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Simple Summary: This study investigated the relationship between erlotinib resistance and stemness
in lung adenocarcinoma. NCAPG2 was identified as an erlotinib resistance gene and maintained the
stemness of lung adenocarcinoma.

Abstract: Erlotinib is a highly specific and reversible epidermal growth factor receptor tyrosine
kinase inhibitor (EGFR-TKI), but resistance inevitably develops as the disease progresses. Erlotinib
resistance and cancer stem cells (CSCs) are poor factors hindering the prognosis of patients with
lung adenocarcinoma (LUAD). Although studies have shown that erlotinib resistance and CSCs can
jointly promote cancer development, the mechanism is currently unclear. Here, we investigated the
potential biomarker and molecular mechanism of erlotinib resistance and cancer stemness in LUAD.
An erlotinib resistance model based on four genes was constructed from The Cancer Genome Atlas
(TCGA), the GEO database, the Cancer Cell Line Encyclopedia (CCLE), and the Genomics of Drug
Sensitivity in Cancer (GDSC). Through multiple bioinformatic analyses, NCAPG2 was identified as a
key gene for erlotinib resistance and stemness in LUAD. Further in vitro experiments demonstrated
that NCAPG2 maintains stemness and contributes to erlotinib resistance in LUAD. In summary,
NCAPG2 plays a vital role in stemness and erlotinib resistance in LUAD.

Keywords: erlotinib resistance; cancer stem cells; lung adenocarcinoma; tumor microenvironment;
NCAPG2

1. Introduction

Lung cancer is one of the most lethal malignancies in the world, leading to a global
public health problem [1]. Non-small cell lung cancer (NSCLC) accounts for 85% of lung
cancers, which is more than half of lung cancers; lung adenocarcinoma (LUAD) is the
major subtype of NSCLC, with a poor prognosis and a tendency to recur and metastasize.
Although there are significant advances in small-molecule targeted therapy using epidermal
growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), the emergence of acquired
drug resistance has led to persistently low 5-year survival rates in LUAD [2]. Therefore,
there is an urgent need to investigate the molecular mechanisms of erlotinib resistance in
LUAD and to find effective therapeutic targets.

Erlotinib is a highly specific and reversible EGFR-TKI, primarily applied in metastatic
NSCLC with tumor epidermal growth factor receptor (EGFR) exon 19 deletion or exon
21 (L858R) mutation 9 [3]. Erlotinib has become the first-line treatment for LUAD with
EGFR mutations [4]. Using erlotinib significantly prolonged the survival of patients with
LUAD [5]. However, the clinical outcome of some patients was not significantly improved
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due to the emergence of acquired resistance [6]. Two main reasons for the acquired resis-
tance to erlotinib in LUAD patients were found. Firstly, the secondary mutation of EGFR
enhances the binding of ATP to EGFR, reducing the effect of EGFR-TKI, which acts by
competing for ATP binding [7]. Secondly, erlotinib resistance could also be caused by
the abnormal activation of c-MET amplification, the abnormal expression or mutation of
HER2 [8], the abnormal activity of the downstream EGFR pathway [9], and K-Ras muta-
tion [10,11]. Recent evidence shows that cancer stemness is correlated with tumorigenesis,
tumor development, and resistance to chemotherapeutic drugs [12,13]. However, the
mechanism between erlotinib resistance and cancer stemness in LUAD currently requires
further study.

Cancer stem cells (CSCs) undergo unlimited proliferation and multi-directional differ-
entiation, significantly challenging cancer treatment [12]. Recent studies have shown CSCs
to play a role in tumor drug resistance. The exposure of glioma cell lines to therapeutic
doses of temozolomide (TMZ) consistently increases the glioma stem cell pool over time,
both in vitro and in vivo [14]. Besides, a drug-resistant subline of LUAD with stem-like
properties is resistant to conventional chemotherapeutics [14]. Therefore, it is of great
interest to explore the relationship between erlotinib resistance and stemness in LUAD to
help identify new therapeutic targets for erlotinib-resistant patients.

Previous studies have shown that the tumor microenvironment, the survival en-
vironment of the tumor, is composed of various cells [15]. Immune cells in the tumor
microenvironment play an essential role in regulating the development of drug resis-
tance [16,17] and supporting cancer stem cells [18]. Tumor-associated fibroblasts support
the stemness of CSCs through paracrine mechanisms. The factors secreted by stromal
cells can induce microenvironment-mediated drug resistance [15]. LUAD cell lines were
resistant to EGFR-TKIs when co-cultured with cancer-associated fibroblasts expressing
podoplanin [19]. These findings suggest that the tumor microenvironment is essential for
the progression of LUAD.

Non-SMC condensin II complex subunit G2 (NCAPG2), a regulatory subunit of the
condensin II complex, is involved in chromosome assembly and segregation during mito-
sis [20]. Studies have shown that NCAPG2 is vital in regulating proper chromosome segre-
gation during mitosis through a functional interaction with polo-like kinase 1 (PLK1) [21].
NCAPG2 promotes tumor proliferation by regulating the G2/M phase and is associated
with poor prognosis in LUAD [22]. However, the role of NCAPG2 in erlotinib resistance
and stemness of LUAD requires further study.

This study used The Cancer Genome Atlas (TCGA), the GEO database, the Cancer
Cell Line Encyclopedia (CCLE), and the Genomics of Drug Sensitivity in Cancer (GDSC)
databases to identify candidate genes associated with erlotinib resistance and cancer stem-
ness in LUAD. An erlotinib resistance model was constructed using candidate genes.
Furthermore, the correlation between erlotinib resistance genes and stemness was analyzed
through various bioinformatics methods. We also examined the correlation between the
erlotinib resistance genes and the tumor microenvironment. Finally, in vitro experiments
demonstrated that NCAPG2 maintains cancer stemness and promotes erlotinib resistance
in LUAD cells. This study provides potential therapeutic strategies for patients with
erlotinib-resistant LUAD.

