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ABSTRACT

Objective: Build probabilistic topic model representations of hospital admissions processes and compare the

ability of such models to predict clinical order patterns as compared to preconstructed order sets.

Materials and Methods: The authors evaluated the first 24 hours of structured electronic health record data for

>10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text docu-

ment, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use

initial clinical information to predict clinical orders for a separate validation set of >4 K patients. The authors

evaluated these topic model-based predictions vs existing human-authored order sets by area under the

receiver operating characteristic curve, precision, and recall for subsequent clinical orders.

Results: Existing order sets predict clinical orders used within 24 hours with area under the receiver operating

characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% (P<10�20)

by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics

yield natural clinical interpretations (e.g., “critical care,” “pneumonia,” “neurologic evaluation”).

Discussion: Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations

impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this

usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability.

Conclusion: Probabilistic topic modeling provides an automated approach to detect thematic trends in patient

care and generate decision support content. A potential use case finds related clinical orders for decision

support.

Key words: clinical decision support systems, electronic health records, data mining, probabilistic topic modeling, clinical

summarization, order sets

BACKGROUND AND SIGNIFICANCE

High-quality and efficient medical care requires clinicians to distill

and interpret patient information for precise medical decisions. This

can be especially challenging when the majority of clinical decisions

(e.g., a third of surgeries to place pacemakers or ear tubes) lack

adequate evidence to support or refute their practice.1,2 Even after

current reforms,3 evidence-based medicine from randomized control
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trials cannot keep pace with the perpetually expanding breadth of

clinical questions, with only �11% of guideline recommendations

backed by high-quality evidence.4 Clinicians are left to synthesize

vast streams of information for each individual patient in the con-

text of a medical knowledge base that is both incomplete and yet

progressively expanding beyond the cognitive capacity of any indi-

vidual.5,6 Medical practice is thus routinely driven by individual

expert opinion and anecdotal experience.

The meaningful use era of electronic health records (EHRs)7

presents a potential learning health system solution.8–12 EHRs gen-

erate massive repositories of real-world clinical data that represent

the collective experience and wisdom of the broad community of

practitioners. Automated clinical summarization mechanisms are

essential to organize such a large body of data that would otherwise

be impractical to manually categorize and interpret.13,14 Applied to

clinical orders (e.g., labs, medications, imaging), such methods could

answer “grand challenges” in clinical decision support15 to auto-

matically learn decision support content from clinical data sources.

The current standard for executable clinical decision support

includes human-authored order sets that collect related orders

around common processes (e.g., admission and transfusion) or sce-

narios (e.g., stroke and sepsis). Computerized provider order entry16

typically occurs on an “�a la carte” basis where clinicians search for

and enter individual computer orders to trigger subsequent clinical

actions (e.g., pharmacy dispensation and nurse administration of a

medication or phlebotomy collection and laboratory analysis of

blood tests). Clinician memory and intuition can be error prone

when making these ordering decisions; thus, health system commit-

tees produce order set templates as a common mechanism to distrib-

ute standard practices and knowledge (in paper and electronic

forms). Clinicians can then search by keyword for common scenar-

ios (e.g., “pneumonia”) and hope they find a preconstructed order

set that includes relevant orders (e.g., blood cultures, antibiotics,

chest X-rays).17–19 While these can already reinforce consistency

with best practices,20–25 automated methods are necessary to

achieve scalability beyond what can be conventionally produced

through manual definition of clinical content 1 intervention at a

time.26

Probabilistic topic modeling
Here we seek to algorithmically learn the thematic structure of clini-

cal data with an application toward anticipating clinical decisions.

Unlike a top-down rule-based approach to isolate preconceived clin-

ical concepts from EHRs,27 this is more consistent with bottom-up

identification of patterns from the raw clinical data.28 Specifically,

we develop a latent Dirichlet allocation (LDA) probabilistic topic

model29–33 to infer the underlying “topics” for hospital admissions,

which can then inform patient-specific clinical orders. Most prior

work in topic modeling focuses on the organization of text docu-

ments ranging from newspaper and scientific articles34 to clinical

discharge summaries.35 More recent work has modeled laboratory

results36 and claims data37 or used similar low-dimensional repre-

sentations of heterogeneous clinical data sources for the unsuper-

vised determination of clinical concepts.38–40 Here we focus on

learning patterns of clinical orders, as these interventions are the

concrete representation of a clinician’s decision making, regardless

of what may (or may not) be documented in narrative clinical notes

and diagnosis codes.

