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Abstract

Purpose

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence

of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP).

The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival

in the human retina was investigated.

Methods

A chamber was designed to expose cells to increased HP (constant and fluctuating). Accu-

rate pressure control (10-100mmHg) was achieved using mass flow controllers. Human

organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in

serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen

glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL

assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohis-

tochemistry (NeuN). Activated p38 and JNK were detected by Western blot.

Results

Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pres-

sure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC

marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was

no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no in-

crease in apoptosis of RGCs. OGD increased apoptosis, reduced RGCmarker expression

and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation

remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/

min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and

JNK, remaining elevated for 90min post-OGD.
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Conclusions

Directly applied HP had no detectable impact on RGC survival and stress-signalling in

HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death.

These results show that direct HP does not cause degeneration of RGCs in the ex vivo
human retina.

Introduction
Glaucoma is a group of optic neuropathies leading to progressive loss of visual field due to the
degeneration of retinal ganglion cells (RGCs) in the inner retina and loss of their axons in the
optic nerve [1]. Vision loss caused by glaucoma is irreversible. Glaucoma is the second most
common cause of world blindness after cataract [2] and thus the most common cause of irre-
versible blindness. Raised intraocular pressure (IOP) is a major risk factor for glaucoma [1, 3]
and current glaucoma management is aimed at reducing IOP to limit neuronal damage. IOP
above the normal range of 11 to 21mmHg has been shown to increase the likelihood of devel-
oping glaucoma with higher pressures leading to a progressive worsening of vision [4–7]. Fun-
damental questions remain, however, as to the mechanism by which elevated IOP causes
degeneration of the RGCs and subsequent loss of vision in glaucoma [8].

It has proven difficult to isolate the contribution of individual variables that are affected in
the eye as a result of increased IOP, which may subsequently lead to RGC death. One direct
component affected by raised IOP is an increase in hydrostatic pressure (HP): when IOP in-
creases in the eye, the retina will experience an increase in HP, acting transversely across the
retina. In vitro studies, modelling this increase, have suggested exposing RGCs to raised HP
may have a direct effect on survival [9–12], further suggesting that HP has a role in RGC death
in glaucoma. Changes in cell survival have been detected in isolated RGCs exposed to short
term pressure elevations of 50–70 mmHg [9, 10, 13]. Effects of HP elevations have not been in-
vestigated using human in vitro retinal models. The aim of the present study was to identify
whether increased HP had a direct effect on cell survival in human RGCs. To achieve this aim
a pressure chamber was designed and constructed and the effect of raised HP was investigated
using human organotypic retinal culture (HORC) used to model retinal disease in our lab
[14, 15]. The chamber was designed to limit possible confounding factors such as mechanical
distortion of the tissue or fluid currents. The use of explant cultures permits examination in a
directly ex vivo situation in which retinal cells maintain microarchitecture and cell-to-cell com-
munication. Additionally, signalling pathways associated with stress were investigated in re-
sponse to increased HP.

Materials and Methods

Human Organotypic Retinal Cultures (HORCs)
Donor human eyes were obtained from the East Anglian Eye Bank with ethical approval (Ref
04/Q0102/57; NHS Research Ethics Committee), with written consent from the donors’ next-
of-kin and in compliance with the tenets of the Declaration of Helsinki. Retinal dissection and
HORC preparation was performed as described previously [14]. Briefly, the retina was separat-
ed from the globe and dissected to give a flat retinal preparation. Five para-macular retinal ex-
plants were taken from each donor eye using a 4mm diameter, dissecting trephine (Biomedical
Research Instruments, MD, USA). HORC explants were transferred to serum-free (SF)
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Dulbecco’s Modified Eagle Medium (DMEM)/HamF12 (Invitrogen, Paisley, UK) containing
50mg/ml gentamicin (Sigma-Aldrich, Poole, UK) in a 35mm culture dish (Corning, NY, USA).
Individual HORCs were transferred to separate culture dishes containing fresh medium and in-
cubated for 1h in a humidified atmosphere of 95% Air/5% CO2 prior to experimentation.
Throughout the experimental period, the explants were contained in 35mm dishes containing
1.5ml SF DMEM/HamF12. The explants were submerged in the medium, but not in contact
with the base of the dish. Only eyes within 24h post mortem were used for research and those
with known/evident retinal disease such as glaucoma, age-related macular degeneration or dia-
betic retinopathy were excluded. In total 68 human eyes, from donors aged 43 to 84 years, were
used in the experiments.

