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Abstract

Background

Oncology applications of cell-free DNA analysis are often limited by the amount of circulat-

ing tumor DNA and the fraction of cell-free DNA derived from tumor cells in a blood sample.

This circulating tumor fraction varies widely between individuals and cancer types. Clinical

factors that influence tumor fraction have not been completely elucidated.

Methods and findings

Circulating tumor fraction was determined for breast, lung, and colorectal cancer participant

samples in the first substudy of the Circulating Cell-free Genome Atlas study (CCGA;

NCT02889978; multi-cancer early detection test development) and was related to tumor

and patient characteristics. Linear models were created to determine the influence of tumor

size combined with mitotic or metabolic activity (as tumor mitotic volume or excessive lesion

glycolysis, respectively), histologic type, histologic grade, and lymph node status on tumor

fraction. For breast and lung cancer, tumor mitotic volume and excessive lesion glycolysis

(primary lesion volume scaled by percentage positive for Ki-67 or PET standardized uptake

value minus 1.0, respectively) were the only statistically significant covariates. For colorectal

cancer, the surface area of tumors invading beyond the subserosa was the only significant

covariate. The models were validated with cases from the second CCGA substudy and

show that these clinical correlates of circulating tumor fraction can predict and explain the

performance of a multi-cancer early detection test.

Conclusions

Prognostic clinical variables, including mitotic or metabolic activity and depth of invasion,

were identified as correlates of circulating tumor DNA by linear models that relate clinical

covariates to tumor fraction. The identified correlates indicate that faster growing tumors

have higher tumor fractions. Early cancer detection from assays that analyze cell-free DNA

is determined by circulating tumor fraction. Results support that early detection is particu-

larly sensitive for faster growing, aggressive tumors with high mortality, many of which have

no available screening today.
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Introduction

An inherent limitation of circulating tumor DNA (ctDNA) analysis techniques is the propor-

tion of cell-free DNA (cfDNA) that is derived from tumor cells in a blood sample [1]. This pro-

portion, or circulating tumor fraction (cTF), is usually very low when tumors are small and

localized, but increases as they grow and metastasize [2–4]. In addition, cTF varies widely

between individuals, cancer types [3], and clinical stage [5]. These variations have important

implications for a wide range of clinical applications of ctDNA-based assays, including multi-

cancer early detection (MCED) tests [6–9] and minimal residual disease detection [10–13];

however, the factors that influence cTF have not been completely elucidated.

Underlying this knowledge gap is an incomplete understanding of the mechanisms respon-

sible for cfDNA shedding first into the tumor microenvironment, access from there to the cir-

culatory system, and elimination, which determine the observed cTF in a blood sample (Fig 1)

[14–23].

Although the general characteristics of this process are well established, detailed models of

the mechanisms of cfDNA shedding and factors that influence the amount in circulation—and

consequently, detectability and clinical utility—for different types or stages of tumors have yet

to be described [14]. Current evidence suggests that the origin of ctDNA in a blood sample is

biased towards tumor cells that are aggressive or susceptible to treatment, which lead to prolif-

eration- or treatment-induced apoptosis and cfDNA shedding [14]. In addition, preliminary

evidence suggests that high-mortality cancers in the bottom 10th percentile of 5-year survival

rates in the United States (esophageal, gastric, hepatobiliary, lung, and pancreatic cancer) tend

to have higher cTF across all stages than lower-mortality cancers (e.g., breast, prostate, and

Fig 1. Depiction of origin and fates of circulating tumor DNA relative to cell-free DNA. Origin and fates of cfDNA influence the amount of

ctDNA in a blood sample. Both normal cells (light green) and tumor cells (light purple) can shed DNA during cell death (e.g., by apoptosis or

necrosis) [14–16]. In cancer, tumor cell mitoses and tumor growth increase the amount of DNA that can be shed into the tumor microenvironment

(TME) [17]. In the TME, cfDNA has several fates: it may be digested [18, 19]; phagocytosed [17, 21]; lost into the lumen of the gastrointestinal,

pulmonary, or genitourinary tract [22]; or trafficked into circulation where it is pooled with cfDNA from other cells in the body [21, 23]. After

entering circulation, cfDNA is subject to further digestion or clearance in the liver, kidney, or spleen [23]. As a result, cfDNA in a blood sample is

composed of tumor and normal cell DNA that is shed by dying cells and has not been removed by various clearance mechanisms. cfDNA: cell-free

DNA, ctDNA: circulating tumor DNA, TME: tumor microenvironment.

https://doi.org/10.1371/journal.pone.0256436.g001
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thyroid cancer) [5]. These observations suggest that ctDNA-based cancer screening tests may

be more likely to detect lethal cancers, which could help reduce overdiagnosis and unnecessary

interventions [24].

To better understand how cTF varies across tumor stages and affects blood-based cancer

detection, we developed models of ctDNA shedding using clinical features of tumor biology

beyond clinical stage (e.g., tumor size and mitotic or metabolic activity). Using breast, lung,

and colorectal cancers, which have the highest incidence and mortality among all cancers in

men and women in the United States [25], we identified several key correlates of ctDNA levels

and biological tumor properties that can be generalized to other solid cancers.

Methods

Analysis overview

The Circulating Cell-free Genome Atlas (CCGA; NCT02889978) study is a prospective, multi-

center, observational, case-control study with longitudinal follow-up to support the develop-

ment of a plasma circulating cfDNA-based multi-cancer early detection test. The CCGA

protocol and consent were reviewed and approved by the Institutional Review Board (IRB) or

Independent Ethics Committee (IEC) for each of the 140 participating sites and the central

IRB Western IRB (now WIRB Copernicus Group). The other IRBs/ethics boards were Hart-

ford HealthCare IRB, Hartford, CT, US Oncology, Inc., IRB, The Woodlands, TX, Memorial

Sloan Kettering Cancer Center Institutional Review Board/Privacy Board, New York, NY,

University of Miami Institutional Review Board, Miami, FL, Mayo Clinic Institutional Review

Board, Rochester, MN, Cleveland Clinic Foundation Institutional Review Board, Cleveland,

OH, Avera Central Services IRB #3—Oncology IRB, Sioux Falls, SD, Lahey Clinic, Inc. Institu-

tional Review Board, Burlington, MA, Biomedical Research Alliance of New York, Lake Suc-

cess, NY, The Christ Hospital Institutional Review Board, Cincinnati, OH, University Health

Network Research Ethics Board, Toronto, ON, Canada, Lehigh Valley Health Network’s Insti-

tutional Review Board, Allentown, PA, IntegReview Ethical Review Board, Austin, TX, and

Dana-Farber Cancer Institute (DFCI) IRB, Boston, MA. IRBs provide oversight of the study

throughout its duration. All participants were consented per regulatory requirements prior to

participating in study-related activities and sample collection. In CCGA, blood samples were

prospectively collected from participants with newly diagnosed untreated cancer and from

participants without a diagnosis of cancer. Samples from the first [26] and second [9] CCGA

substudy were used to develop and validate biophysical models (separately for breast, lung,

and colorectal cancers) that identify clinical correlates of cTF.