2. Materials and Methods
2.1. Data Collection

The LUAD erlotinib resistance dataset GSE31625 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE31625 (accessed on 23 March 2022)) and the stemness-related
dataset GSE35603 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35603
(accessed on 23 March 2022)) from the GEO database were used. Cell line details, in-
cluding IC50 and the gene expression profiles of the cells, were downloaded from the
Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle/data (ac-
cessed on 23 March 2022)) and the Genomics of Drug Sensitivity in Cancer (GDSC, https:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31625
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31625
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35603
https://portals.broadinstitute.org/ccle/data
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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//www.cancerrxgene.org/ (accessed on 23 March 2022)). We collected the gene expression
profiles and clinical information of 496 LUAD patients from The Cancer Genome Atlas
(TCGA, https://gdc.cancer.gov/ (accessed on 23 March 2022)); GSE30219 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219 (accessed on 23 March 2022)) was
utilized to collect the gene expression profiles and clinical information from 77 LUAD pa-
tients; similarly, the gene expression profiles of 58 patients with LUAD were collected from
GSE10072 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072 (accessed
on 23 March 2022)), and the gene expression profiles of 442 patients with LUAD were ob-
tained from GSE72094 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
(accessed on 23 March 2022)). GSE31625, GSE35603, GSE30219, GSE10072, and GSE72094
were from the GEO cohort.

2.2. Variance Analysis

Differentially expressed genes (DEGs) between erlotinib-resistant and sensitive groups
from GSE31625 and CD133+ versus CD133− from GSE35603 were analyzed using the
R package ‘limma’ with the screening criteria |FC| ≥ 1.5 and p < 0.05. The R package
‘pheatmap’ was used to generate volcano maps to represent the results of the variance
analysis. The R package ‘VennDiagram’ and univariate Cox regression analysis were used
to identify the candidate genes.

2.3. Erlotinib-Resistant-Related Model Construction

The CCLE and GDSC data were processed using LASSO regression and the R package
‘glmnet’ to obtain erlotinib resistance-associated mRNAs by the penalty of the maximum
likelihood fitness. Based on the results of LASSO, the glmnet R package was used to select
variables and build a predictable resistance model. ROC curves were analyzed with the R
package ‘timeroc’ and visualized with ‘ggplot2’.

2.4. GO, KEGG, and GSVA Analysis

Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Variation Analysis (GSVA) [23] were performed to obtain the biological signifi-
cance related to erlotinib resistance. The R package ‘clusterProfiler’ was used for the GO
and KEGG analysis, and the R package ‘GSVA’ for GSVA.

2.5. The Stemness Index Based on mRNA Expression

The mRNA expression-based stemness index (mRNAsi) of LUAD patients in TCGA,
GSE10072, and GSE72094 was obtained from R language-based machine learning code in
the article of M. Malta [24]. The correlation between gene expression and mRNAsi was
calculated by ‘corrplot’ and visualized by the ‘ggplot2’ package.

2.6. Constructing a Prognostic Model

The genes related to erlotinib resistance and stemness were screened and analyzed
by multivariate analysis to determine the prognosis model. The patients’ risk score was
identified according to the gene expression levels in TCGA and GSE35603 and the regression
coefficient of Cox. Kaplan–Meier (KM) survival curves were plotted using the R packages
‘survival’ and ‘Survivor’.

2.7. Immune Analysis

The fraction of 20 immune cells was calculated using CIBERSORTx [25]. The immune
purity score was calculated through ESTIMATE. The correlation between the genes and
the immune cells was calculated using the algorithm single-sample Gene Set Enrichment
Analysis (ssGSEA) built into the software package ‘GSVA’.

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10072
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
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2.8. Single-Cell RNA Sequencing (scRNA-Seq) Analysis

A routine data integration process was performed on samples from GSE134839 and
GSE134841 using the R package ‘Seurat’. Quality control and filtering of the dataset were
performed on the integrated Seurat objects. Single cells with less than 200 or more than
4000 unique molecular identifiers (UMIs) or with more than 10% of the mitochondria-
derived UMI counts were considered low-quality cells and were removed. The ‘Log-
Normalize’ method in the ‘NormalizeData’ function normalizes the raw counts and uses
the ‘FindVariableFeatures’ method to identify highly variable genes. ‘ScaleData’, a lin-
ear transformation function, was then used to ensure that the expression of all the genes
had the same weight in the downstream analysis and that highly expressed genes did
not dominate. The data were then subjected to principal component analysis (PCA) to
reduce the dimensionality of the data. The ‘FindNeighbors’ and ‘FindClusters’ functions
performed cell clustering and were visualized using uniform manifold approximation and
projection (UMAP).

2.9. Cell Culture and Plasmids

Human lung adenocarcinoma cell lines PC9 and HCC827 were purchased from the
American-Type Culture Collection (ATCC). The cells were cultured in RPMI 1640 medium
(Gibco, China), containing 10% fetal bovine serum (FBS, Biological Industries, Israel) at
37 ◦C and 5% CO2. Erlotinib-resistant cell lines (PC9-ER and HCC827-ER) were gen-
erated by gradually increasing the erlotinib concentrations in a continuous culture of
PC9 and HCC827 for approximately one and a half years. These cells were considered
resistant until the parental cells could grow at a concentration of 2µM [26]. Lentiviral
short hairpin RNA (shRNA) vectors targeting human NCAPG2 and a nontargeted con-
trol vector were constructed by Genechem (https://www.genechem.com.cn (accessed on
1 June 2022); Shanghai, China). Plasmid transfection was performed using packaging
plasmid and ExFectTransfection Reagent (Vazyme, Nanjing, China), following the manu-
facturer’s instructions. The supernatant-containing virus was collected to infect HCC827-
ER and PC9-ER, and the colonies with a stable knockdown of NCAPG2 were screened
on puromycin.