Pressure System
A custom-made chamber was constructed (UEA mechanical workshop, Norwich, UK)
from Perspex to expose tissue explants to increased HP (Fig. 1A). Chamber internal dimen-
sions were 260mm x 130mm x 140mm giving an overall volume within the chamber of
4732ml. A Perspex door was used to seal the chamber against a continuous rubber O-ring.
Explants were placed inside the chamber on a raised platform in 35mm culture dishes. The
dishes had lids, which were loosely fitted allowing gas exchange and equilibration of pressure.
The base of the chamber was flooded with sterile deionised water in order to maintain
humidity.

The chamber used mass flow controllers (MFCs), positioned at the inlet and outlet ports,
to simultaneously regulate the internal pressure and the rate of gas flow through the
chamber. Pressurised gas (95% air/ 5% CO2) could be rapidly injected into the chamber using a
1000ml/min MFC and released via a solenoid exhaust valve. Custom written software regulated
internal pressure based on levels measured by a digital pressure sensor (Omega Engineering
Inc, Manchester, UK). The software was able to control gas flow via an analogue to digital in-
terface which operated the MFC and exhaust valve (Fig. 1B). The time required for compres-
sion between 10 and 100mmHg was approximately 30 seconds. The chamber regulated to
�1mmHg around the selected set-point (therefore at “constant” 60mmHg, the pressure varied
between 59 and 61mmHg). Fig. 1B shows a constant pressure trace (HP(C); 60mmHg for 24h);
Fig. 1C shows a fluctuating pressure trace (HP(F): 10–100mmHg; 1 cycle/min for 60 min). A
second low capacity (100ml/min) MFC positioned on the outflow ensured a constant flow of
gas through the chamber at 10ml/min that was independent of pressure. In order to give an an-
alogue readout, a manometer was also fitted to the chamber. No compensation for changes in
atmospheric pressure were made: the raised HP in the chamber was in addition to atmospheric
pressure. Controls were maintained at atmospheric pressure in the same incubator.

No significant changes in pH or evaporation rate were detected between control and medi-
um exposed to pressure for the experimental period (data not shown). pH was measured fol-
lowing removal of the medium from the chamber using a glass electrode (ThermoScientific,
Loughborough, UK). Evaporation was assessed by weighing the medium before and after expo-
sure to experimental conditions.

Measurement of dissolved oxygen concentration
O2 concentration in distilled water or culture medium exposed to pressure was measured using
a Hansatech DW1 Oxygen Electrode (Hansatech Instruments Ltd, Norfolk, UK). The system
was calibrated before each use with air saturated water or medium and oxygen-free water or
medium (bubbled with 95% N2, 5% CO2 for 10min). 35mm culture dishes containing 1.5ml so-
lution were exposed to various pressures or control conditions for 30min. 1ml of treated
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solution was then placed in the oxygen electrode reaction vessel. Oxygen concentrations were
measured every second for ~1min whilst constantly stirring at 450rpm. The mean values for
each oxygen concentration measurement were recorded (nmol/ml). The effect of pressure on
O2 concentration in our pressure system closely followed that predicted by Henry’s Law [16]
where the amount of a given gas that dissolves in a liquid is directly proportional to the partial
pressure of that gas in equilibrium with the liquid (Fig. 2). The deviation from Henry’s Law

Figure 1. The system used to expose retinal tissue to raised hydrostatic pressure. (A) Schematic diagram of the hydrostatic pressure system (not to
scale). Examples of computer controlled protocols using the pressure system at (B) constant (60mmHg) pressure for 24h and (C) fluctuating (10–100mmHg;
1 cycle/min) pressure for 1h. MFC = mass flow controller.

doi:10.1371/journal.pone.0115591.g001
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likely reflects oxygen loss in the time taken between sampling and measurement. Correlation
between predicted and measured O2 concentration further validates that the pressure in the
chamber was at the designated set pressure.

Simulated ischemia
HORCs were exposed to oxygen glucose deprivation (OGD) as described previously [14].
Briefly, 1h following dissection, the medium was changed to glucose-free DMEM. Explants
were then placed in a modular incubator chamber (Billups-Rothenburg, CA, USA) gassed with
95% N2/5% CO2 and placed in an incubator at 35°C for 3h. Control cultures underwent the
same number of medium changes except using DMEM (containing glucose) and were incubat-
ed at atmospheric conditions in the same incubator as the modular chamber. Samples were di-
rectly processed, or medium was exchanged for SF DMEM/HamF12 (containing glucose) until
the experimental end point.