In the analogous text analysis context, probabilistic topic model-

ing conceptualizes documents as collections of words derived from

underlying thematic topics that define a probability distribution

over topic-relevant words. For example, we may expect our refer-

enced article on the “Scientific Evidence Underlying the American

College of Cardiology (ACC)/American Heart Association (AHA)”2

to be about the abstract topics of “cardiology” and “clinical practice

guidelines,” weighted by respective conditional probabilities

P(TopicCardiologyjDocumentEvidenceACC/AHA) and P(TopicGuidelinesj
DocumentEvidenceACC/AHA). Words we may expect to be prominently

associated with the “cardiology” topic would include heart, valve,

angina, pacemaker, and aspirin, while the “clinical practice guide-

line” topic may be associated with words like evidence, recommen-

dation, trials, and meta-analysis. The relative prevalence of each

word in each topic is defined by conditional probabilities P(Wor-

dijTopicj) in a categorical probability distribution. With the article

composed as a weighted mixture of multiple topics, the document

contents are expected to be generated from a proportional mixture

of the words associated with each topic as determined by the condi-

tional probability:

P WordijDocumentk

� �
¼
XJ

j¼1

P WordijTopicj

� �

� P TopicjjDocumentk

� �

In practice, we are not actually interested in generating new

documents from predefined word and topic distributions. Instead,

we wish to infer the underlying topic and word distributions that

generated a collection of existing documents. Such a body of docu-

ments can be represented as a word-document matrix where each

document is a vector containing the frequencies of every possible

word (Figure 1). Topic modeling methods factor this matrix based

on the underlying latent topic structure that links associated words

to associated documents. A precise solution to this inverted infer-

ence is not generally tractable, requiring iterative optimization solu-

tions such as variational Bayes approximations29 or Gibbs

sampling.31 This is closely related to other dimensionality-reduction

techniques to provide low-rank data approximations,41–43 with the

probabilistic LDA framework interpreting the interrelated structure

as conditional probabilities P(WordijTopicj) and P(Top-

icjjDocumentk). Once this latent topic structure is learned, it pro-

vides a convenient, efficient, and largely interpretable means of

information retrieval, classification, and exploration of document

data.

Clinical data analogy
For our clinical context, we draw analogies between words in a

document to clinical items occurring for a patient. The key clinical

items of interest here are clinical orders, but other structured ele-

ments include patient demographics, laboratory results, diagnosis

codes, and treatment team assignments. Modeling patient data as

such allows us to learn topic models that relate patients to their clin-

ical data. A patient receiving care for multiple complex conditions

could then have his or her data separated out into multiple compo-

nent dimensions (i.e., topics), as an “informative abstractive”

approach to clinical summarization.14 For example, we might use

this to describe a patient hospital admission as being “50% about a

heart failure exacerbation, 30% about pneumonia, and 20% about

mechanical ventilation protocols.” Prior work has accomplished

similar goals of unsupervised abstraction of latent factors out of

clinical records using varying methods.38–40 Based on the distribu-

tion of clinical orders associated within such low-dimensional
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representations, we aim to impute additional clinical orders for deci-

sion support.

OBJECTIVE

Our objective is to evaluate the current real-world standard of care

in terms of preauthored hospital order set usage during the first 24

hours of inpatient hospitalizations, build probabilistic topic model

representations of clinical data to summarize the principal axes of

clinical care underlying those same first 24 hours, and compare the

ability of these models to anticipate relevant clinical orders as com-

pared to existing order sets.

METHODS

We extracted deidentified patient data from the (Epic) EHR for all

inpatient hospitalizations at Stanford University Hospital in 2013

via the Stanford Translational Research Integrated Database Envi-

ronment (STRIDE) clinical data warehouse.44 The structured data

covers patient encounters from their initial (emergency room) pre-

sentation until hospital discharge. The dataset includes more than

20 000 patients with >6.7 million instances of more than 23 000

distinct clinical items. Patients, items, and instances are respectively

analogous to documents, words, and word occurrences in an indi-

vidual document. The space of clinical items includes more than

6000 medication, more than 1500 laboratory, more than 1000

imaging and more than 1000 nursing orders. Nonorder items

include more than 400 abnormal lab results, more than 7000 prob-

lem list entries, more than 5000 admission diagnosis ICD9 codes,

more than 300 treatment team assignments, and patient demo-

graphics. Medication data was normalized with RxNorm map-

pings45 down to active ingredients and routes of administration.

