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Introduction
Multilocus Sequence Typing (MLST) was a revolutionary 
attempt initially proposed for molecular typing of Neisseria 
meningitidis1 and subsequently replicated for multiple patho-
gens with global relevance.2-5 This technique assigns a sequence 
type (ST) to bacterial isolates based on a combination of alleles 
from an optimal set of housekeeping genes defined for each 
species. Even though there are methods with higher discrimi-
nation power (cgMLST/wgMLST), MLST offers several 
advantages, such as (1) a common language for typing, (2) sim-
ple implementation, and (3) a vast amount of information col-
lected in dedicated databases throughout history.6

Currently available programs for ST determination from 
assembled genomes, that is, mlst,7 CGE/MLST,8 MLSTar,9 
and the online tool PubMLST,10 deliver results in 1 to 9 min-
utes when dealing with hundreds of genomes. However, as 
most of them do not (or inefficiently) implement parallel 
computing, processing of tens of thousands of genomes can 
be extremely time-consuming. In addition, most current pro-
grams do not generate a file with concatenated allele 

sequences, despite its common requirement in downstream 
processes, such as evaluation of genetic diversity and phylo-
genetic analyses.11

In response to these limitations, we developed FastMLST, a 
tool focused on parallel computing via a divide-and-conquer 
approach12 that performs BLASTn searches13 against the 
sequences of MLST schemes deposited in the PubMLST 
database10 using genome assemblies of isolates in (multi-) 
FASTA format as input. FastMLST delivers 2 main outputs: 
(1) a table with the allelic profile detected for each genome 
query and (2) a (multi)-FASTA file with the (concatenated) 
sequences of the housekeeping genes included in each MLST 
scheme, suitable for downstream multilocus sequence analyses 
(MLSAs).

Methods
Implementation

FastMLST is an open-source, stand-alone software imple-
mented in Python 3, that only requires BLASTn, Biopython,14 
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tqdm,15 and pandas16 as an external program. It is easy to install 
via the Anaconda Package Manager (https://anaconda.org/
bioconda/fastmlst) and is in constant development. A divide-
and-conquer app tasks but in High-Performance Computing 
(HPC) clusters.17 Instead, our specific implementation for 
MLST typing makes it available in HPC clusters, worksta-
tions, or personal computers.

Key analysis steps

PubMLST database setup.  FastMLST can retrieve and update 
the PubMLST database10 with its “–update-mlst” option. It 
automatically processes the 153 currently available schemes 
(September 2021) and prepares the system for subsequent 
deployment.

Allele searches.  Allele searches are locally performed with 
BLASTn using the public, regularly updated, and centralized 
database maintained at PubMLST.10 FastMLST is based on a 
divide-and-conquer approach, whereby each genome is pro-
cessed in parallel and BLASTn runs in only one central pro-
cessing unit (CPU). This is a major difference from some of the 
other programs that use BLASTn for MLST typing. In other 
programs, the genome processing is serial and uses multiple 
processes to do the BLASTn search in multiple CPUs.

Scheme identification.  The MLST scheme to use for each query 
genome is inferred in FastMLST by an automatic scoring sys-
tem, similar to previous software.7 This system assigns known, 
full-length alleles a maximum score of 100 points, 70 points to 
alleles of the expected length but with Single Nucleotide Poly-
morphisms (SNPs) (95% identity by default), or 20 points to 
alleles with unexpected lengths (less than 99% of coverage by 
default). At the end, the MLST scheme with the highest overall 
score is selected for further analyses. Alternatively, it is possible 
to manually choose the scheme to use with the argument 
“–scheme.” When multiple perfect hits to a single scheme are 
found, FastMLST reports all hits to alert the user of potential 
contaminations.

Outputs.  FastMLST delivers 2 output types. The first one is a 
table with the ST, allele classification, and—when available—
the clonal complex or clade to which the ST belongs. The sec-
ond type of output is a FASTA file of the MLST alleles 
concatenated in alphabetical order, or a series of independent 
files containing one gene of the scheme each.