Fig 2 depicts the analysis process. Briefly, paired plasma, white blood cells (WBC), and

tissue samples from participants in the first CCGA substudy (for which whole genome

sequencing [WGS], whole-genome bisulfite sequencing [WGBS], and targeted sequencing

data were available) [26] were used to obtain estimated circulating tumor fraction cTF,

(described below, Fig 2, step A). Independent of cTF estimation, candidate input clinical

variables and covariates were identified for model development if they had been linked to

ctDNA levels in previous publications [27–30], or as motivated by their involvement in the

pathophysiological processes of ctDNA generation shown in Fig 1 [14–23]. Linear models

were created that relate cTF to the candidate clinical variables for participants from the first

CCGA substudy (Fig 2, step B). Variables were selected for inclusion in a prediction model

if they significantly contribute to cTF (Fig 2, step C, insert shown enlarged at the bottom of

the figure). These models then predicted cTF for participants in the second CCGA substudy

using only selected clinical variables (Fig 2, step D). For validation, model-predicted cTF

was compared to tumor detection from a plasma sample using the targeted methylation
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(TM) assay of the second CCGA substudy (Fig 2, step E). CCGA study design, WGBS, TM

panel design and sequencing, sample collection, storage, accessioning and processing, deter-

mination of cTF and creation of a WGBS and a TM classifier for cancer detection have been

previously presented [5, 9, 26].

Fig 2. Flow diagram of data analysis. cTF was obtained from plasma, WBC, and tissue assay results (step A) and candidate clinical

variables were input for model development (step B). During model development, candidate variables that contributed significantly

to cTF were selected as correlates of tumor fraction (step C, insert shown enlarged). Filled and hollow dots depict variables selected

or not selected, respectively. cTF was predicted using only selected clinical variables (step D) and was validated by comparison to

plasma TM assay results (step E). CCGA: Circulating Cell-free Genome Atlas, cfDNA: cell-free DNA, CRC, colorectal cancer, cTF:

Circulating tumor fraction, WBC: White blood cells, TM: Targeted Methylation.

https://doi.org/10.1371/journal.pone.0256436.g002
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Circulating tumor fraction

cTF was determined from blood samples prospectively collected from participants with newly

diagnosed untreated cancer from the first CCGA substudy. Genomic variants detected in a tar-

geted sequencing assay of plasma cfDNA from these participants were compared to variants

from a WGS assay of matched, macro-dissected formalin-fixed, paraffin-embedded tumor

samples while using a white blood cell WGS assay to control for germline variants [5] (Fig 2,

step A). For cases with no available tumor tissue, cTF was imputed using scores from a proto-

type classifier that was trained to detect cancer signals in WGBS data from plasma cfDNA

[26]. This WGBS classifier score is computed from abnormally methylated cfDNA fragments

in separate genomic regions and has previously been shown to track cTF measurements [5, 30]

with an approximately sigmoid relationship of WGBS classifier score to log(cTF). Parameters

of the sigmoid function and their 95% confidence intervals were estimated separately per

tumor type. cTF was imputed by drawing parameters of this fitted curve randomly for each

case from their estimated distributions and performing a lookup from classifier score to cTF.

For additional quantitative interpretation, the concentration of cfDNA in plasma was quan-

tified using a High Sensitivity Large Fragment Analysis Kit (DNF-493, Fragment Analyzer,

Agilent). The concentration was scaled by tumor fraction and an estimated total volume of

whole blood from participant weight and height [31] assuming plasma volume as 55% of

whole blood volume. This yielded the total mass of ctDNA in participants’ circulation and was

scaled to genome equivalents (GE) using 6.5 pg / GE.

Candidate clinical variable selection

Clinical data for this analysis were obtained from CCGA electronic case report forms and can-

cer-type specific data from pathology and radiology reports. The goal of each biophysical

model is to quantitatively explain circulating tumor DNA using only a small subset of routinely

available clinical features.

Analyses were limited to clinical stages I, II, and III because ctDNA levels increase strongly

in the presence of distant metastases, especially when a highly vascularized organ like the liver

is affected [13, 32] and because tumor fraction in stage IV cancers is higher [5] and more vari-

able compared to stages I-III, which would significantly complicate the modeling.

Similarly, clinical stage was not selected as a covariate for the purpose of modeling, given

that ctDNA levels increase with clinical stage with overlap between stages I, II, III [5, 27, 29,

30] and that the definition of clinical stage depends on the cancer type and takes multiple clini-

cal variables and covariates into account [33] that modeling can test separately.

The selection of candidate clinical correlates and covariates was motivated by the goal to

capture an absolute rate of cancer cell deaths taking the total number of tumor cells and their

apoptotic and necrotic rates into account. Even when not accounting for cellularity, total

tumor volume can serve as a measure for the total number of tumor cells. Total volume com-

putations should further reflect tumor laterality and focality, and the size of each lesion, as all

lesions individually contribute ctDNA. Abstracted clinical data provided 1D maximum size

per lesion and information on multifocal or bilateral disease. Total volume of all primary

lesions was computed assuming spherical lesions. Missing size information was only imputed

for non-index tumor lesions when the index lesion size was reported. A ratio of index lesion to

non-index lesion size was drawn randomly from the second and third quartile of this ratio for

cases with the same cancer type and complete size information. This ratio was multiplied with

the reported index lesion size to impute size of non-index lesions.

The presence of tumor-involved lymph nodes was confirmed either by pathology report or

clinical node (N)-stage N1, N2, or N3. The absence was confirmed by N-stage N0 and
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confirmation that all examined lymph nodes in the pathology report were negative. In the

absence of pathology report information and clinical N-stage, presence of tumor-involved

lymph nodes was imputed from the clinical stage and assumed present for clinical stages III

and IV.