Numerical lab results were binned into categories based on

“abnormal” flags established by the clinical laboratory or by

deviation of more than 2 standard deviations from the observed

mean if “high” and “low” flags were not prespecified. We aggre-

gated ICD9 codes up to the 3-digit hierarchy such that an item for

code 786.05 would be counted as 3 separate items (786.05, 786.0,

786). This helps compress the sparsity of diagnosis categories while

retaining the original detailed codes if they are sufficiently prevalent

to be useful. The above preprocessing models each patient as a time-

line of clinical item instances, with each instance mapping a clinical

item to a patient time point.

With the clinical item instances following the “80/20 rule” of a

power law distribution,46 most items may be ignored with minimal

information loss. Ignoring rare clinical items with fewer than 256

instances reduces the item vocabulary size from more than 23 000 to

�3400 (15%), while still capturing 6 million (90%) of the 6.7 mil-

lion item instances. After excluding common process orders (e.g.,

check vital signs, notify MD, regular diet, transport patient, as well

as most nursing orders and PRN medications), 1512 clinical orders

of interest remain.

LDA topic modeling algorithms infer topic structures from “bag

of words” abstractions that represent each document as an unor-

dered collection of word counts (i.e., 1 column of the word-

document matrix in Figure 1). To construct an analogous model for

our structured clinical data, we use each patient’s first 24 hours of

data to populate an unordered “bag of clinical items,” reflecting the

key initial information and decision making during a hospital admis-

sion. We randomly selected 10 655 (�50%) patients to form a train-

ing set. We chose to use the GenSim package47 to infer topic model

structure, given its convenient implementation in Python, streaming

input of large data corpora, and parallelization to efficiently use

multicore computing. Model inference requires an external parame-

ter for the expected number of topics, for which we systematically

generated models with topic counts ranging from 2 to 2048. Run-

ning the model training process on a single Intel 2.4 GHz core for

Figure 1. Topic modeling as factorization of a word-document matrix. Simulated data in the top-left reflects that the word “Heart” appears 12 times in the article

“Evidence Underlying AHA.” Factoring this full matrix into simpler matrices can discover a smaller number of latent dimensions that summarize the content.

Topic modeling represents these latent dimensions as topics defining a categorical probability distribution of word occurrences in the topic-word matrix. This

reveals the underlying statistical structure of the data, but an algorithmic process cannot itself provide meaning. By observing the most prevalent words in each

topic axis, however, an underlying meaning is often interpretable (e.g., prevalence of the words “heart” and “aspirin” in the first topic axis implies a general topic

of “Cardiology”).
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10 655 patients and 256 topics requires �1 GB of main memory and

�2 minutes of training time. Maximum memory usage and training

time increases proportionally to the number of topics modeled,

while the streaming learning algorithm requires more execution time

but no additional main memory when processing additional training

documents.

Evaluation
To evaluate the utility of the generated clinical topic models and deter-

mine an optimal topic count range, we assessed their ability to predict

subsequent clinical orders. For a separate random selection of 4820

(�25%) validation patients, we isolated each use of a pre-existing

human-authored order set within the first 24 hours of each hospitaliza-

tion. We simulated production of an individually personalized, topic

model-based “order set” at each such moment in time. To dynamically

generate this content, the system evaluates the patient’s available clini-

cal data to infer the relative weight of relevance for each clinical topic,

P(TopicjjPatientk). With this patient topic distribution defined, the sys-

tem can then score-rank a list of suggested orders by the probability of

each order occurring for the patient:

PðItemijPatientkÞ ¼
XJ

j¼1

P ItemijTopicj

� �
�P TopicjjPatientk

� �

We compared these clinical order suggestions against the

“correct” set of orders that actually occurred for the patient within

a followup verification time of t. Sensitivity analyses with respect to

this followup verification time varied t from 1 minute (essentially

counting only orders drawn from the immediate real order set usage)

up to 24 hours afterwards. Prediction of these subsequent orders is

evaluated by the area under the receiver operating characteristic

curve (c-statistic) when considering the full score-ranked list of all

possible clinical orders. Existing order sets will have N suggested

orders to choose from, so we evaluated those N items vs the top N

score-ranked suggestions from the topic models toward predicting

subsequent orders by precision (positive predictive value) at N and

recall (sensitivity) at N. We executed paired, 2-tailed t-tests to com-

pare results with SciPy.48

RESULTS

Table 1 reports the names of the most commonly used human-

authored inpatient order sets, while Table 2 reports summary usage

statistics during the first 24 hours of hospitalization. Table 3 illus-

trates example clinical topics inferred from the structured clinical

data. Figure 2 visualizes additional example topics and how patient-

topic weights can be used to predict additional clinical orders. Fig-

ures 3 and 4 summarize clinical order prediction rates using clinical

topic models vs human-authored order sets.

DISCUSSION

Complex clinical data like clinical orders, lab results, and diagnoses

extracted from EHRs can be automatically organized into thematic

structures through probabilistic topic modeling. These thematic

topics can be used to automatically generate natural “order sets” of

commonly co-occurring clinical data items, as illustrated in the

examples in Table 3. Figure 2 visually illustrates how these latent

topics can separate clinical items that are specific or general across

varying scenarios, and how they can be used to generate personal-

ized clinical order suggestions for individual patients. Suggestions

have some interpretable rationale by indicating that a patient case in

question appears to be “about” a given set of clinical topics (e.g.,

abdominal pain and involuntary psychiatric hold) and the suggested

Table 1. Most commonly used human-authored inpatient order

sets

Use rate (%) Size Description

35.1 51 Anesthesia—Post-Anesthesia (Inpatient)

27.2 161 Medicine—General Admit

23.5 51 General—Pre-Admission/Pre-Operative

18.4 17 Insulin–Subcutaneous

15.7 28 General—Transfusion

9.3 13 General—Discharge

7.6 150 Surgery—General Admit

6.9 9 Emergency—Admit

6.1 224 Intensive Care—General Admit

5.9 147 Orthopedics—Total Joint Replacement

4.9 46 Pain—Regional Anesthesia Admit

4.4 80 Emergency—General Complaint

4.1 40 Anesthesia—Post-Anesthesia (Outpatient)

3.9 135 Orthopedics Trauma

3.9 9 Pain—Patient Controlled Analgesia

3.4 168 Psychiatry—Admit

3.3 132 Neurosurgery–Intensive Care

3.3 16 General—Heparin Protocols

3.0 39 Pain—Epidural Analgesia Post-Op

2.9 11 Insulin—Subcutaneous Adjustment

2.7 9 Lab—Blood Culture and Infection

2.6 155 Neurology—General Admit

2.5 169 Intensive Care—Surgery/Trauma Admit

2.4 9 Pharmacy—Warfarin Protocol

2.4 14 Insulin—Intravenous Infusion

. . . . . . . . .

Use rate reflects the percentage of validation patients for whom the order

set was used within the first 24 hours of hospitalization. Size reflects the num-

ber of order suggestions available in each order set. Notably, these essentially

all reflect nonspecific care processes, while scenario specific order sets (e.g.,

management of asthma, heart attacks, pneumonia, sepsis, or gastrointestinal

bleeds) are rarely used.

Table 2. Summary statistics for human-authored order set use

within the first 24 hours of hospitalization for 4820 validation

patients

Metric (per first 24 hours of

each hospitalization)

Mean

(std dev)

Median

interquartile

range

A: Order sets used 3.0 3

(1.4) (2, 4)

B: Orders entered (including non-order set) 32.7 30

(15.7) (22, 41)

C: Orders entered from order sets 13.3 12

(7.9) (8, 18)

D: Orders available from used order sets 129.0 130

(47.5) (102, 153)

E: Order set precision¼ (C/D) 11% 9.5%

(7.2%) (6.3%, 13.8%)

F: Order set recall¼ (C/B) 43% 42%

(20%) (28%, 58%)

Metrics count only orders used in the final set of 1512 preprocessed clinical

orders after normalization of medication orders and exclusion of rare orders

and common process orders.
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orders (e.g., serum acetaminophen level, Electrocardiogram (EKG)

12-Lead) are those that commonly occur for other patient cases

involving those topics.