Lactate dehydrogenase (LDH) assay
The level of cell death was determined by measuring the LDH activity in cell culture medium
according to the manufacturer’s instructions (Roche Molecular Biochemicals, Burgess Hill,
UK).

Figure 2. Changes in dissolved O2 with increased HP above atmospheric pressure.O2 concentration in water and medium is expressed as the
percentage of the concentration recorded at atmospheric pressure (n = 4). The gas in the chamber was 95% air/ 5% CO2. The O2 concentration in pure water
predicted by Henry’s Law is also shown.

doi:10.1371/journal.pone.0115591.g002
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Quantitative Real Time PCR (qRT-PCR)
Total RNA was extracted from HORCs using the RNeasy Mini Kit (Qiagen, Crawley, UK) ac-
cording to the manufacturer’s instructions. The concentration of total RNA was measured
using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington,
USA). Total RNA was reverse transcribed to complementary DNA (cDNA) in a reaction mix
of Superscript II reverse transcriptase (Invitrogen, Paisley, UK), dNTP mix (Bioline, London,
UK) and random primers (Promega, Southampton, UK) according to manufacturer
instructions.

TaqMan PCR was performed using 5ng of input cDNA and Taqman PCR mastermix (Ap-
plied Biosystems, Warrington, UK) and human THY-1 primer and probe set
(Hs00174816_m1, Assay on demand, Applied Biosystems, Warrington, UK). Amplification
and detection was performed using the ABI Prism 7700 Sequence Detection System (Applied
Biosystems, Warrington, UK). THY-1mRNA was normalised to the geometric mean of CT val-
ues for cytochrome c-1 (CYC-1) and topoisomerase DNA I (TOP1) as described previously
[14]. Normalising genes were selected from a range of housekeeping genes using the Genorm
protocol [17].

Immunohistochemistry and TUNEL-labelling
Immunohistochemistry and TUNEL-labelling were used to assess the number of surviving
RGCs in HORCs as described previously [14]. Briefly, HORCs were fixed in 4% formaldehyde
for 24h and then cryopreserved in a 30% sucrose solution in PBS for a further 24h at 4°C.
HORCs were mounted in Optimal Cutting Temperature compound (OCT) (Sakura Finetek,
Zoeterwoude, Netherlands) and frozen at -80°C. 13mm retinal slices were taken using a Bright
OTF 5000 cryostat (Bright Instruments, Huntingdon, UK) and mounted on 3’aminopropyl-
triethoxyl silane (TESPA; Sigma-Aldrich, Poole, UK) coated glass slides. Assessment via Digital
Vernier Caliper (Clarke, Essex, UK) ensured slices were taken at the centre of 4mm samples.

The primary antibody used was mouse monoclonal NeuN (1:200) (Chemicon International,
Millipore, Watford, UK) and the secondary antibody was goat anti-mouse AlexaFluor 488 or
555 (1:1000) (Invitrogen, Paisley, UK). For the TUNEL assay (Promega, Southampton, UK),
retinal slices were washed and immersed in TUNEL equilibration buffer for 10min, 18h after
primary antibody binding. Slices were incubated in TUNEL reaction mixture for 1h at 35°C be-
fore stopping the reaction by immersion in standard citrate solution (SCS). After further wash-
ing, nuclei were stained with DAPI (1:100; Sigma-Aldrich, Poole, UK).

18 × 200mm sections from each HORC were counted in a masked fashion. The number of
NeuN-labelled cells co-localising with DAPI were used as a measure of RGC number. NeuN
positive cells which also stained positive for TUNEL were identified as apoptotic RGCs. It is
important to note that there is no major staining of NeuN in the inner nuclear layer suggesting
that NeuN does not label amacrine cells [14].