2.10. Cell Viability Assay

The cells were seeded into 96-well plates at a density of 2000 cells/well. Twenty-four
hours after seeding, the cells were treated with increasing concentrations of erlotinib for
72 h. Ten microliters per well of CCK-8 reagent (Vazyme, China) was added to the cells
and incubated for 2 h at 37 ◦C. Absorbance at 450 nm was measured using a Synergy 2
microplate reader (BioTek, USA). Finally, the IC50 values of erlotinib in PC9, HCC827,
PC9-ER, HCC827-ER, PC9-ER shNCAPG2, and HCC827-ER shNCAPG2 were visualized
using GraphPad Prism (v 9.1.0) (San Diego, CA, America).

2.11. Western Blotting

The cells were lysed with IP lysis buffer (Thermo, Waltham, MA, USA), and the
protein concentrations were determined using a BCA kit (Vazyme, China). The proteins
were then denatured with sodium dodecyl sulfate (SDS). Electrophoresis was performed
on a 10% polyacrylamide gel in an SDS loading buffer. The gel was run at 90 V for 30 min
and then switched to a 130 V run until the end of the electrophoresis. Subsequently, the
proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Biosharp, Hefei,
China). The PVDF membranes were sealed with 10% skim milk for 2 h and then incubated
overnight at 4 ◦C with primary antibodies, including β-actin (#AF7018, Affinity, Tokyo,
Japan), NCAPG2 (#ab70350, Abcam, Cambridge, UK), EPCAM (Abcam, ab223582), ABCC1
(Proteintech, 67228-1-Ig, Rosemont, IL, USA), and MYC (Proteintech, 16286-1-AP). The
membranes were incubated with secondary antibodies (#S0001, Affinity) for 1 h and finally
exposed with a luminescence kit (Vazyme, China). The final visualization was carried out
using a chemiluminescence system (Tanon-5200, Shanghai, China).

https://www.genechem.com.cn
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2.12. Quantitative Real-Time PCR (RT-PCR)

One milliliter of Trizol reagent (R401-01, Vazyme, Nanjing, China) was added to the
target cells for lysis to obtain RNA. The HiScript® II Q RT SuperMix for RT-PCR (+gDNA
wiper, R223-01, Vazyme, Nanjing, China) was used to synthesize the first-strand cDNA.
Quantitative PCR was performed using a real-time PCR System (CFX Connect, Bio-Rad,
Hercules, CA, USA) with MonAmp™ ChemoHS qPCR Mix (MQ00401S, Monad, Shanghai,
China). The primers for this experiment were derived from Sangon (Shanghai, China).
Table S1 lists the primer sequences.

2.13. Tumorsphere Formation

Each well of an ultra-low adsorption twelve-well plate had 2000 cells added to it and
was incubated at 37 ◦C and 5% CO2 for 7–14 days. The number of tumorspheres larger
than 50 µm in diameter was recorded under the microscope for statistical analysis.

2.14. Colony Formation

About 200 control cells or the stable knockdown of NCAPG2 for PC9-ER and HCC827-
ER cells were inoculated into six-well plates and incubated for two weeks in an incubator
with 5% carbon dioxide at 37 ◦C. The cells were then fixed with 10% methanol and stained
with 0.1% crystal violet.

2.15. Side Population (SP) Detection by Flow Cytometry

A total of 1 × 106 cells were added to three tubes. Hoechst 33,342 was added to one of
the tubes to adjust the final concentration to 5 µg/mL. Hoechst 33,342 (final concentration
of 5 µg/mL) and Verapamil solution (final concentration of 50 µM) were added to the other
two tubes. The tubes were then incubated in a 37 ◦C water bath for 90 min. Subsequently,
the reaction was terminated by adding pre-cooled PBS into the tube. Five hundred micro-
liters of PBS containing 2% FBS was added to the tube after centrifugation at 1500 rpm for
10 min at 4 ◦C, and the supernatant was discarded. Finally, Propidium Iodide (PI) was
added and mixed (final concentration to 1 µg/mL) for flow cytometry. Hoechst 33342,
Verapamil, and PI were purchased from Sigma-Aldrich Company (St. Louis, MO, USA).

2.16. Statistical Analysis

The data were expressed as mean ± standard deviation. The Student t-test (unpaired)
was used to analyze the differences between groups. The log-rank test was applied to
compare the survival of the groups. Data analysis was performed in R (v 4.1.2, R Founda-
tion for Statistical Computing, Vienna, Austria) with a p-value < 0.05 considered statisti-
cally significant.

3. Results
3.1. Identification of 25 Genes Associated with Erlotinib Resistance and Cancer Stemness in Lung
Adenocarcinoma

The data collection and analysis methods for this study are summarized in the work-
flow diagram shown in Figure S1. We collected 2608 upregulated and 2005 downregulated
erlotinib resistance-associated DEGs (erlotinib-resistant cells versus sensitive cells) in LUAD
from the dataset GSE31625 (Figure 1A). Furthermore, 4339 upregulated and 4115 down-
regulated cancer stem cell-associated DEGs (CD133+ cells versus CD133− cells) in LUAD
were obtained from the dataset GSE35603 (Figure 1B). Combining the DEGs from these
two datasets, we obtained 452 upregulated and 379 downregulated overlapping genes
associated with erlotinib resistance and cancer stemness (Figure 1C). Subsequently, these
genes were analyzed using the TCGA-LUAD clinical information and expression profiles.
Univariate regression analysis identified 25 genes whose expression in LUAD and normal
tissue was consistent with survival risk (Figure 1D,E).
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database. The IC50 values for erlotinib provided in the CCLE were ranked from lowest to 
highest and categorized into six groups. The top 1/6 (89) with low IC50 values were de-
fined as sensitive cell lines, and the last 1/6 (89) with high IC50 values were defined as 
drug-resistant cell lines. LASSO penalty analysis indicated that the minimum deviation 
occurred when the number of genes in the model was 11 (Figure 2A,B). Subsequently, we 
used logistic regression fitted to binary discrete dependent variables (glmnet R package 
applied to “family = binomial”) to determine whether DEG was associated with high or 

Figure 1. Identifying genes associated with erlotinib-resistance and stemness in LUAD. (A) DEGs
associated with erlotinib-resistance (erlotinib-resistant cells versus sensitive cells) in LUAD from
GSE31625. (B) DEGs associated with stemness (CD133+ cells versus CD133− cells) in LUAD from
GSE35603. (C) Venn diagram identifying genes associated with erlotinib resistance and stemness in
LUAD. (D) Forest plot showing univariate regression analysis of intersecting genes. (E) Boxplots
showing the expression of candidate genes. *** p < 0.001.