In the absence of a gold standard to define high-quality medical

decision making, we must establish a benchmark to evaluate the

quality of algorithmically generated decision support content.

Human-authored order sets and alerts represent the current stand-

ard of care in clinical decision support. Figure 4 indicates that exist-

ing order sets are slightly better than topic model-generated order

suggestions at anticipating physician orders within the immediate

time period (<2 h). This is, of course, biased in favor of the existing

order sets since the evaluation time points were specifically chosen

Table 3. Example clinical topics generated when modeling 32 topics from training patient data

Weight (%) Clinical item Weight Clinical item Weight Clinical item

2.37 PoC Arterial Blood Gas 1.56 Insulin Lispro (Subcutaneous) 2.98 CultureþGram Stain, Fluid

1.39 Team—Respiratory Tech 1.26 Metabolic Panel, Basic 2.42 Cell Count and Diff, Fluid

1.38 Lactate, Whole Blood 1.09 Dx—Diabetes mellitus (250) 1.59 Protein Total, Fluid

1.32 XRay Chest 1 View 1.08 Dx—DM w/o complication (250.0) 1.51 Albumin, Fluid

1.14 Blood Gases, Venous 1.03 Dx—DM not uncontrolled (250.00) 1.24 LDH Total, Fluid

1.00 Ventilator Settings Change 1.01 Hemoglobin A1c 1.10 Albumin (IV)

0.97 Blood Gases, Arterial 0.99 Diet—Low Carbohydrate 1.09 Glucose, Fluid

0.96 Vancomycin (IV) 0.91 CBC w/ Diff 0.84 Pathology Review

0.92 PoC Arterial Blood Gas B 0.91 Sodium Chloride (IV) 0.68 Team—Registered Nurse

0.88 Epinephrine (IV) 0.89 Diagnosis—Essential hypertension 0.67% CBC w/Diff

0.88 Norepinephrine (IV) 0.82% MRSA Screen 0.61 MRSA Screen

0.87 Central Line 0.75 Team—Registered Nurse 0.60 XRay Chest 1 View

0.86 Team—Medical ICU 0.73 Regular Insulin (Subcutaneous) 0.53 Albumin, Serum

0.84 Sodium Bicarbonate (IV) 0.73 XRay Chest 1 View 0.52 Metabolic Panel, Basic

0.81 MRSA Screen 0.67 Fungal Culture 0.51 Cytology

0.79 Hepatic Function Panel 0.66 Anaerobic Culture 0.50 Amylase, Fluid

0.76 Midazolam (IV) 0.66 Consult—Diabetes Team 0.47 Prothrombin Time (PT/INR)

0.73 Result—Lactate (High) 0.65 Team—Respiratory Tech 0.47 Midodrine (Oral)

0.73 Result—TCO2 (Low) 0.63 Admit—Thoracolumbar. . . (722.1) 0.47 Male Gender

0.72 NIPPVentilation 0.63 Admit—Lumbar Disp. (722.10) 0.42 Result—RBC (Low)

0.69 Result—pH (Low) 0.62 EKG 12-Lead 0.41 Sodium Chloride (IV)

. . . . . . . . .

21 “Intensive Care” 21% “Diabetes mellitus” 16% “Ascites/Effusion Workup”