Cell death rates(eg., using % positive of the immunohistochemistry marker cleaved caspase

3) are not routinely reported. Available clinical variables for mitotic or metabolic tumor activ-

ity were chosen for model creation assuming that tumor cells constantly outgrow tumor

resources [18] with hypoxic apoptosis, mitotic catastrophe [34–36] or other forms of cell death

closely following cell division [21, 37].

Stepwise creation of biophysical models

Following selection of the candidate clinical variables, a linear analytical model was created to

identify statistically significant (p-value < 0.05) clinical correlates of tumor fraction (Fig 2 Step

C). Additionally, their relative importance to explain cTF was determined using R-squared

(R2) partitioned by averaging over orders [38, 39]. Next, only the clinical variables identified to

significantly contribute to cTF were selected as input to a linear prediction model (Fig 2, step

C). Finally, a quantitative linear model for each cancer type was created to explain the total

number of tumor-derived GEs in the patient body using the same selected clinical variables.

Analyses were performed in the statistical software program R version 3.6.0 with linear

model fitting taken from the stats package and relative importance metrics computed with the

relaimpo package in version 2.2.3. For validation, receiver operating characteristic (ROC)

curves were created and analyzed using the pROC package in version 1.16.2 and the Wilcoxon

rank-sum test was taken from the stats package.

Breast cancer model motivation

The impact of different clinical features of breast cancer on cTF has been previously presented

[27]. cTF increases with tumor (T) stage, N stage, hormone-receptor (HR) status, and percent

of tumor nuclei positive for Ki-67 (%Ki-67), but not with human epidermal growth factor

receptor 2 (HER2) status or histologic type. It has been shown for breast cancer that %Ki-67

positive for mitotic rate and % positive of cleaved caspase 3 for apoptotic rate are correlated

[40], and %Ki-67 positive is frequently reported in breast cancer.

Breast cancer model implementation

The basis of a biophysical model to predict cTF in breast cancer is the tumor mitotic volume

(TMitV), which is the tumor volume multiplied by %Ki-67 positive. In CCGA, %Ki-67 positive

was reported for breast cancer from participating sites. Breast cancer tumor tissue submitted

for study purposes was additionally sent for Ki-67 staining and read-out to a CAP/CLIA (Col-

lege of American Pathologists/Clinical Laboratory Improvement Amendments)-certified labo-

ratory for cases from sites that allowed such an additional read-out per protocol.

TMitV is intended to capture ctDNA from all primary tumor foci. More ctDNA is expected

from tumor-involved lymph nodes and also from distant metastasis which are not considered

here. Tumor-involved lymph nodes widely vary in number, tumor content and location,

which is challenging to capture in clinical variables reported in a multi-site study. As a model-

ing variable, presence of tumor-involved lymph nodes (yes/no) was used due to less complete

data for the number of tumor-involved lymph nodes. Histologic type (ductal or lobular carci-

noma), tumor grade, and hormone receptor status (positive if a case was positive for progester-

one or estrogen receptor overexpression) were tested as additional, independent predictors of

cTF in the linear analysis model.
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Lung cancer model motivation

Different clinical features of lung cancer that impact cTF have been presented [28, 29]. For

non-small lung cancer (NSCLC), in univariate analysis the presence of necrosis, lymph node

involvement, lymphovascular invasion, tumor size, %Ki-67 positive, and a histologic type

other than adenocarcinoma increased cTF. In a multivariable analysis, non-adenocarcinoma

subtype, high Ki-67, and lymphovascular invasion were individual predictors for detection of

ctDNA in plasma [28]. Furthermore, cTF increases with (18)F fluorodeoxyglucose (FDG)

uptake on Positron Emission Tomography—Computed Tomography (PET/CT) for NSCLC

[28, 29] and small cell lung cancer [11]. While %Ki-67 positive is not routinely reported for

lung cancer, FDG PET/CT is often available. The standardized uptake value (SUV) from FDG

PET is correlated to tumor growth [41, 42] and %Ki-67 positive in breast [43, 44] and lung

cancers [45].

Lung cancer model implementation

FDG PET SUV was obtained by abstraction of PET/CT radiology reports. For lung cancers,

prediction of ctDNA from all primary tumor lesions was based on the newly defined excessive

lesion glycolysis (ELG), which is the volume integral of FDG PET SUV over all lesions after

subtracting 1.0 from the SUV value. Normal tissue is expected to have an SUV close to 1.0 and

to not create many cfDNA fragments, while tumor tissue has SUV > 1.0. ELG is closely related

to total lesion glycolysis (TLG), which is the volume integral of SUV. Due to data availability

in the CCGA study, ELG computation is simplified to volume scaled by a single SUVmax—1.0.

In previous studies, TLG was shown to correlate with ctDNA [28], but not with overall cfDNA

levels [46]. Histologic type (adenocarcinoma, squamous cell carcinoma, small cell carcinoma),

presence of tumor-involved lymph nodes, and histologic grade were tested as additional inde-

pendent predictors of cTF.

Colorectal cancer (CRC) model motivation

Previously, tumor surface area (TSA) and depth of microinvasion have been presented as cor-

relates of cTF for colorectal adenocarcinomas [30]. In contrast to lung, breast, and many other

solid cancers, colon cancer size is often measured after resection with the specimen spread

from the original curved colon wall onto a flat surface. A surrogate measure for the total num-

ber of tumor cells is therefore the tumor surface area of all primary tumor foci together. Mark-

ers of cell death or proliferation like cleaved caspase 3, Ki-67, or FDG PET SUV are not

frequently reported in CRC. Instead, while fewer cases are available for model creation and val-

idation than for breast and lung cancers, we use CRC to show a different clinical correlate of

cTFCTF. A candidate covariate captures how tumor vascularization and trafficking of DNA

fragments released by tumor cells affects ctDNA levels. The depth of microinvasion (invaded

tissue layers beyond the epithelial lining at the inside of the colon lumen) is routinely reported

as it contributes to T stage in CRC [33]. Tumor DNA from apoptotic tumor cells can enter the

colon lumen or the circulation [47]. Depth of microinvasion or Tstage therefore inform

whether tumor-derived DNA can enter the circulation.

CRC model implementation

The biophysical model for CRC therefore uses the TSA individually scaled by a shedding factor

that depends on depth of microinvasion. Levels of ctDNA are again expected to increase with

tumor size and the number of tumor cells, even though tumor size does not contribute to clini-

cal staging in CRC. The analysis for CRC was limited to the dominant histologic type
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adenocarcinoma and only presence of tumor-involved lymph nodes and histologic grade were

tested as additional independent correlates of tumor fraction.