Western blotting
Protein lysates were obtained from HORCs using Mammalian Protein Extract Reagent M-PER
supplemented with Halt Phosphatase Inhibitor Cocktail, Protease Inhibitor Cocktail and 5mM
EDTA (All from Thermo Scientific, Loughborough, UK) for 20min on ice followed by centrifu-
gation at 13,000rpm for 5min. Protein concentration of each lysate was determined using a
bicinchoninic acid (BCA) protein assay (Thermo Scientific, Loughborough, UK). Equal
amounts of protein were loaded onto 10% SDS-PAGE gels and proteins separated by electro-
phoresis. Proteins were transferred to PVDF membrane (Perkin Elmer Life Sciences, Cam-
bridge, UK) using a semi-dry transfer blotter (Bio-Rad Laboratories, Hemel Hempstead, UK).
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Membranes were blocked with PBS-T (0.1% Tween-20 in PBS, 5% fat-reduced milk), hybrid-
ized with primary antibody followed by incubation with secondary antibody (GE Healthcare,
Buckinghamshire, UK). Bands were visualised using chemiluminescent ECL Plus Western Blot
Detection reagent (GE Healthcare, Buckinghamshire, UK) and net band intensity determined
(1D 3.5 software, Eastman Kodak, Rochester, NY). Primary antibodies (Cell Signaling Technol-
ogy, Danvers, MA, USA) against phospho- and total p38, phospho- and total JNK were used at
1:250, 1:1000, 1:500 and 1:500 respectively.

Statistical Analysis
Data shown is the mean� standard error of the mean (S.E.M). Significance was determined
using an unpaired Student’s t-test (GraphPad Prism version 6.0, San Diego, USA). Differences
were considered significant at the p�0.05 level. Groups were considered statistically similar if
p�0.2 (b=0.2) and p values are given throughout. Due to having only one chamber, pressure
experiments were carried out independently using separate donors with appropriate same
donor controls.

Results

Effect of increased hydrostatic pressure on RGC survival in HORCs
There was no significant increase in released LDH as a result of either constant or fluctuating
pressure at 24h (HP(C) 60mmHg—n = 20, p = 0.564; HP(F) 10–100mmHg 1 cycle/min—n = 8,
p = 0.794) or 48h (HP(C) 60mmHg—n = 20, p = 0.907; HP(F) 10–100mmHg—n = 8, p = 0.838)
compared with controls (Fig. 3A). As a positive control, simulated ischemia caused an approxi-
mate 50% increase in release of LDH into the culture medium at 24h, indicating that increased
death of retinal cells had occurred under these conditions (n = 11, p = 0.0001; Fig. 3A). Retinal
architecture was preserved in HORCs exposed to constant and fluctuating HP for 24 or 48h and
OGD for 24h, with no observed differences between control and pressure groups or with simulat-
ed ischemia (Fig. 3B, C & D).

Focussing more specifically on survival of RGCs in HORCs, NeuN labelling and THY-1
mRNA expression were quantified (Fig. 4A&B). The numbers of NeuN-labelled neurons rela-
tive to controls did not change after exposure to either constant or fluctuating pressure for 24h
(HP(C) 60mmHg—n = 9, p = 0.947; HP(F) 10–100mmHg—n = 10, p = 0.955) or 48h (HP(C)
60mmHg—n = 9, p = 0.668; HP(F) 10–100mmHg—n = 10, p = 0.733) (Fig. 4A). In addition,
no significant change in the level of THY-1mRNA between control and pressure exposure at
either time-point was observed with either pressure regime (HP(C) 60mmHg 24h—n = 4,
p = 0.878; HP(C) 60mmHg 48h—n = 4, p = 0.837; HP(F) 10–100mmHg 24h—n = 4, p = 0.584;
HP(F) 10–100mmHg 48h—n = 4; p = 0.516) (Fig. 4B). Simulated ischemia, however, caused
an almost 50% reduction in the number of NeuN-labelled cells compared with controls (n = 9;
p = 0.021; Fig. 4A) and a similar decrease in THY-1mRNA levels (n = 8; p = 0.010; Fig. 4B), in-
dicating a reduction in RGC number.