Weight Clinical item Weight Clinical item Weight Clinical item

2.37 Team—Respiratory Tech 3.48 Cell Count and Diff, CSF 1.63 Lupus Anticoagulant

2.19 Nebulizer Treatment 3.28 Glucose, CSF 1.35 Dx—Pulmonary emb. . . (415.1)

1.64 Respiratory Culture 3.25 Protein Total, CSF 1.34 Dx—Pulmonary heart Dz (415)

1.29 Blood Culture (An)Aerobic 2.98 Culture and Gram Stain, CSF 1.34 Factor V Leiden

1.27 Team—Registered Nurse 0.95 Enterovirus PCR, CSF 1.33 Dx—Other PEmbolism (415.19)

1.26 Blood Culture (Aerobic x2) 0.74 West Nile Virus AB, CSF 1.16 Prothrombin 20210A

1.25 Droplet Isolation 0.63 Coccidioides AB, CSF 1.16 Homocysteine

1.20 Respiratory DFA Panel 0.61 Cytology 1.02 Protein C Activity

1.17 CBC w/ Diff 0.39 Zonisamide (Oral) 1.01 Protein S Activity

1.17 Vancomycin (IV) 0.34 Team—Neurology 0.72 Admit—PEmbolism (415.1)

1.08 Gram Stain 0.33 Cytology Exam 0.71 Admit—Pulm heart Dz (415)

1.01 Albuterol-Ipratropium (Inh) 0.24 Result—WBC, CSF (High) 0.69 Admit—Other PE (415.19)

0.98 Metabolic Panel, Basic 0.24 HSV PCR, CSF 0.66 Anti-Phospholipid AB Panel

0.90 XRay Chest 2 View 0.23 Cryptococcal AG, CSF 0.54 Methylprednisolone (Oral)

0.79 Prednisone (Oral) 0.20 Fungal Culture 0.52 Rapid HIV-1/2 AB

0.79 Sodium Chloride (IV) 0.13 Valproic Acid, Serum 0.33 Dx—Osteomyelitis (730.2)

0.77 Levofloxacin (IV) 0.10 IgA, Serum 0.29 Dx—Bone Infection (730)

0.77 Prothrombin Time (PT/INR) 0.08 Team—Neurology Consult 0.29 Warfarin (Oral)

0.72 Azithromycin (Oral) 0.08 Clonazepam (Oral) 0.29 Team—Registered Nurse

0.72 Pantoprazole (Oral) 0.07 ANA (Anti-Nuclear AB) 0.29 Partial Thromboplastin Time

0.71 Magnesium, Serum 0.07 Levetiracetam (Oral) 0.28 Factor VIII Assay

. . . . . . . . .

16% “Pneumonia” 13% “Neuro CSF Workup” 10% “PE / Hypercoaguability Workup”

The most prominent clinical items (e.g., medications, imaging, laboratory orders, and results) are listed for each example topic, with corresponding P(Item-

ijTopicj) weights. The bottom rows reflect the percentage of validation patients with estimated P(TopicjjPatientk)> 1% along with our manually ascribed labels

that summarize the largely interpretable topic contents.

Abbreviations: AB: Antibody, AG: Antigen, CBC: Complete blood count, CSF: Cerebrospinal fluid, Diff: Differential, Disp: Displacement, DFA: Direct fluores-

cent antibody, DM: Diabetes mellitus, Dx: Diagnosis, Dz: Disease, HSV: Herpes simplex virus, ICU: Intensive care unit, Inh: Inhaled, INR: International normal-

ized ratio, IV: Intravenous, LDH: Lactate dehydrogenase, MRSA: Methicillin resistant Staphylococcus aureus, NIPPV: Noninvasive positive pressure ventilation,

PE: Pulmonary embolism, PoC: Point-of-care, PCR: Polymerase chain reaction, RBC: Red blood cells, TCO2: Total carbon dioxide, WBC: White blood cells.
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where an existing order set was used. This ignores other time points

where the clinicians did not (or could not) find a relevant order set,

but where an automated system could have generated personalized

suggestions. Topic model-based methods consistently predict more

future orders than the existing order sets when forecasting longer

followup time periods beyond 2 hours.

On an absolute scale, it is interesting that manually produced

content like order sets continues to demonstrate improvements in

care21,23,24,49 despite what we have found to be a low “accuracy” of

recommendations. Table 2 indicates that initial inpatient care on

average involves a few order sets (3.0), with a preference for general

order sets with a large number of suggested orders (>100), resulting

in higher recall (43%) but low precision (11%). This illustrates that

such tools are decision aids that benefit clinicians who can interpret

the relevance of any suggestions to their individual patient’s context.

Framed as an information retrieval problem in clinical decision

support, retrieval accuracy may not even be as important as other

aspects for real-world implementation (e.g., speed, simplicity,

usability, maintainability).26 Even if algorithmically generated sug-

gestions were only as good as the existing order sets, the more com-

pelling implication is how this can alter the production and usability

of clinical decision support. Automated approaches can generate

content spanning any previously encountered clinical scenario.

While this incurs the risk of finding “mundane” structure (e.g., the

repeated sub-diagnosis codes for diabetes and pulmonary embolism

in Table 3), it is a potentially powerful unsupervised approach to

discovering latent structure that is not dependent on the preconcep-

tions of content authors. The existing workflow for pre-authored

order sets requires clinicians to previously be aware of, or spend

their time searching for, order sets relevant to their patient’s care.