Model validation

For model validation, model predictions for cTF were generated for plasma cfDNA samples of

participants in the second CCGA substudy (Fig 2, Step D). These samples were subjected to a

TM assay with an independently trained machine-learning classifier for cancer detection and

prediction of signal of origin for samples with detected cancer signal [9]. The clinical valida-

tion of a further refined TM assay and classifiers optimized for screening has recently been

completed for a case-control study [48]. Preliminary results from a prospective cohort study

evaluating clinical implementation of the MCED test have also been reported [49]. For the vali-

dation of the models presented in this paper, cTF predicted by a biophysical model was com-

pared to cancer detected or not detected on an independent patient cohort and assay (Fig 2,

Step E) to further relate cTF to early cancer detection test performance. Receiver operating

characteristic (ROC) curves were created to test if model-predicted cTF can explain the behav-

ior of the cancer detection test. Separately for each cancer type, a one-sided Wilcoxon test

determined if our hypothesis that detected cancers have higher cTF and that cTF can be pre-

dicted from few clinical covariates held in the validation cohort.

Results

For breast, lung, and colorectal cancer types, biophysical models were generated using cases

from the first CCGA substudy and validated using cases from the second CCGA substudy (Fig

3A). For breast cancer, the number of cases used to generate and validate the model, respec-

tively, were 221 and 146 (Fig 3B and 3C, left); for lung, the breakdown was 35 and 154 (Fig 3B

and 3C, center); and for colorectal it was 21 and 51 (Fig 3B and 3C, right). Fig 3B and 3C also

demonstrate, per cancer type, the breakdown of cases by available cTF measurements, avail-

able clinical covariates, and stage for model development and validation, respectively.

Breast cancer

A total of 221 breast cancer cases (115 stage I, 77 stage II, 29 stage III) had cTF and sufficient

clinical information to develop the biophysical model. 40 cases had cTF imputed from a

WGBS classifier score, 17 cases had an imputed size for a non-index lesion, and lymph-node

status was derived from clinical stage alone for 5 cases. The distribution of measured and

imputed cTF for breast cancer cases were plotted by stage (Fig 4A), and confirm that, while

cTF increases with stage in general, the distribution has strong overlap [27]. Fig 4B demon-

strates that the WGBS prototype classifier scores [26] increased with tumor fraction, and the

fitted sigmoid function used for cTF imputation. Additional cTF estimates (triangles) were

imputed for cases with valid WGBS assay results but without a matched tissue sample. cTF dis-

tribution is shown for stage IV because these cases were used for imputation of cTF, however,

only stage I-III cases were used in subsequent modeling (as described in the Methods section).

Table 1 shows the analytical model for breast cancer that determines the clinical variables

that have statistically significant correlation with ctDNA. Only TMitV was identified to signifi-

cantly contribute to cTF with a p-value<0.05, accounting for 45% of explained variability.

Lymph node status, histologic grade, and HR-status accounted for 20%, 19% and 13%, respec-

tively, while not statistically significant together with TMitV. Lobular or ductal histology did

not appear to have a strong effect on cTF beyond TMitV.

The linear prediction model was created using TMitV (Fig 5). 146 breast cancer cases from

the CCGA2 substudy with TM results were available for model validation (1/65 detected in
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Fig 3. CONSORT diagram. (A) CONSORT diagram depicting the number of clinically evaluable cases with evaluable

assay results for model generation from the first CCGA substudy (left) and model validation from the second CCGA

substudy (right). (B) Cases available for model development from the first CCGA substudy and (C) cases available for

model validation from the second CCGA substudy for breast (left), lung (center), and colorectal cancers (right). Cases were

filtered by availability of clinical data (size of primary tumor, Ki-67 for breast cancer, PET SUV for lung cancer, depth of

microinvasion for colorectal cancer, respectively, and presence of tumor-involved lymph nodes) for modeling and available
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stage I, 28/67 detected in stage II, 13/14 detected in stage III). 9 cases had an imputed size for a

non-index lesion. The prediction model separated detected and undetected cases beyond clini-

cal stage (Fig 6A, Fig A in S1 Text, Wilcoxon rank-sum p-value <0.001) and can explain breast

cancer detection with a TM assay with an area under curve (AUC) of 0.853 (95% CI 0.788–

0.919) (Fig 6B).

The corresponding quantitative model estimated that each mm3 of mitotically active pri-

mary tumor volume adds 9.8 genome equivalents to the circulation of a breast cancer patient

(p = 5.1x10-6).

Lung cancer

For lung cancer, 35 cases (13 stage I, 5 stage II, 17 stage III) had cTF and sufficient clinical

information to generate analysis, prediction, and quantitative models for ctDNA. 13 cases had

cTF imputed from a WGBS classifier score and lymph-node status was derived from clinical

stage alone for 1 case. Fig 7A shows the distribution of cTF for lung cancer cases for clinical

stages I-IV and overlap especially between stages I and II. Fig 7B shows how WGBS prototype

classifier scores increase with tumor fraction and again the matched sigmoid function and

imputed cTF estimates.

In the analytical model for lung cancer, only ELG was identified to significantly contribute

to cTF, accounting for 81% of explained variability (Table 2). While not statistically significant,

histologic grade and presence of tumor-involved lymph nodes accounted for 14% and 3%,

respectively. The histologic types adenocarcinoma, squamous cell carcinoma, and small cell

lung cancer histology did not affect cTF beyond ELG. Tumor volume and metabolic activity

measured by glycolysis accounts for previously published differences between lung cancer

types [28, 29, 50].

A linear prediction model was created using ELG (Fig 8). 154 lung cancer cases from the

CCGA2 substudy with TM results were available for model validation (13/59 detected in stage

I, 17/26 detected in stage II, 57/69 detected in stage III). 3 cases had an imputed size for a non-

index lesion, and lymph-node status was derived from clinical stage alone for 2 cases. This

model separated detected and undetected cases beyond clinical stage (Fig 9A, Fig B in S1 Text,

Wilcoxon rank-sum p-value < 0.001) and can explain lung cancer detection with a TM assay

with an AUC of 0.784 (95% CI 0.711–0.857) (Fig 9B).

The corresponding quantitative model estimated that each mm3 of additional FDG SUV

glycolysis adds 0.81 genome equivalents to the circulation of a cancer patient (p = 0.0004).