Concordance and speed analysis

Concordance analysis.  We assessed the capability of FastMLST 
to correctly assign STs for 33 464 isolates of 91 bacterial species 
that were selected and downloaded using ncbi-genome-down-
load v0.3.0.18 Typing by PubMLST was also done and consid-
ered a gold standard. Cohen’s kappa was calculated with the 

cohen_kappa_score method implemented in scikit-learn 
V0.24.2.19 The code to reproduce this analysis is available in a 
Jupyter Notebook in the FastMLST-Concordance repository 
(https://github.com/EnzoAndree/FastMLST-Concordance), 
along with the intermediate results of FastMLST and 
PubMLST typing and the genome assembly stats. The quality 
of the assemblies used was assessed using assembly-stats 
v1.0.1.20

Speed analysis.  The Unix time program was used to compare 
the processing speed of FastMLST with that of the other 4 
widely used software: mlst v2.11, CGE/MLST v2.0.4, 
MLSTar v1.0, and the online PubMLST tool. Only the 
MLSTar run time was measured with the R function proc.
time(). The species on which the speed test was done were 
carefully chosen to evaluate the impact of genome size on 
speed performance: Burkholderia cepacia, median genome 
length (MGL) = 8 544 148 bp; n = 186; scheme = bcepacia_
complex; Clostridium botulinum (MGL = 3 943 908 bp; n = 250; 
scheme = cbotulinum); and Mycoplasma pneumoniae (MGL  
= 816 465 bp; n = 175; scheme = mpneumoniae). The code to 
reproduce the speed test is available in a Jupyter Notebook in 
the FastMLST-Concordance repository (https://github.com/
EnzoAndree/FastMLST-Concordance).

Results
Compared with PubMLST, FastMLST reached an overall con-
cordance of 99.06% (n = 27 101 of 27 359) (Table 1). The 258 
inconsistencies detected were due to incorrect ST assignment by 
PubMLST. These 258 genomes were flagged as suspected con-
taminated genomes and were not typed by FastMLST because 
they had more than one perfect hit for an allele (Supplemen
tary Tables S1-S6). This situation remained unnoticed by 
PubMLST and could be misleading for users. After removal of 
these possibly contaminated genomes, the overall concordance 
of FastMLST increased to 100% (Cohen’s kappa = 1.000).

FastMLST reported 1163 novel STs and 3453 isolates with 
novel alleles that PubMLST overlooked. The number of 
downloaded and typed genomes are different and is explained 
by the fact that some genomes are not typable because of miss-
ing alleles due to genome fragmentation. Therefore, ST assign-
ment in these isolates was not possible by either PubMLST or 
FastMLST. An extended version of Table 1 is shown in 
Supplementary Table S7.

Our results with real-world data regarding isolates of dif-
ferent %GC, genome lengths, fragmentation levels 
(Supplementary Table S8), and possibly contamination levels 
confirm that MLST typing by FastMLST and PubMLST is 
of comparable quality. Nonetheless, FastMLST provides 
additional information about possible contaminations and 
identifies new alleles and STs.

The speed of FastMLST, MLSTar, PubMLST, and mlst 
(expressed in Genomes/minute) was determined with a 
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workstation equipped with 2 Intel(R) Xeon(R) CPU E5-2683 v4 
processors @ 2.10 GHz using 1, 2, 4, 8, 16, 32, or 64 cores. Each 
program was run in triplicate for each test datasets. The 
PubMLST’s results were obtained remotely because it does not 
offer a stand-alone version. In all evaluated programs, process-
ing speed and genome size were inversely related (Figure 1A). 
When a single core was used, mlst v2.11 achieved the best per-
formance for all 3 datasets, with a max speed of approximately 
145 genomes/min (a total run time of approximately 1.2 min-
utes) (Figure 1A). However, mlst v2.11 did not speed up when 
its multiple processing option was enabled (Figure 1A), as it 
inefficiently implements parallel computing (Figure 1C). 
MLSTar can also use multiple processors, but it was at least 
3-fold slower than FastMLST when 64 CPUs was used (Figure 
1A and B). FastMLST’s processing speed grew exponentially 
as more cores were deployed (Figure 1A and B), reaching a max 
speed of 2855 genomes/min using 64 cores (a total run time of 
approximately 3.7 seconds). This allows the processing of 
28 000 genomes in less than 10 minutes.

Although speed will depend on the length of the genome 
queries, the speed of FastMLST in the worst-case scenario will 
be at least 14 times higher than the speed offered by mlst (the 

fastest single-core program). Raw data of run time for each 
speed test are available in Supplementary Table S8.

Along with the improvement in processing speed, 
FastMLST allows the user to generate a file with concatenated 
MLST gene fragments that can be used without further modi-
fication in subsequent phylogenetic analyses.

Conclusions
Compared with PubMLST, FastMLST assigns STs to thou-
sands of genomes in minutes with 100% concordance in 
genomes without suspected contamination in a wide variety of 
species with different genome lengths, %GC, and assembly 
fragmentation levels. In addition, FastMLST can generate a 
multi-FASTA file with concatenated allele sequences suitable 
for downstream phylogenetic analysis. This addition allows the 
user to focus on downstream analyses and the biological aspect 
of the data much sooner. These unique features have the poten-
tial to boost future research.
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