Table 1 illustrates that clinicians favor a few general order sets

focused on provider processes (e.g., admission, insulin, transfusion),

while they rarely use order sets for patient-focused scenarios (e.g.,

stroke, sepsis). With the methods presented here, automated
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Figure 2. Example of 2 generated clinical topics plotted in a 2-dimensional space. Only clinical orders are plotted, based on their prominence in each of the topics.

The top left reflects clinical orders most associated with TopicY, with little association with TopicX, suggestive of a workup for diarrhea and abdominal pain. The

bottom right reflects clinical orders associated with TopicX, suggestive of a workup for an intentional (medication) overdose and involuntary psychiatric hospital-

ization. The top right reflects common clinical orders that are associated with both topics. For legibility, items whose score is <0.2% for both topics are omitted

and only a subsample of the bottom-left items are labeled. The diagonal arrow represents a hypothetical patient inferred to have P(TopicXjPatientk)¼80% and

P(TopicYjPatientk)¼20%. The dashed lines reflect orthogonal P(ItemijPatientk) isolines to visually illustrate how clinical order suggestions can be made from such

a topic inference. In this case, orders farthest along the projected patient vector (e.g., serum acetaminophen) are predicted to be most relevant for the patient.
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Figure 3. Topic count selection. Average discrimination accuracy (ROC AUC)

when predicting additional clinical orders occurring within t followup verifica-

tion time of the invocation of a pre-authored order set during the first 24

hours of hospitalization for 4820 validation patients. Predictions based on

Latent Dirichlet allocation (LDA) topic models trained on 10 655 separate

training patients. The standard LDA algorithm requires external specification

of a topic count parameter to indicate the number of latent dimensions by

which to organize the source data, which varies along this X-axis from 2 to

2048. Peak performance occurs around a choice of 32 topics, degrading once

attempting to model >64 topics.
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inference of patient context could overcome this usability barrier by

inferring relevant clinical “topics” (if not specific clinical orders)

based on information already collected in the EHR (e.g., initial

orders, problem list, lab results). Such a system could present related

order sets (human-authored or machine-learned) to the clinician

without the clinician ever having to explicitly request or search for a

named order set. The tradeoff for these potential benefits is that cur-

rent physicians are more likely comfortable with the interpretability

and human origin of manually produced content.

Most of the initial applications of topic modeling have been for

text document organization.33–35 More recent work has applied

topic modeling and similar low-dimensional representations to clini-

cal data for the unsupervised determination of clinical phenotypes38

and concept embeddings,40 or as features toward classification tasks

such as high-cost prediction.39 Other efforts to algorithmically pre-

dict clinical orders have mostly focused on problem spaces with doz-

ens of possible candidate items.50–53 In comparison, the problem

space in this manuscript includes over 1000 clinical items. This

results in substantially different expected retrieval rates,54 even as

the latent topics help address data interpretability, sparsity, and

semantic similarity. While there is likely further room for improve-

ment, perhaps with other graphical models specifically intended for

recommender applications,55 our determination of order set

retrieval rates contributes to the literature by defining the state-of-

the-art real-world reference benchmark for this and any future

evaluations.

Limitations of the LDA topic modeling approach include exter-

nal designation of the topic count parameter. Similarly, while we

used default model hyperparameters that assume a symmetric prior,

this may affect the coherence of the model.56 Hierarchical Dirichlet

process57 topic modeling is an alternative nonparametric approach

that determines the topic count by optimizing observed data per-

plexity;58 however, this may not align with the application of inter-

est. Validating against a held-out set of patients allowed us to

optimize the topic count against an outcome measure like order pre-

diction. Precision and recall is optimized in this case with approxi-

mately 32 topics of inpatient admission data. Another key limitation

is that the standard LDA model interprets data as an unordered

“bag of words,” which discards temporal data on the sequence of

clinical data. Our prior work noted the value of temporal data

toward improving predictions.59 This could potentially be addressed

with alternative topic model algorithms that account for such

sequential data.60

0.60 0.59 0.57 0.55 

0.53 0.51 0.49 0.47 

0.82 
0.71 0.66 

0.59 

0.50 
0.42 0.38 

0.35 

0.00

0.20

0.40

0.60

0.80

1.00

Re
ca

ll 
(S

en
si

�v
ity

)