3.2. Construction and Validation of the Erlotinib-Resistance-Related Model

To explore the relationship between the 25 candidate DEGs and erlotinib resistance, we
selected 497 cell lines with complete data of the mRNA expression from the CCLE database.
The IC50 values for erlotinib provided in the CCLE were ranked from lowest to highest and
categorized into six groups. The top 1/6 (89) with low IC50 values were defined as sensitive
cell lines, and the last 1/6 (89) with high IC50 values were defined as drug-resistant cell lines.
LASSO penalty analysis indicated that the minimum deviation occurred when the number
of genes in the model was 11 (Figure 2A,B). Subsequently, we used logistic regression fitted
to binary discrete dependent variables (glmnet R package applied to “family = binomial”)
to determine whether DEG was associated with high or low IC50. From the results, it
was found that 4 (UGGT2, SATB2, EIF2S3, and NCAPG2) in 11 variables had passed the
significance test (p < 0.05) and became relatively important variables for constructing the
model (Figure 2C). The erlotinib-resistant score was calculated using the following formula:
Resistant Score = 0.3870× UGGT2+ 0.3401× SATB2+ 0.5548× EIF2S3+ 0.5358× NCAPG2.
The predictive efficiency of the erlotinib-resistant-related models was determined by con-
structing ROC curves (Figure 2D). With an area under the curve (AUC) of 0.723, the model
we constructed, based on the four characteristic genes related to erlotinib resistance, had
good accuracy for the prediction of the resistance of erlotinib. The cell lines from the CCLE
database were divided into groups of high and low resistance scores based on the median
resistance scores. A heat map showed that the expression of these four genes was higher
in the high-resistance-score group than in the low-resistance-score group (Figure 2E). The
GDSC database was used as the validation group. The receiver operating characteristic
(ROC) curve had an AUC of 0.626, demonstrating a high accuracy in the erlotinib-resistant-
related model of the validation group (Figure 2F). The grouping of the validation cohort
was similar to that of the training cohort. The gene expression visualized using heat maps
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of the validation group was consistent with that of the training group (Figure 2G). The
above results indicated that the model could accurately predict erlotinib resistance.
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Figure 2. Constructing an erlotinib-resistant-related model by candidate genes. (A,B) Establishment
of the erlotinib-resistant-related model. (C) Coefficient of logistics regression equation model of
erlotinib-resistant-related genes; OR, odds ratio. (D) Prediction of patients’ sensitivity to erlotinib
in this model using diagnostic ROC curves. (E) Heatmap showing gene expression in high- and
low-resistance-score groups. (F,G) ROC curve and heatmap for validation group.

3.3. Functional Enrichment Analysis and Genomic Variation Analysis of the Erlotinib
Resistance Model

GO and GSVA were performed to examine the molecular mechanisms of the genes
related to erlotinib resistance. The relevant samples from CCLE were divided into high-
and low-resistance-score groups using the median resistant scores as the cut-off point.
We performed a differential analysis between the high-resistance-score group and the
low-resistance-score group (high vs. low) to obtain 742 upregulated and 492 downreg-
ulated genes in the high-resistance-score group (Figure 3A, |FC| > 1.5, p < 0.05). The
GO analysis suggested that the upregulated genes in the high-resistance-score group
were mainly enriched in biological processes related to cellular life activities, such as
cell differentiation, cellular developmental processes, and system development. On the
other hand, the downregulated genes in the high-resistance-score group were mainly en-
riched in the extracellular region part, the extracellular region, and the extracellular space
(Figure 3B). Differentially expressed pathways were identified using GSVA through hall-
mark gene sets. The results indicated that the high-resistance-score group was related to
‘DNA repair’ and ‘MYC targets v1′, while the low-resistance-score group was associated
with ‘inflammatory response’ (Figure 3C). In conclusion, we found that DEGs activate
cellular life activities, ‘DNA repair’, and ‘MYC targeting v1’ pathways, which are associated
with stemness and resistance. These results suggest that the erlotinib resistance model can
reflect the characteristics of erlotinib resistance and tumor stemness.
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Figure 3. Identification of biological pathways associated with the risk of erlotinib resistance.
(A) DEGs between the resistance score groups. (B) GO analysis of DEGs between the resistance score
groups categorized into three functional groups: BP, CC, and MF. (C) GSVA of the resistance score
groups. BP: biological process; CC: cellular component; MF: molecular function. Red represents
upregulated genes, blue represents downregulated genes.

3.4. NCAPG2 and EIF2S3 Are Positively Correlated with Cancer Stemness and Are Malignant
Factors in Lung Adenocarcinoma

Our GSVA results suggested that the high-erlotinib-resistance-score group was asso-
ciated with the ‘DNA repair’ and ‘MYC targets v1′ pathways related to tumor stemness.
Therefore, we explored the relationship between four erlotinib resistance genes and the
stemness of LUAD. We selected TCGA-LUAD, GSE10072, and GSE72094 for the mRNAsi
scoring. We divided TCGA-LUAD into high and low groups based on the median mRNAsi
score. Among our four resistance genes, EIF2S3 and NCAPG2 were highly expressed in
the group with high mRNAsi scores (Figure 4A). Correlation analysis revealed a positive
correlation between NCAPG2, EIF2S3 expression, and mRNAsi in TCGA-LUAD (Figure 4B).
These outcomes were also validated in GSE10072 and GSE72094 (Figure 4C,D).

