methylsulfonylflouride), sonicated, and total protein levels in each

lysate were determined by the Bicinchoninic Acid protein assay.

(Sigma-Aldrich, St. Louis, MO). 20 mg samples were loaded and

resolved on a 10% SDS-PAGE. Total levels of FOXO3 protein in

each sample were detected using a Rabbit primary antibody

specific for FOXO3 (Cell Signaling Technology, Danvers MA)

followed by a Donkey anti Rabbit F(ab)2 fragment HRP-

conjugated secondary antibody (Thermo Fisher, Rockford IL)

Bands were visualized using chemiluminescence reagents (Thermo

Fisher, Rockford IL) and presented by use of an HP Deskscan

system (Hewlett-Packard, Palo Alto CA). Blots initially probed for

FOXO3 were subsequently stripped and re-probed with b-Actin

(Sigma-Aldrich, St. Louis MO) to serve as a loading control.

Supporting Information

Figure S1 Early investigation of proliferation in +/+ and
FOXO32/2 mice during LCMV infection. After 5 days of

infection with LCMV, splenocytes were isolated from +/+ and

FOXO32/2 mice and stained with anti-CD8, MHC-I tetramer

and anti-Ki67. The percentage of Ki67 positive cells amongst

tetramer binding CD8 T cells was determined by flow cytometry.

Data is the mean from at least 2 individual experiments with 4–6

mice/group/experiment.

(TIF)

Figure S2 Representative plots of BIM and Bcl-2 MFIs
from day 6 PI in +/+ and FOXO32/2 mice after 6 hours
of culture with and without IL-15. Splenocytes from +/+ and

FOXO32/2 mice were isolated after 6 days PI. Splenocytes were

cultured for 6 hours with and without IL-15 (10 ng/ml). After

6 hours, splenocytes were stained with anti-CD8, MHC-I

tetramers and anti-BIM, anti-Bcl-2 or the respective isotype

control. Representative tracings of BIM (top) or the isotype control

from pooled samples without (left) or with 10 ng/ml IL-15 (right)

are shown. Representative Bcl-2 or isotype control MFIs (bottom)

in +/+ and FOXO32/2 mice without (left) or with 10 ng/ml IL-

15 (right) are also illustrated. Data are from pooled samples from

at least two experiments.

(TIF)

Figure S3 Characterization of FOXO32/2 and
FOXO3L mice. (A) Mononuclear cells from spleens of +/+,

FOXO3+/2 and FOXO32/2 mice were isolated and stained

with anti-CD8, MHC-I tetramer, anti-FOXO3 antibody or

FOXO3 antibody pre-incubated with its specific antigenic

peptide. Histograms represent the MFI of FOXO3 signal for

each FOXO3 variant. Numbers represent MFI of FOXO3 for
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each group. (B) Mononuclear cells from spleens of +/+ and

FOXO3L mice were stained for anti-CD8, anti-CD4, anti-B220,

anti CD11c and anti-FOXO3. Histograms represent the MFI of

the FOXO3 signal gated on either total positive CD8s, CD4s,

B220 or CD11c as indicated. Numbers represent MFI of FOXO3

for each group. (C) Splenocytes from naı̈ve +/+ and FOXO3L

mice were collected and T cell and non-T cell fractions were

purified using the MACS system (Miltenyi Biotec, Auburn CA) by

positive selection for CD90.2. SDS-PAGE followed by immuno-

blotting with anti-FOXO3 shows preferential loss of FOXO3 in

the T cell compartment of FOXO3L mice but not +/+ mice. b-

Actin probing was used to ensure equal loading. (D) After 8 days of

LCMV infection, mononuclear cells from spleens of +/+,

FOXO32/2 and FOXO3L mice were isolated and stained with

anti-CD8, MHC-I tetramer, and anti-FOXO3 antibody. Histo-

grams represent the FOXO3 signal from GP33+ve CD8 T cells for

each group. Numbers are the MFI of FOXO3 for each respective

group.

(TIF)

Figure S4 Investigation of proliferation during early
infection in +/+ and FOXO3L mice. At 5 days PI,

lymphocytes from spleens of +/+ and FOXO3L mice were

collected and stained with anti-CD8, MHC-I tetramers and anti-

Ki67. The percentage of Ki67+ve cells amongst tetramer binding

CD8 T cells was determined by flow cytometry. Data is the mean

from at least 2 individual experiments with 3–6 mice/group/

experiment.

(TIF)

Figure S5 Total levels of BIM and Bcl-2, measured
directly ex-vivo at 6 days PI. Total levels of immuno-reactive

BIM (left) or Bcl-2 (right) in tetramer positive CD8 T cells from

spleen, liver and lymph nodes were assessed directly ex-vivo on

day 6 PI. Each solid bar represents the observed MFI for BIM or

Bcl-2, and each checkered bar represents the MFI for the

respective isotype control.

(TIF)
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