Topic Models
Order Sets

0.07 0.09 0.09 0.11 

0.14 

0.19 
0.22 0.24 

0.10 0.11 0.11 0.11 

0.13 
0.14 0.15 0.16 

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ec

is
io

n 
(P

PV
)

Topic Models
Order Sets

5.4 
6.6 7.3 

8.5 

11.4 

15.2 

18.4 
20.6 

3.2 3.7 3.9 

4.5 
5.9 

7.6 
8.7 9.3 

3.8 4.0 4.1 

4.4 5.1 5.9 6.4 6.7 

0

5

10

15

20

25

Co
rr

ec
t I

te
m

 C
ou

nt
Possible Items
Topic Models
Order Sets

0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.90 

0.80 0.80 0.80 0.79 0.80 0.81 0.81 0.81 

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 min 30
min

1 hr 2 hr 4 hr 8 hr 16 hr 24 hr

RO
C 

AU
C 

(c
- s

ta
�s

�c
)

Followup Verifica�on Time (t)

Topic Models
Order Sets

Figure 4. (A) Topic models vs order sets for different followup verification

times. For each real use of a preauthored order set, either that order set or a

topic model (with 32 trained topics) was used to suggest clinical orders. For

longer followup times, the number of subsequent possible items considered

correct increases from an average of 5.4–20.6. The average correct predic-

tions in the immediate timeframe is similar for topic models (3.2) and order

sets (3.8), but increases more for topic models (9.3) vs order sets (6.7) when

forecasting up to 24 hours. At the time of order set usage, physicians choose

an average of 3.8 orders out of 54.8 order set suggestions, as well as

1.6¼ (5.4 – 3.8) a la carte orders. (B) Topic models vs order sets by recall at N.

For longer followup verification times, more possible subsequent items are

considered correct (see 4A). This results in an expected decline in recall (sen-

sitivity). Order sets, of course, predict their own immediate use better, but lag

behind topic model-based approaches when anticipating orders beyond

2 hours (P<10�20 for all times). (C) Topic models vs order sets by precision at

N. For longer followup verification times, more subsequent items are consid-

ered correct, resulting in an expected increase in precision (positive predic-

tive value). Again, topic model-based approaches are better at anticipating

clinical orders beyond the initial 2 hours after order set usage (P<10�6 for all

times). (D) Topic models vs order sets by ROC AUC (c-statistic), evaluating

the full ranking of possible orders scored by topic models or included/

excluded by order sets (P<10�100 for all times).

Table 4. Summary of relative tradeoffs between manually authored

order sets vs algorithmically generated order suggestions

Aspect Order sets Topic models

Production Manual development Automated generation

Construction Preconceived concepts Underlying data structure

Usability Interruptive workflow Passive dynamic adaption

Applicability Isolated scenarios Composite patient context

Interpretability Annotated rationale Numerical associations

Reliability Clinical judgment Statistical significance

Figure 4. Continued
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Another limitation of any unsupervised learning process is that it

can yield content with variable interpretability. For example, while

we manually ascribe labels to the topics in Table 3, the contents are

ultimately defined by the underlying structure of the data and need

not map to preconceived medical categorizations. This is reflected in

the presence of items such as admission diagnoses of thoraco-

lumbar disc displacement, osteomyelitis, and tests for rapid Human

Immunodeficiency Virus (HIV) antibodies that do not seem to fit

our artificial labels. From an exploratory data analysis perspective,

however, this may actually be useful in identifying latent concepts in

the clinical data that could not be anticipated prospectively. When

we discarded rare clinical items (<256 instances), we may also have

lost precision on the most important data elements. As noted in our

prior work, this design decision trades the potential of identifying

rare but “interesting” elements in favor of predictions more likely to

be generally relevant and that avoid statistically spurious cases with

insufficient power to make sensible predictions.61

Organization of clinical data through probabilistic topic model-

ing provides an automated approach to detecting thematic trends in

patient care. A potential use case illustrated here finds related clini-

cal orders for decision support based on inferred underlying topics.

This has the general potential for clinical information summariza-

tion13,62 that dynamically adapts to changing clinical practices,63

which would otherwise be limited to preconceived concepts man-

ually abstracted out of potentially lengthy and complex patient chart

reviews. Such algorithmic approaches are critical to unlocking the

potential of large-scale health care data sources to impact clinical

practice.
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