Since it might be expected that decline in RGC number could occur later than 48h, but that
apoptosis may have been initiated during this period, the number of TUNEL-positive NeuN-
labelled cells was also assessed (Fig. 4C-G). No significant differences in the number of apopto-
tic RGCs were observed at either time-point using either pressure regime (HP(C) 60mmHg
24h—n = 4, p = 0.531; HP(C) 60mmHg 48h—n = 4, p = 0.349; HP(F) 10–100mmHg 24h—
n = 4, p = 0.695; HP(F) 10–100mmHg 48h—n = 4; p = 0.853). OGD, on the other hand, caused
an approximate doubling of the number of TUNEL-positive NeuN-positive cells at 24h (n = 4;
p = 0.011) indicating that it was inducing significant apoptotic cell death by this time-point
(Fig. 4G).
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Figure 3. Elevated hydrostatic pressure (HP) did not cause necrotic cell death or loss of retinal structure in HORCs. (A) No increase in necrotic cell
death, measured by released cytoplasmic LDH, was observed after constant (HP (C); 60mmHg) or fluctuating (HP (F); 10–100mmHg; 1cycle/min) pressure
for 24 or 48h (HP(C) 60mmHg 24h—n = 20, p = 0.564; HP(C) 60mmHg 48h—n = 20, p = 0.907; HP(F) 10–100mmHg 24h—n = 8, p = 0.794; HP(F) 10–
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Effect of hydrostatic pressure on p38 and JNK signalling
Investigation of the stress pathways p38 and JNK showed no increased activation (phosphory-
lation) in HORCs following exposure to fluctuating pressure (10–100mmHg; 1 cycle/min) at
15 min (n = 3; p38 p = 0.769; JNK p = 0.354), 30 min (n = 3; p38 p = 0.696; JNK p = 0.667),
60 min (n = 3; p38 p = 0.232; JNK p = 0.891) and 90min (n = 3; p38 p = 0.0.273; JNK
p = 0.833) (Fig. 5A, B). HORCs exposed to simulated ischemia, however, showed a sustained
increase in p38 and JNK phosphorylation compared to controls, with significant increases at
the end of the OGD period (0 min; n = 3; p38 p = 0.012; JNK p = 0.006), at 60 min (n = 3; p38
p = 0.019; JNK p = 0.039) and 90 min (n = 3; JNK p = 0.049) post-OGD. Activation was there-
fore observed directly following the 3h OGD period and activation remained elevated at subse-
quent time points for 90min post-insult (Fig. 5C, D).

Discussion
Although ocular hypertension has been identified as a major risk factor for glaucoma, precisely
how raised IOP translates into loss of RGCs and consequent visual field deterioration is poorly
understood. Several previous studies have suggested that increased HP can induce RGC death
[9–12]. The aim of the present study was therefore to investigate whether similar pressure-
induced loss of retinal cells could also be observed in the human retina using an explant
(HORC) model.

Since we were using a custom-made pressure chamber, it was important to validate the sys-
tem and consider any potential confounding factors. By using MFCs it was shown that HP
could be accurately increased within the chamber and also be tightly regulated. Pressure in-
creased to the target pressure within 30sec and was maintained within�1mmHg. Using this
system, we could be confident that no uncontrolled initial pressure surges were experienced by
the tissue, such as could occur if the chamber were connected directly to a gas cylinder. Also
using this system we could be confident that there was no movement of the tissue, either via
fluid turbulence or movement of the underlying substrate. We were, in turn, confident that the
tissue was exposed purely to raised HP and that we had not inadvertently introduced any me-
chanical distortion. We measured evaporation of medium from dishes in the chamber and
found no difference at raised HPs compared to control dishes outside of the chamber, such
that one would not anticipate any exposure to differing osmotic conditions. In addition, in de-
sign of the system we enabled a constant gas flow through the chamber, independent of pres-
sure regulation, in order to mitigate against changes in gas composition (albeit very small due
to the large volume of this chamber) as a result of tissue respiration. It does, however, have to
be addressed, that some changes could not be mitigated against when using this design of
chamber. Specifically, in chambers that increase HP by raising the gas pressure at a gas-liquid
interface, the concentration of dissolved gases in the medium must be considered. Increasing
pressure in the gas phase increases the partial pressure of each gas within this phase; this leads
to a proportional increase in the concentration of dissolved gases, including O2, in the liquid
phase (ie. the medium) as described by Henry’s Law. An increase in O2 was measured in the
medium within our chamber (Fig. 2) in agreement with Henry’s Law. Therefore, any measured
effects of raised HP in our system would have needed to take this increase in O2 into consider-
ation. Raised partial pressure of CO2 would also occur, so it was also important to measure