As tumor stemness is associated with tumor recurrence and metastasis, we used uni-
variate regression to analyze the relationship between these two genes, the tumor stage,
lymph node metastasis, distant metastasis, and prognosis in LUAD patients. Univari-
ate regression analysis showed that EIF2S3, NCAPG2, the pathological stage, and lymph
node metastasis were associated with the prognosis of LUAD patients. Further multi-
ple regression analysis showed that EIF2S3, NCAPG2, lymph node metastasis, and the
pathological stage (II, III, IV) interacted and were risk factors for the prognosis of LUAD
(p < 0.05) (Table 1), suggesting that EIF2S3, NCAPG2 might potentially be associated with
the pathological stage and lymph node metastasis. Therefore, we used the clinical data and
expression profile of TCGA-LUAD to analyze the association between the expression of
NCAPG2 and EIF2S3, the clinical stage, and lymph node metastasis. The results showed
that NCAPG2 expression increased with the tumor stage, lymph node invasion, and distant
metastasis (Figure 4E). EIF2S3 also increased with the tumor stage and lymph node inva-
sion, but there was no significant change in distal metastasis. In addition, TCGA-LUAD
samples were used for the KM analysis of EIF2S3 and NCAPG2. The KM curve results
showed that the high-expression groups of EIF2S3 and NCAPG2 were significantly asso-
ciated with the poor prognosis of LUAD patients compared with low-expression groups
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(Figure 4F). These results suggested that NCAPG2 and EIF2S3, as risk factors for the progno-
sis of LUAD patients, were positively correlated with the stemness of LUAD and promoted
the development and metastasis of LUAD.
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Figure 4. Relationship between the expression of NCAPG2 and EIF2S3 and stemness. (A) Heatmap
showing gene expression in high and low mRNAsi groups. (B) Scatter plot showing the correlation
between NCAPG2 and EIF2S3 and mRNAsi scores. (C,D) Validation of the association of NCAPG2 and
EIF2S3 with stemness in LUAD from GSE10072 and GSE72094. (E) Relationship between NCAPG2,
EIF2S3 expression, and clinical features of LUAD. (F) KM survival curve showing the OS of LUAD
patients with high and low expression of NCAPG2 or EIF2S3. KM: Kaplan–Meier; OS: overall survival.
*** p < 0.001, ** p < 0.01, * p < 0.05, ns: no significance.
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Table 1. Univariate and multivariate Cox regression.

Characteristics Total (N)
Univariate Analysis Multivariate Analysis

Hazard Ratio (95% CI) p Value Hazard Ratio (95% CI) p Value

NCAPG2 496 1.266 (1.088–1.474) 0.002 1.203 (1.028–1.409) 0.022

EIF2S3 496 1.380 (1.092–1.744) 0.007 1.547 (1.185–2.020) 0.001

pathologic_stage 496

Stage I 268

Stage II 120 2.383 (1.657–3.428) <0.001 1.868 (1.126–3.100) 0.016

Stage III 83 3.134 (2.145–4.579) <0.001 2.550 (1.450–4.486) 0.001

Stage IV 25 3.761 (2.168–6.524) <0.001 3.332 (1.815–6.114) <0.001

pathologic_N 496

N0 319

N1 177 2.477 (1.845–3.325) <0.001 1.304 (0.823–2.066) 0.258

pathologic_M 496

M0 330

M1 166 1.044(0.758–1.439) 0.790

3.5. NCAPG2 and EIF2S3 Could Predict the Prognosis of Patients with Lung Adenocarcinoma

A prognostic index was created based on the gene expression and the correspond-
ing regression coefficients. The formula used is as follows: Risk score = NCAPG2 ×
0.185082528 + EIF2S3 × 0.436445872. The LUAD patients from TCGA were divided into
high-risk and low-risk groups based on the median risk scores. Heat maps of the risk
factors showed a higher gene expression of NCAPG2 and EIF2S3 in the high-risk group
than in the low-risk group (Figure 5A). We then evaluated the risk of the prediction models
using the time-dependent ROC curves. The results showed that the AUC of ROC reached
0.722, 0.722, and 0.729 at 1, 2, and 3 years, respectively, suggesting that the prognostic
model had an excellent accuracy in predicting the long-term prognosis of LUAD patients
(Figure 5B). Exploring the relationship between risk score and prognosis by KM survival
analysis and log-rank tests showed a worse prognosis in the patients of the high-risk group
than those in the low-risk group (Figure 5C). The predictive performance and prognosis
of the model were validated using GSE30219, and the results were consistent with the
training cohort (Figure 5D–F). We performed a differential analysis between the high-risk
score group and the low-risk score group (high vs. low) to obtain 730 upregulated and
268 downregulated genes in the high-risk-score group (Figure S2A, |FC| > 1.5, p < 0.05).
The upregulated and downregulated DEGs in the high-risk-score group were then used for
GO and KEGG analysis separately. GO analysis indicated that the upregulated genes in the
high-risk group were mainly enriched in biological processes related to cellular life activi-
ties, such as nuclear division, cell division, and the mitotic cell cycle. On the other hand,
the downregulated genes in the high-risk group were mainly enriched in the extracellular
space and cell surface, (Figure S2B). Additionally, KEGG analysis of the DEGs between
the high- and low-risk groups of the prognostic model showed that the downregulated
genes in the high-risk group were enriched in the immune-related pathways, such as the
cell adhesion molecules (CAMs) and the intestinal immune network for IgA production
(Figure S2C), which prompted us to explore the relationship between the prognostic model
and the immune system.
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Figure 5. Construction and validation of a prognostic signature for NCAPG2 and EIF2S3 in the TCGA
and GEO cohort. (A) Distribution of risk scores, survival status, and candidate gene expression for
each patient in the high- and low-risk groups of the TCGA cohort. (B) AUC of time-dependent ROC
curves to assess the predictive efficacy of the prognostic signature for OS in LUAD patients. (C) KM
survival curve shows OS of LUAD patients in the high- and low-risk groups. (D–F) Validation of a
prognostic signature for NCAPG2 and EIF2S3 in GSE30219.