Assuming a correlation between %Ki-67 positive and FDG PET SUV, the breast and lung can-

cer models both predict that the total amount of ctDNA increases with tumor volume and

mitotic or metabolic tumor activity.

Colorectal cancer

Fig 10A shows the distribution of cTF for colorectal cancer cases for clinical stages I-IV, with

overlap especially between stages II and III, while Fig 10B shows that depth of microinvasion

separates cases with high and low cTF depending on a deep microinvasion beyond the subser-

osa or a shallow microinvasion below the subserosa. Fig 10C again shows WGBS prototype

classifier scores increasing with tumor fraction, the matched sigmoid function, and imputed

ground truth or imputed tumor fraction. cTF: Circulating Tumor fraction, LN: information on number of tumor-involved

lymph nodes, PET SUV, positron emission tomography standardized uptake value. aAt enrollment, prior to confirmation

of cancer status. bBy First CCGA substudy definition. cBy Second CCGA substudy definition. dNon-smoking participants

under the age of 35. eConfirmed cancer status.

https://doi.org/10.1371/journal.pone.0256436.g003
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Fig 4. Breast cancer cTF by clinical stage and relation to WGBS classifier score. (A) cTF by clinical stage for breast

cancer. (B) WGBS classifier score [26] by cTF for breast cancer. Samples are colored by clinical stage and samples with

imputed cTF are shown as triangles. cTF: Circulating Tumor fraction, WGBS: Whole-genome bisulfite sequencing.

Non-informative: Confirmed invasive cancer with insufficient clinical information to determine stage.

https://doi.org/10.1371/journal.pone.0256436.g004
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cTF estimates for this cancer type. 21 colorectal adenocarcinomas (6 stage I, 9 stage II, 6 stage

III) had cTF and sufficient clinical information to generate analysis, prediction, and quantita-

tive models for ctDNA. 1 case had cTF imputed from a WGBS classifier score and lymph-node

status was derived from clinical stage alone for 1 case.

Table 1. Analytical model for breast cancer.

Variable Estimate p-value Relative importance

(Intercept) 0.0065 0.6601 NA

TMitV 2.85x10−7/mm3 0.0075 0.451

Lymph node status 0.0144 0.1100 0.201

Hormone receptor status –0.0064 0.2624 0.134

Histologic grade (1 vs. 3) 0.0069 0.2561 0.187

Invasive lobular carcinoma –0.0015 0.9372 0.010

Invasive ductal carcinoma 0.0027 0.8559 0.016

NA: not applicable; TMitV: Tumor mitotic volume.

https://doi.org/10.1371/journal.pone.0256436.t001

Fig 5. cTF increases with breast cancer tumor mitotic volume. cTF increased with TMitV (in mm3) for breast cancer. Black, red, and green dots depict

samples from stages I, II, and II, respectively (Model development and validation was limited to clinical stages I-III). Linear fit and 95% confidence intervals

are shown in blue and gray, respectively. cTF: Circulating cfDNA tumor fraction, TMitV: Tumor mitotic volume.

https://doi.org/10.1371/journal.pone.0256436.g005
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Fig 6. Breast cancer model validation. (A) Detection by TM assay for breast cancer cases sorted by TMitV. Clinical stage

is shown at the bottom. (B) ROC to predict breast cancer detection by TM assay using TMitV. cTF: Circulating tumor

fraction, ROC: Receiver operating characteristic curve, TM: Targeted methylation, TMitV: Tumor mitotic volume.

https://doi.org/10.1371/journal.pone.0256436.g006
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Fig 7. Lung cancer cTF by clinical stage and relation to WGBS classifier score. (A) cTF by clinical stage for lung

cancer. (B) WGBS classifier score by cTF for lung cancer. Samples are colored by clinical stage and samples with

imputed cTF are shown as triangles. cTF: Circulating Tumor fraction, WGBS: Whole-genome bisulfite sequencing.

Non-informative: Confirmed invasive cancer with insufficient clinical information to determine stage.

https://doi.org/10.1371/journal.pone.0256436.g007
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Table 3 shows the analytical model for colorectal cancer. Only TSA of deeply invading

tumors was identified to contribute significantly to cTF, accounting for 75% of explained vari-

ability. While not statistically significant, histologic grade and TSA of shallow invading tumors

accounted for 12% and 11%, resp.

Table 2. Analytical model for lung cancer.

Variable Estimate p-value Relative importance

(Intercept) 0.0154 0.8697 NA

ELG 62.3x10-9/mm3 < 0.001 0.813

Lymph node status 0.0018 0.9749 0.029

Histologic grade (1 vs. 3) 0.0390 0.4492 0.138

Adenocarcinoma –0.0036 0.9689 0.004

Squamous cell carcinoma –0.0572 0.5604 0.010

Small cell lung cancer 0.0492 0.6830 0.006

ELG: Excessive lesion glycolysis; NA: not applicable.

https://doi.org/10.1371/journal.pone.0256436.t002

Fig 8. cTF increases with lung cancer excessive lesion glycolysis. cTF increases with ELG (in mm3) for lung cancer. Black, red, and green dots depict

samples from stages I, II, and II, respectively (Model development and validation was limited to clinical stages I-III). Linear fit and 95% confidence intervals

are shown in blue and gray, respectively. cTF: Circulating tumor fraction, ELG: Excessive lesion glycolysis.

https://doi.org/10.1371/journal.pone.0256436.g008
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Fig 9. Lung cancer model validation. (A) Detection by TM assay for lung cancer samples sorted by ELG. (B) ROC to

predict lung cancer detection by TM assay using ELG. cTF: Circulating tumor fraction, ELG: Excessive lesion glycolysis,

ROC: Receiver operating characteristic curve, TM: Targeted methylation.

https://doi.org/10.1371/journal.pone.0256436.g009
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Fig 10. Colorectal cancer cTF distribution by clinical stage, depth of microinvasion, and relation to WGBS

classifier score. (A) cTF by clinical stage for colorectal cancer. (B) cTF by depth of microinvasion for colorectal cancer.