100mmHg 48h—n = 8; p = 0.838). A positive control of 3h OGD/21h control conditions led to a significant increase in released LDH compared to control
conditions (n = 11; *p = 0.0001). (B-D) Representative immunofluorescence photomicrographs of HORCs; (B) 24h control (i) or pressure (ii, iii) exposure, (C)
48h control (i) or pressure (ii, iii) exposure and (D) 24h control (i) or 3h OGD/21h control conditions (ii). DAPI = blue, NeuN = green, GCL = ganglion cell layer,
INL = inner nuclear layer, ONL = outer nuclear layer. Scale = 200μm.

doi:10.1371/journal.pone.0115591.g003
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Figure 4. Elevated hydrostatic pressure did not decrease the expression of RGC specific markers in
HORCs or cause RGC apoptosis. (A) Constant (HP(C); 60mmHg) or fluctuating (HP(F) 10–100mmHg;
1cycle/min) pressure did not decrease the number of NeuN-labelled RGCs at the 24 or 48h time-points (HP(C)
60mmHg 24h—n = 9, p = 0.947; HP(C) 60mmHg 48h—n = 9, p = 0.668; HP(F) 10–100mmHg 24h—n = 10,
p = 0.955; (HP(F) 10–100mmHg 48h—n = 10; p = 0.733). A significant reduction in NeuN-labelled cells was
observed following simulated ischemia (3h OGD/21h control conditions) (n = 9; *p = 0.002). (B) Elevated HP
for 24 or 48h did not reduce THY-1mRNA expression compared to same time point controls (HP(C) 60mmHg
24h—n = 4, p = 0.878; HP(C) 60mmHg 48h—n = 4, p = 0.837; HP(F) 10–100mmHg 24h—n = 4, p = 0.584; HP
(F) 10–100mmHg—n = 4; p = 0.516). A significant reduction in THY-1 expression was caused by 3h OGD/21h
control conditions (n = 8; *p = 0.010). (C-G) Apoptotic labelling in RGCs was low with no increase in the
number of TUNEL+ NeuN-labelled cells at 24 or 48h after constant or fluctuating pressure compared to
controls (HP(C) 60mmHg 24h—n = 4, p = 0.531; HP(C) 60mmHg 48h—n = 4, p = 0.349; HP(F) 10–100mmHg
24h—n = 4, p = 0.695; HP(F) 10–100mmHg—n = 4; p = 0.853). An increase in the proportion of apoptotic
RGCs could be detected following 3h OGD/ 21h control conditions (n = 4; *p = 0.011). DAPI = blue, TUNEL =
red, NeuN = green, GCL = ganglion cell layer. White arrows highlight TUNEL+ NeuN-labelled cells. Scale =
200μm.

doi:10.1371/journal.pone.0115591.g004
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medium pH; this was not found to change significantly under the conditions of the experiment
i.e. buffering of the medium was sufficient to compensate for the increased [CO2]. We were
confident, therefore, that apart from an increase in [O2] as a result of Henry’s Law, that we had
considered and addressed other potential confounding factors such that we would be able to in-
terpret any changes seen in cell viability in terms of an effect of HP on the retinal cells.

Exposing the retinal explants to increased HP for up to 48h did not cause a reduction in
RGC survival or induction of apoptosis in response to constant (60mmHg) or fluctuating pres-
sure (10–100mmHg; 1 cycle/min). In contrast, as a positive control, we exposed HORCs to
simulated ischemia which did cause significant loss of RGCs. Increased p38 and JNK phos-
phorylation has previously been described in animal models of glaucoma [18–21] and p38 or
JNK pathway inhibition has been shown to protect RGCs following axotomy [22, 23] and is-
chemia [18]. In HORCs exposed to increased HP, no significant change in p38 and JNK phos-
phorylation was detected. HORCs subjected to simulated ischemia, however, showed increased

Figure 5. Elevated pressure did not activate p38 or JNK stress signalling pathways. Phosphorylation of (A) p38 and (B) JNK, relative to their total
expression, did not significantly alter with fluctuating pressure in HORCs (n = 3; 15 min- p38 p = 0.769, JNK p = 0.354; 30 min—p38 p = 0.696, JNK p = 0.667;
60 min—p38 p = 0.232, JNK p = 0.891; 90min-p38 p = 0.273, JNK p = 0.833). Phosphorylation of (C) p38 and (D) JNK was observed immediately following
3h OGD (n = 3; 0 min—p38 p = 0.012, JNK p = 0.006), and in the during the following reperfusion period in control medium (n = 3; 60 min—p38 p = 0.019,
JNK p = 0.039; 90 min—JNK p = 0.049). Results are expressed as a percentage of the untreated control. Representative blots are shown.

doi:10.1371/journal.pone.0115591.g005
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p38 and JNK phosphorylation at early time-points, thus demonstrating the sensitivity of our
model system.