3.6. Immune Infiltration Analysis Based on the Prognostic Model

To further understand the relationship between the prognosis model and the immune
system, we explored how the prognosis model based on NCAPG2 and EIF2S3 affected
LUAD by affecting the immune microenvironment. We performed CIBERSORTx on sam-
ples from TCGA-LUAD patients in the high- and low-risk groups in the prognostic model
and obtained scores for 20 types of tumor-infiltrating immune cells (Figure 6A). The in-
filtration of immune cells such as mast cells, dendritic cells, and CD4+ memory T cells
significantly differed between the high-risk and low-risk groups. In the low-risk group,
the mast cells and dendritic cells were increased, while the CD4+ memory T cells were
increased in the high-risk group. The association between the risk signature and the im-
mune microenvironment of LUAD was assessed based on the ESTIMATE algorithm. The
results revealed that the high-risk group in the TCGA-LUAD cohort had lower estimated
immune and stromal scores than the low-risk group (Figure 6B). These results suggested
that the high-risk group in the TCGA-LUAD cohort might inhibit the immune responses.
We analyzed the relationship between the expression levels of NCAPG2, EIF2S3, immune
cell infiltration, and immune checkpoints in LUAD patients in the TCGA database by
ssGSEA. The results showed that the expression of NCAPG2 was positively correlated with
the infiltration of Th2 cells, T helper cells, and Tgd but negatively correlated with the mast
cells, iDC, and CD8 T cells (Figure 6C, left); the expression of NCAPG2 was positively
correlated with most of the immune checkpoint pathway genes (inhibitory) (Figure 6C,
right). Similarly, the expression of EIF2S3 was positively correlated with the infiltration
of Th2 cells, T helper cells, and Tgd but negatively correlated with the mast cells, iDC,
and CD8 T cells (Figure 6D, left); the expression of EIF2S3 was positively correlated with
most of the immune checkpoint pathway genes (inhibitory) (Figure 6D, right). Immune
checkpoint blockade therapy based on programmed death receptors and their ligands
increases the host immune system’s aggressiveness against tumor cells by inhibiting the
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binding of the programmed death receptors and their ligands [27]. Based on the posi-
tive association of NCAPG2 and EIF2S3 with most of the immune checkpoint pathway
genes (inhibitory), we hypothesized that high-risk populations may benefit from immune
checkpoint inhibitors (ICI).
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Figure 6. Immunoassay. (A) The relationship between high- and low-risk groups in the prognostic
model and CIBERSORTx immune cell infiltration abundance. (B) The relationship between high- and
low-risk groups and the immune score. (C) Correlation of NCAPG2 with immune cells and immune
checkpoints. (D) Correlation of EIF2S3 with immune cells and immune checkpoints. *** p < 0.001,
** p < 0.01, * p < 0.05, ns: no significance.

3.7. NCAPG2 and EIF2S3 Contributed to Erlotinib Resistance in Lung Adenocarcinoma

To detect the transcriptomic changes in NCAPG2 and EIF2S3 during erlotinib exposure
at the single-cell level, we analyzed scRNA-seq data from the GSE134839 and GSE134841
datasets for no-dose, two-day-dose, and eleven-day-dose groups. The scRNA-seq data
were visualized using UMAP, following the noise reduction procedure (see Materials and
methods for details, Figures 7A and S3A). The NCAPG2 and EIF2S3 gene expressions
were also mapped to the UMAP results to observe their abundance in each cell population
(Figures 7B and S3B). The violin plot visualizes the different expressions of NCAPG2 and
EIF2S3 within these three cell populations (Figures 7C and S3C). The results showed
downregulation in NCAPG2 and EIF2S3 expression during short-term erlotinib treatment.
In comparison, the expression appeared to be upregulated during the long-term erlotinib
treatment relative to the short-term treatment. This phenomenon might result from cells
entering the drug-tolerant persisters (DTP) state at the beginning of the drug treatment in
response to intense drug exposure. The cells enter a quiescent state to escape the damage
caused by the drug [28]. The knockdown of NCAPG2 has been shown to induce cell cycle
arrest at the G2 phase to inhibit LUAD cell proliferation [22]. We speculate that short-term
drug treatment altered the cell cycle signaling by leaving NCAPG2 in a low-expression state,
enabling the cells to enter the DTP state. Additionally, one of the characteristics of DTP
is the presence of low levels of mRNA translation [29]. EIF2S3 is a subunit of eukaryotic
initiation factor 2 (eIF2) and is involved in the initiation of protein synthesis [30]. We
suggest that cells could adapt to DTP by reducing the expression of EIF2S3 at the beginning
of drug treatment, possibly reducing the ability of the cells to synthesize specific proteins.
As the erlotinib treatment was extended, a small proportion of DTPs started to proliferate
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again, resulting in the cells entering the drug-tolerant expanded persister (DTEP) state [28]
with the increased expression of NCAPG2 and EIF2S3.
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3.8. NCAPG2 Promoted Stemness and Erlotinib Resistance in Lung Adenocarcinoma Cells

Our analysis determined an association of NCAPG2 with LUAD stemness and erlotinib
resistance. Based on this, we further explored the mechanism of NCAPG2 concerning drug
resistance and stemness. The TCGA-LUAD samples were divided into high and low groups
according to the median expression level of NCAPG2. Then, GSVA analysis found that
gene sets such as the mTORC1 signaling pathway, DNA repair, and MYC targets were
mainly enriched in the NCAPG2 high-expression group. This suggested that NCAPG2 might
play a pro-tumor role through the mTORC1 signaling pathway, DNA repair, and MYC
targets (Figure S4A).