(C) WGBS classifier score by cTF for colorectal cancer. Samples are colored by clinical stage and samples with imputed

cTF are shown as triangles. cTF: Circulating Tumor fraction, WGBS: Whole-genome bisulfite sequencing. Non-

informative: Confirmed invasive cancer with insufficient clinical information to determine stage.

https://doi.org/10.1371/journal.pone.0256436.g010
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Prediction models where cTF increases linearly with TSA were created separately for deep

and shallow tumors (Fig 11). 51 colorectal adenocarcinomas from the CCGA2 substudy with

TM results were available for model validation (7/19 detected in stage I, 12/18 detected in

stage II, 10/14 detected in stage III). 2 cases had an imputed size for a non-index lesion. The

predictive model is able to separate detected and undetected cases beyond clinical stage (Fig

12A, Fig C in S1 Text, Wilcoxon rank-sum p-value < 0.001) and explains lung cancer detec-

tion with a TM assay with an AUC of 0.881 (95% CI 0.787–0.975) (Fig 12B).

The corresponding quantitative model estimated that each mm2 TSA of deeply invading

colorectal cancer surface area adds 13.6 genome equivalents to the circulation of a cancer

patient (p = 0.0005), while each mm2 TSA of a shallowly invading tumor adds only 1.8 genome

equivalents (p = 0.014). While again ctDNA increases with the number of tumor cells, in colo-

rectal cancer the trafficking of tumor-derived cfDNA either into the circulation or loss of

tumor DNA into the colon lumen are a major correlate of ctDNA.

Discussion

This study analyzes the nature and pathophysiological correlates of ctDNA. Prediction models

were created using tumor-informed cTF measurements and validated on TM assay results

from a different participant population. The ability to transfer the models from a training to a

separate validation cohort and between different cfDNA assays used for cTF measurements

and an application of early cancer detection indicates that the predictive models might repre-

sent the cancer biology underlying ctDNA levels.

The identified surrogate biomarkers that determine ctDNA in this post hoc analysis are

tumor size, %Ki-67 positive in breast cancer, PET FDG SUV in lung cancer, and depth of

microinvasion in colorectal cancer. These are all established prognostic markers of their

respective cancer types and assess tumor aggressiveness [51–53]. Here, the biophysical markers

TMitV and ELG appeared to capture the essential characteristics of subtypes like HR-negative

breast cancer and squamous cell carcinoma of the lung, which have previously been shown to

have higher tumor fraction [27–29, 50]. The main link is an apparent correlation between

mitotic activity and cell death rates in growing cancers. As explanation, we offer that tumor

cells frequently outgrow the tumor mass currently supported by the TME. While the growth of

the tumor mass is limited by angiogenesis and scaffolding by growing stroma, tumor cell divi-

sion in excess of these resource limitations can lead to many forms of division death and

release cfDNA into the TME, from where it can get trafficked into the circulation. The models

imply a direct link between cell division and cell death in growing tumors. This link is further

supported by the possibility of mitotic catastrophes [34], which explain division death even for

p53-deficient cells [35]. Mitotically active tumor cells are observed even in hypoxic tumor

regions [54].

Table 3. Analytical model for colorectal cancer.

Variable Estimate p-value Relative importance

(Intercept) 0.0023 0.6865 NA

Surface area of shallow invading tumors 0.42x10-6/mm2 0.9280 0.111

Surface area of deep invading tumors 3.52x10-6/mm2 0.0422 0.751

Lymph node status 0.0004 0.9389 0.020

Histologic grade (1 vs. 3/4) 0.0021 0.5011 0.118

NA: not applicable

https://doi.org/10.1371/journal.pone.0256436.t003
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These pathophysiological mechanisms that link tumor cell growth, tumor cell death, and

shedding of ctDNA contradict recently published assumptions of independent tumor growth

and cell death rates which have been used to claim that an indolent tumor might result in

higher levels of ctDNA than a fast growing tumor [55, 56].

While the identification of clinically reported surrogate biomarkers that correlate with

ctDNA levels allows using our models in various applications, the use of surrogate biomarkers

is also a study limitation. While the number of tumor cells, the rate of tumor cell death, tumor

blood flow and vascular permeability would be physiologically most plausible to quantitatively

explain ctDNA, this study aimed to find routinely clinically available markers, identifying

tumor size, mitotic or metabolic activity, and depth of invasion as surrogates. We acknowledge

that a multi-center observational study like CCGA introduces inter-site variability to clinical

data and its completeness for modeling purposes, while a dedicated single-site study might

Fig 11. cTF increases with TSA and depth of microinvasion for colorectal cancer. cTF increased with TSA (in mm2) and depth of microinvasion for

colorectal adenocarcinomas. Dots show cases that invade beyond the subserosa, triangles show cases that do not invade beyond the subserosa. Black, red,

and green dots depict samples from stages I, II, and III, respectively. (Model development and validation was limited to clinical stages I-III). Linear fit and

95% confidence intervals are shown in red (shallow microinvasion), black (deep microinvasion), and gray, respectively. cTF: Circulating tumor fraction,

TSA: Tumor surface area.

https://doi.org/10.1371/journal.pone.0256436.g011
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Fig 12. Colorectal cancer model validation. (A) Detection by TM assay for colorectal cancer cases sorted by TSA

weighted by depth of microinvasion. Clinical stage is shown at the bottom. (B) ROC to predict colorectal cancer detection

by TM assay using weighted TSA. cTF: Circulating tumor fraction, ROC: Receiver operating characteristic curve, TM:

Targeted methylation, TSA: Tumor surface area.

https://doi.org/10.1371/journal.pone.0256436.g012
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identify additional clinical correlates of ctDNA from stricter controlled quantitative assess-

ments of tumor characteristics.

The CCGA study enrolled participants prior to cancer treatment, and the developed models

identify ctDNA correlates in untreated patients. cfDNA-based applications in cancer treat-

ment settings might additionally represent treatment response and resulting tumor cell death

[57–59] that are not in scope for the analysis presented here. Furthermore, the developed mod-

els are cancer-type-specific and do not yet explain strong variations observed between ctDNA

levels for different cancer types [5]. The colorectal cancer model identifies DNA fragment traf-

ficking, (i.e., the transport from the TME into the circulation) as a relevant correlate of

ctDNA. Tumor blood flow, perfusion, and vascular permeability are therefore candidates to

explain systematic cancer-type-specific variations in ctDNA that have not been assessed in this

study. Increased levels of ctDNA for growing tumors can be further explained by tumor perfu-

sion and the dual nature of the vascular epithelial growth factor (VEGF) that is expressed in

tumors to drive neovascularization. VEGF has previously been known as vascular permeability

factor VPF [60], and increased vascular permeability with increased interstitial filtration flow

can contribute to increased trafficking of cfDNA from the tumor mass into the circulation via

lymphatic drainage or direct intravasation on the venous side of the vascular perfusion bed.