To our knowledge, only one previous paper has investigated the effects of HP on retinal ex-
plants [12]. The research exposed rat retinal explants to raised HP and showed a loss of RGC
viability, but only when the pressure was increased very rapidly (at approximately 8mmHg/s).
A slower increase of approximately 3mmHg/s did not cause loss of viability. In our experi-
ments, the rise was commensurate with the slower rate and therefore the results could be seen
as consistent with this previous data. Whether we would see loss in viability with a greater rate
of increase in HP could not be tested with our system, but it should be noted that such rapid
changes in IOP would not be experienced in patients with glaucoma.

Other studies on the effects of raised HP have utilised isolated retinal cells, cultured on
rigid, artificial substrates specifically glass and tissue culture plastic [9–11]. Although these cul-
tures provide valuable information with regards to individual cell type responses, their useful-
ness as a model of the retina is limited due to lack of cell-matrix and cell-cell attachments and
signalling between RGCs and the supporting glia and inner retinal cells. The fact that the cells
are cultured on a rigid surface would exert extra forces when HP is raised which could impact
RGC survival in this experimental system. Retinal explant models more closely reflect the cell
organisation and interactions within the eye and although the HORCmodel does not maintain
associations with the RPE, its basement membrane, the choroid and the sclera, the potential ef-
fects of HP on RGCs against their natural retinal substrate, the IPL and INL, are preserved.
Neither model can therefore exactly replicate the in vivo environment of the eye. Differences
between the outcomes using these experimental models could potentially be explained by these
differences between the culture systems.

It should be remembered that HP only constitutes a small component of forces associated
with elevated IOP, specifically, the transverse stress across the retina. In the eye in vivo, pres-
sure is acting within a closed system and there is a differential pressure between the inside and
outside of the eye. It can therefore be described in mechanical terms by modelling the effects of
raising pressure within a closed vessel. Within a closed vessel, pressure has two mechanical ef-
fects: it directly causes a stress transversely through a section of the vessel wall (along a radial
axis), but it also creates an in-plane tensile stress in the vessel wall, which resists stretching of
the circumference. The latter stress is known as “hoop stress” and acts along the surface of a
vessel wall in a circumferential direction. For a pressure vessel of radius 15mm and wall thick-
ness of 1mm, the hoop stress would be 15 times greater than the transverse stress for a given in-
crease in internal pressure. In the eye, the hoop stress would be experienced predominantly in
the tissue with the highest tensile strength, specifically, the sclera. Associated strains would in
turn be experienced in the adjacent tissues also in the orthogonal direction. The consequences
of hoop stress as a result of increased IOP are therefore more likely to influence RGC survival
compared to the transverse stress across the retina. Importantly, hoop stress would not be
modelled in an experimental system where cells or tissue were cultured in dishes that are placed
within a chamber where HP is raised.

In our experiments, it was found that applying HP to retinal explants did not result in RGC
death or influence pathways associated with changes in survival. We would therefore suggest
that the component of raised IOP that is modelled by increasing HP, i.e. the transverse stress
across the retina that increases as IOP is raised, is not a direct contributor to RGC death. Cer-
tainly our results are consistent with the compelling argument that application of HP alone is
not a surrogate for IOP in glaucoma [24, 25]. Investigators should therefore look more towards
models that replicate strain/stress in ocular tissues as more appropriate models of the physical
consequences of raised IOP. The rapidly expanding field of ocular biomechanics [26–30] will
be critical in this respect and it certainly would be interesting to look further at the effects of

Hydrostatic Pressure and Human RGC Death

PLOS ONE | DOI:10.1371/journal.pone.0115591 January 30, 2015 12 / 14



hoop stress-associated strain, which could be modelled in vitro by orthogonal stretching of the
retina. Further to this, it is clear that we need to learn more about the stress/strain relationships
both between the retina and its adjacent structures and within the retina: could attachments of
the RGCs and their relationship to, for example, the nerve fibre layer, cause stress in this region
of the retina that makes the RGCs more susceptible to increased pressure than other retinal
cells? Application of research from this important field will be critical in allowing the develop-
ment of pathophysiologically relevant models to measure RGC death with respect to glaucoma.
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