To verify the effect of NCAPG2 on erlotinib resistance in LUAD, we constructed PC9
and HCC827 erlotinib-resistant cells and assayed the IC50 values of erlotinib individually.
The cell viability assay suggested that the IC50 value of PC9-ER was 1965 nM, 30.9 times
higher than the 63.56 nM of PC9, and the IC50 of HCC827-ER was 1310 nM, 16.8 more
than the 77.91 nM of HCC827. This demonstrated that the erlotinib-resistant cells were
successfully generated. Western blotting showed that NCAPG2 was highly expressed in
ER cells, suggesting that NCAPG2 may promote resistance to erlotinib (Figure 8A). Then,
we knocked down NCAPG2 in ER cells with two independent shRNAs (shNCAPG2#1 and
shNCAPG2#2) and assessed the knockdown efficiency using Western blotting. We infected
the cells with the lentivirus containing the shRNA vector and screened for antibiotics
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to obtain a stable cell line, and then, the stably infected shNCAPG2#2 cell line with a
better knockdown effect was selected for subsequent experiments. The cell viability assay
suggested that the IC50 value of PC9-ER was 1882 nM, 1.86 higher than the 1010 nM
of PC9-ER shNCAPG2#2, and the IC50 of HCC827-ER was 1411 nM, 1.62 more than the
868.4nM of HCC827-ER shNCAPG2#2. The results demonstrated that the knockdown of
NCAPG2 enhanced sensitization of LUAD resistance cells to erlotinib treatment (Figure 8B).
In addition, we performed clone-formation experiments on knockdown NCAPG2 in PC9-
ER and HCC827-ER cells and control cells. The results showed that the clone volume of
PC9-ER and HCC827-ER was smaller than that of the control group after the knockdown
of NCAPG2, suggesting that the knockdown of NCAPG2 could inhibit the proliferation
of erlotinib-resistant cells (Figure 8C). These results confirmed that NCAPG2 promoted
erlotinib resistance and tumor cell proliferation in LUAD.
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Figure 8. Knockdown of NCAPG2 significantly increases sensitivity to erlotinib while reducing
stemness in LUAD. (A) The cell viability assay revealed that resistant cell lines (PC9-ER and HCC827-
ER) were constructed successfully. Western blot displays the expression of NCAPG2 in PC9-ER and
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HCC827-ER. (B) NCAPG2 stable knockdown by PC9-ER and HCC827-ER cells was verified by
Western blot and the cell viability assay. (C) Colony formation showed that knockdown of NCAPG2
reduced colony formation in PC9-ER and HCC827-ER. (D) Tumor sphere-forming assay revealed
that silencing NCAPG2 significantly reduces the diameter of the spheres in PC9-ER and HCC827-ER.
(E) SP detection significantly reduces the side population cells in PC9-ER and HCC827-ER upon
silencing NCAPG2. All experiments (except flow cytometry) were repeated three times. *** p < 0.001,
** p < 0.01. All the whole Western blot figures can be found in the Supplementary Materials.

To determine the effect of NCAPG2 on the stemness of LUAD, we performed a tumor
sphere-formation assay and SP detection by flow cytometry. The tumor sphere-formation
assay indicated that the diameter of the spheres from the erlotinib resistance cells with
NCAPG2 knockdown was significantly smaller than that of the controls (Figure 8D). The SP
cells in PC9-ER, HCC827-ER, PC9-ER shNCAPG2#2, and HCC827-ER shNCAPG2#2 were
detected by Hoechst staining using flow cytometry. PC9-ER shNCAPG2#2 and HCC827-ER
shNCAPG2#2 had a significantly lower proportion of SP cells than PC9-ER and HCC827-ER
(Figure 8E). This result demonstrated that the knockdown of NCAPG2 resulted in the
decreased stemness of the erlotinib resistance cells in LUAD, and NCAPG2 plays a vital
role in maintaining the stemness of LUAD.

Subsequently, 13 stemness marker genes (THY1, SOX2, PROM1, POUSF1, KIT, AL-
CAM, ABCG2, ABCB1, ALDH1A1, CD44, ABCC1, EPCAM, and MYC) were obtained from
a review of the literature [12]. We performed a correlation analysis between NCAPG2
and 13 lung cancer stemness markers using the TCGA database and found that NCAPG2
was highly correlated with ABCC1, MYC, and EPCAM (Figure S4B). Therefore, we spec-
ulated that these three genes were downstream genes of NCAPG2. Then, the total RNA
and the total protein of PC9-ER-control, HCC827-ER-control, PC9-ER-shNCAPG2#2 and
HCC827-ER-shNCAPG2#2 were collected for RT-qPCR and Western blot to detect the ex-
pression of ABCC1, MYC, and EPCAM. RT-qPCR analysis showed lower expression levels
of ABCC1, MYC, and EPCAM mRNA in the knockdown NCAPG2 group compared to the
control group (Figure S4C), suggesting that they may be downstream genes of NCAPG2.
Additionally, Western blot showed that the knockdown of NCAPG2 decreased the protein
expression of ABCC1, MYC, and EPCAM (Figure S4D). These results demonstrate that
NCAPG2 may affect the stemness of LUAD by affecting ABCC1, MYC, and EPCAM.

4. Discussion

Erlotinib is the first-line treatment drug for LUAD, but its drug resistance has been
a major cause of poor prognosis in LUAD patients. Previous studies have reported that
epidermal-mesenchymal transition (EMT) is responsible for EGFR-TKI resistance in LUAD
and promotes lung cancer metastasis and tumor cell acquisition of stemness [31,32]. How-
ever, the relationship between erlotinib resistance and the stemness of LUAD requires
further study. This study explores the relationship between erlotinib resistance and
cancer stemness to find new therapeutic targets to guide the treatment of LUAD after
erlotinib resistance.