Future work could include relating direct measures of cell death (e.g., using immunohis-

tochemistry assessment of cleaved caspase 3), tumor blood flow, and vascular permeability to

ctDNA.

The biophysical models presented here explain levels of ctDNA using only few, physiologi-

cally plausible clinical parameters. The identified clinical correlates of ctDNA are at the same

time biomarkers of tumor aggressiveness, suggesting that early cancer detection from cfDNA-

based applications is determined by tumor growth, i.e., the total number of new tumor cells

created in a patient body, instead of tumor size (currently used to characterize image-based

screening methods like mammography or low-dose CT [61–63]). This difference in sensitivity

either to static tumor size or to tumor growth makes it difficult to compare a cfDNA-based

MCED test to existing screening methods, especially as it is meant to complement existing

screening methodologies such as mammography. For example, the MCED test used for the

validation of the biophysical models in this paper [9, 48] did not detect all early-stage breast

cancers that were detected by mammography, but preferably detected more aggressive sub-

types [27]. The results in this paper show that cancer detection in cfDNA depends on cTF and

TMitV and can be used to explain this behavior of a cfDNA-based MCED test. Together these

findings suggest that a cfDNA-based MCED test can complement mammography given that

mammography does not detect all fast-growing interval cancers [64, 65] or cancers in women

with dense breasts [66, 67]. A recent post-analysis of the second CCGA substudy showed that

cancers not detected by a cfDNA-based MCED test had better prognosis than cancers detected

by the test, suggesting that the test detected more aggressive cancers [68].

Another systematic difference between imaging- and cfDNA-based cancer early detection

is specificity. While consecutive single-cancer screening methods (possibly with comparatively

higher sensitivity especially for less aggressive cancers) accumulate false-positive rates [69],

one cfDNA MCED test detects all covered cancer types with one single, low false-positive rate.

Consequently, it seems more appropriate to characterize a cfDNA-based MCED test not in

competition with, but instead as a complement to, imaging-based, single-cancer screening

methods. Large studies in a target screening population to assess outcome have recently been

announced, and a potential positive impact on patient survival has recently been published

using modeled data with the cancer-type and stage-dependent sensitivity of the same test that

is used to capture cancer detection in this manuscript [70].
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In conclusion, this study supports that tumor fraction plays a pivotal role for cfDNA appli-

cations in oncology. It drives the performance of MCED tests, its clinical correlates are indica-

tors of aggressive tumors, and it is ultimately prognostic and identifies potentially lethal

cancers [5, 68, 71]. Taken together, these data support that early cancer detection from cfDNA

is particularly sensitive to aggressive, fast-growing tumors.
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52. Inwald EC, Klinkhammer-Schalke M, Hofstädter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a

prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer

registry. Breast Cancer Res Treat. 2013; 139: 539–552. https://doi.org/10.1007/s10549-013-2560-8

PMID: 23674192

53. Li J, Guo B-C, Sun L-R, Wang J-W, Fu X-H, Zhang S-Z, et al. TNM staging of colorectal cancer should

be reconsidered by T stage weighting. World J Gastroenterol. 2014; 20: 5104–5112. https://doi.org/10.

3748/wjg.v20.i17.5104 PMID: 24803826

54. Vega Harring S, Canamero M, Korski K, Marchal G, Grimm O, Ferreira C, et al. Unraveling tumor

metabolism with in silico IHC multiplexing supported by automated imaging analysis. Mol Cancer Res.

2016; 14: B47–B47. https://doi.org/10.1158/1557-3125.METCA15-B47

55. Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, et al. A mathematical model of

ctDNA shedding predicts tumor detection size. Sci Adv. 2020; 6: eabc4308. https://doi.org/10.1126/

sciadv.abc4308 PMID: 33310847

56. Pashayan N, Pharoah PDP. The challenge of early detection in cancer. Science. 2020; 368: 589–590.

https://doi.org/10.1126/science.aaz2078 PMID: 32381710

57. Deligezer U, Eralp Y, Akisik EE, Akisik EZ, Saip P, Topuz E, et al. Size distribution of circulating cell-

free DNA in sera of breast cancer patients in the course of adjuvant chemotherapy. Clin Chem Lab

Med. 2008; 46: 311–317. https://doi.org/10.1515/CCLM.2008.080 PMID: 18254709

58. Kwee S, Song M-A, Cheng I, Loo L, Tiirikainen M. Measurement of Circulating Cell-Free DNA in Rela-

tion to 18F-Fluorocholine PET/CT Imaging in Chemotherapy-Treated Advanced Prostate Cancer. Clin

Transl Sci. 2012; 5: 65–70. https://doi.org/10.1111/j.1752-8062.2011.00375.x PMID: 22376260

59. Sterzik A, Paprottka PM, Zengel P, Hirner H, Roßpunt S, Eschbach R, et al. DCE-MRI biomarkers for

monitoring an anti-angiogenic triple combination therapy in experimental hypopharynx carcinoma xeno-

grafts with immunohistochemical validation. Acta Radiol. 2015; 56: 294–303. https://doi.org/10.1177/

0284185114527444 PMID: 24609871

60. Dvorak HF. Vascular Permeability Factor/Vascular Endothelial Growth Factor: A Critical Cytokine in

Tumor Angiogenesis and a Potential Target for Diagnosis and Therapy. J Clin Oncol. 2002; 20: 4368–

4380. https://doi.org/10.1200/JCO.2002.10.088 PMID: 12409337

61. Han D, Heuvelmans MA, Oudkerk M. Volume versus diameter assessment of small pulmonary nodules

in CT lung cancer screening. Transl Lung Cancer Res. 2017; 6: 52–61–61. https://doi.org/10.21037/tlcr.

2017.01.05 PMID: 28331824

62. Welch HG, Prorok PC, O’Malley AJ, Kramer BS. Breast-Cancer Tumor Size, Overdiagnosis, and Mam-

mography Screening Effectiveness. N Engl J Med. 2016; 375: 1438–1447. https://doi.org/10.1056/

NEJMoa1600249 PMID: 27732805

PLOS ONE Cell-free DNA tumor fraction correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0256436 August 25, 2021 25 / 26

http://www.ncbi.nlm.nih.gov/pubmed/11051227
https://doi.org/10.1038/bjc.2013.705
http://www.ncbi.nlm.nih.gov/pubmed/24231948
https://doi.org/10.1038/s41467-018-07466-6
http://www.ncbi.nlm.nih.gov/pubmed/30498206
https://doi.org/10.1016/j.annonc.2021.05.806
http://www.ncbi.nlm.nih.gov/pubmed/34176681
https://doi.org/10.1200/JCO.2021.39.15%5Fsuppl.3010
https://doi.org/10.1016/j.jmoldx.2019.10.013
http://www.ncbi.nlm.nih.gov/pubmed/31837429
https://doi.org/10.1097/JTO.0b013e31815e6d6b
https://doi.org/10.1097/JTO.0b013e31815e6d6b
http://www.ncbi.nlm.nih.gov/pubmed/18166834
https://doi.org/10.1007/s10549-013-2560-8
http://www.ncbi.nlm.nih.gov/pubmed/23674192
https://doi.org/10.3748/wjg.v20.i17.5104
https://doi.org/10.3748/wjg.v20.i17.5104
http://www.ncbi.nlm.nih.gov/pubmed/24803826
https://doi.org/10.1158/1557-3125.METCA15-B47
https://doi.org/10.1126/sciadv.abc4308
https://doi.org/10.1126/sciadv.abc4308
http://www.ncbi.nlm.nih.gov/pubmed/33310847
https://doi.org/10.1126/science.aaz2078
http://www.ncbi.nlm.nih.gov/pubmed/32381710
https://doi.org/10.1515/CCLM.2008.080
http://www.ncbi.nlm.nih.gov/pubmed/18254709
https://doi.org/10.1111/j.1752-8062.2011.00375.x
http://www.ncbi.nlm.nih.gov/pubmed/22376260
https://doi.org/10.1177/0284185114527444
https://doi.org/10.1177/0284185114527444
http://www.ncbi.nlm.nih.gov/pubmed/24609871
https://doi.org/10.1200/JCO.2002.10.088
http://www.ncbi.nlm.nih.gov/pubmed/12409337
https://doi.org/10.21037/tlcr.2017.01.05
https://doi.org/10.21037/tlcr.2017.01.05
http://www.ncbi.nlm.nih.gov/pubmed/28331824
https://doi.org/10.1056/NEJMoa1600249
https://doi.org/10.1056/NEJMoa1600249
http://www.ncbi.nlm.nih.gov/pubmed/27732805
https://doi.org/10.1371/journal.pone.0256436


63. Cortadellas T, Argacha P, Acosta J, Rabasa J, Peiró R, Gomez M, et al. Estimation of tumor size in

breast cancer comparing clinical examination, mammography, ultrasound and MRI—correlation with

the pathological analysis of the surgical specimen. Gland Surg. 2017; 6: 330–335. https://doi.org/10.

21037/gs.2017.03.09 PMID: 28861372

64. Houssami N, Hunter K. The epidemiology, radiology and biological characteristics of interval breast can-

cers in population mammography screening. Npj Breast Cancer. 2017; 3: 1–13.

65. Niraula S, Biswanger N, Hu P, Lambert P, Decker K. Incidence, Characteristics, and Outcomes of Inter-

val Breast Cancers Compared With Screening-Detected Breast Cancers. JAMA Netw Open. 2020; 3:

e2018179–e2018179. https://doi.org/10.1001/jamanetworkopen.2020.18179 PMID: 32975573

66. Burnside ES, Warren LM, Myles J, Wilkinson LS, Wallis MG, Patel M, et al. Quantitative breast density

analysis to predict interval and node-positive cancers in pursuit of improved screening protocols: a

case–control study. Br J Cancer. 2021; 1–9. https://doi.org/10.1038/s41416-021-01466-y PMID:

34168297

67. Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, et al. Supplemental

MRI screening for women with extremely dense breast tissue. N Engl J Med. 2019; 381: 2091–2102.

https://doi.org/10.1056/NEJMoa1903986 PMID: 31774954

68. Chen X, Dong Z, Hubbell E, Kurtzman KN, Oxnard GR, Venn O, et al. Prognostic Significance of Blood-

Based Multi-cancer Detection in Plasma Cell-Free DNA. Clin Cancer Res. 2021 [cited 24 Jun 2021].

Epub 4 Jun 2021. https://doi.org/10.1158/1078-0432.CCR-21-0417 PMID: 34088722

69. Clarke CA, Hubbell E, Ofman JJ. Multi-cancer early detection: A new paradigm for reducing cancer-spe-

cific and all-cause mortality. Cancer Cell. 2021; 39: 447–448. https://doi.org/10.1016/j.ccell.2021.02.

004 PMID: 33606995

70. Hubbell E, Clarke CA, Aravanis AM, Berg CD. Modeled Reductions in Late-stage Cancer with a Multi-

Cancer Early Detection Test. Cancer Epidemiol Biomarkers Prev. 2021; 30: 460–468. https://doi.org/

10.1158/1055-9965.EPI-20-1134 PMID: 33328254

71. Oxnard GR, Chen X, Fung ET, Ma T, Lipson J, Hubbell E, et al. Prognostic significance of blood-based

cancer detection in plasma cell-free DNA (cfDNA): evaluating risk of overdiagnosis. J Clin Oncol. 2019;

37: Abstract 1545. https://doi.org/10.1200/JCO.2019.37.15_suppl.1545

PLOS ONE Cell-free DNA tumor fraction correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0256436 August 25, 2021 26 / 26

https://doi.org/10.21037/gs.2017.03.09
https://doi.org/10.21037/gs.2017.03.09
http://www.ncbi.nlm.nih.gov/pubmed/28861372
https://doi.org/10.1001/jamanetworkopen.2020.18179
http://www.ncbi.nlm.nih.gov/pubmed/32975573
https://doi.org/10.1038/s41416-021-01466-y
http://www.ncbi.nlm.nih.gov/pubmed/34168297
https://doi.org/10.1056/NEJMoa1903986
http://www.ncbi.nlm.nih.gov/pubmed/31774954
https://doi.org/10.1158/1078-0432.CCR-21-0417
http://www.ncbi.nlm.nih.gov/pubmed/34088722
https://doi.org/10.1016/j.ccell.2021.02.004
https://doi.org/10.1016/j.ccell.2021.02.004
http://www.ncbi.nlm.nih.gov/pubmed/33606995
https://doi.org/10.1158/1055-9965.EPI-20-1134
https://doi.org/10.1158/1055-9965.EPI-20-1134
http://www.ncbi.nlm.nih.gov/pubmed/33328254
https://doi.org/10.1200/JCO.2019.37.15%5Fsuppl.1545
https://doi.org/10.1371/journal.pone.0256436