Our study constructed an erlotinib resistance model through LASSO analysis of the
GEO dataset, TCGA database, and CCLE database, which can accurately predict the
patients’ responses to erlotinib. Based on this, we explored the potential molecular mech-
anisms of the model associated with erlotinib resistance. The GSVA showed that the
high-resistance-score group could promote the stemness-related pathways, ‘MYC targets
v1′ and ‘DNA repair’. Recent studies have found that CSCs have a strong ability to repair
DNA damage in lung cancer [33]. Simon’s team also demonstrated that DNA damage
repair systems make tumor cells resistant to chemotherapy in NCSLC [34]. Furthermore,
Amy Schulze et al. confirmed that ‘MYC targets v1′ promotes breast cancer progression [35].
Subsequently, we also found that NCAPG2 and EIF2S3 were highly associated with stem-
ness. Therefore, we determined whether erlotinib resistance was related to stemness
in LUAD.
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Immune cells play an essential role in drug resistance and stemness and the discovery
of immune-related pathways by previous KEGG analysis using the high- and low-risk
groups of the prognostic model. Therefore, we explored the correlation between immune
cells and NCAPG2 and EIF2S3. Immune infiltration analysis showed a negative correlation
of NCAPG2 and EIF2S3 with most immune cells and a positive correlation with immune
checkpoint molecules. Interestingly, NCAPG2 and EIF2S3 positively correlated with Th2
but negatively with Th1. Several researchers have investigated the role of Th2 in tumor
promotion. According to Bretscher’s Th2-skewing hypothesis, large Th2 components
in anti-tumor immune responses lead to tumor escape while Th1 mediates anticancer
immunity in mice [36,37]. Similarly, Astri Frafjord’s team showed that Th2 is dominant
in the immune landscape of human primary lung tumors [38]. Tomohide Tatsumi’s team
found elevated Th2 in renal cell carcinoma [39]; Elena Tassi et al. confirmed a tumor-related
Th2-immune deviation in pancreatic cancer [40]. Moreover, Th2 cells were thought to
promote tumor progression by secreting cytokines such as IL-4 and IL-13 [41]. Based on
previous research, we conjecture that tumor immune escape mediated by NCAPG2 and
EIF2S3 may be involved in LUAD erlotinib resistance and stemness. A bioinformatics
study found that NCAPG2 was more correlated with the mRNAsi than EIF2S3. We selected
NCAPG2 for in vitro study based on this finding. This means that in future we will focus
on NCAPG2 and explore the underlying molecular mechanism.

NCAPG2 is a component of the condensin II complex and plays a vital role in cell
mitosis [42]. Many studies have shown that NCAPG2 is highly expressed in tumors and
involved in tumor proliferation, metastasis, and invasion. NCAPG2 facilitates glioblastoma
cell malignancy and xenograft tumor growth via HBO1 activation by phosphorylation [43].
NCAPG2 overexpression drives Hepatocellular carcinoma (HCC) proliferation and metas-
tasis by activating the STAT3 and NF-κB/miR-188-3p pathways [44]. NCAPG2 promotes
LUAD cell proliferation by regulating the G2/M phase [22]. Previous studies have also
shown that NCAPG2 is mainly involved in signaling pathways such as G2M checkpoint,
DNA repair, and oxidative phosphorylation [45]. Coincidentally, this is consistent with the
GSVA results of our drug resistance model. According to these results, we speculate that
NCAPG2 might influence the development of erlotinib resistance and stemness in LUAD.
Our results from the GSVA analysis and functional experiments with NCAPG2 also vali-
dated this hypothesis. In our study, we found that the high expression of NCAPG2 activates
the mTORC1 signaling pathway. Previously, Ye et al. demonstrated that TM4SF1 induced
chemoresistance in NSCLC by regulating the DDR1/ERK/Akt-mTOR pathway [46]. Chen
et al. found that the PI3K/Akt/mTOR signaling pathway promoted the proliferation and
survival of colon cancer stem cells [47]. Excessive activation of mTORC1 has also been
shown to promote tumor formation, proliferation, and metastasis [48]. Therefore, we spec-
ulated that NCAPG2 may function through the mTOCR1 signaling pathway. Interestingly,
we also found that increased NCAPG2 expression enhanced MYC-related pathways. As
one of the transcription factors driving the pluripotency of embryonic stem cells, MYC
is also considered to be one of the stemness marker genes of LUAD [24]. This suggested
that NCAPG2 might affect the stemness of LUAD by affecting MYC-related pathways.
Based on these findings, we hypothesized that NCAPG2 might affect stemness and erlotinib
resistance in LUAD through the mTOR and MYC target pathways. We found that the
knockdown of NCAPG2 decreased the expression of ABCC1, MYC, and EPCAM through
the experiments. So, we speculate that NCAPG2 may maintain the stemness of LUAD and
promote erlotinib resistance through ABCC1, MYC, and EPCAM. However, the specific
mechanism needs to be further explored.

Although our study suggests that NCAPG2 plays an important role in maintaining
stemness and promoting erlotinib resistance in LUAD, there are still some limitations. Our
analysis is based on public databases without our own clinical samples; so, there might
be some deviations. Moreover, the clinical medication guide for erlotinib states that the
clinical dose is 150 mg/day, which is greater than the concentration of erlotinib-resistant
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strains we constructed. Therefore, further studies are needed regarding the underlying
mechanism between erlotinib resistance and stemness in LUAD.

5. Conclusions

An erlotinib resistance model was constructed based on erlotinib resistance genes,
which could predict the patients’ responses to erlotinib. In addition, NCAPG2 was found to
maintain the stemness and promote erlotinib resistance in lung adenocarcinoma. This study
might provide new insights into diagnosing and treating LUAD with erlotinib resistance.
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