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Abstract

Background: Despite continued efforts using chemical similarity methods in virtual
screening, currently developed approaches suffer from time-consuming multistep
procedures and low success rates. We recently developed a machine learning-based
chemical binding similarity model considering common structural features from
molecules binding to the same, or evolutionarily related targets. The chemical
binding similarity measures the resemblance of chemical compounds in terms of
binding site similarity to better describe functional similarities that arise from target
binding. In this study, we have shown how the chemical binding similarity could be
used in virtual screening together with the conventional structure-based methods.

Results: The chemical binding similarity, receptor-based pharmacophore, chemical
structure similarity, and molecular docking methods were evaluated to identify an
effective virtual screening procedure for desired target proteins. When we tested the
chemical binding similarity method with test sets of 51 kinases, it outperformed the
traditional structural similarity-based methods as well as structure-based methods,
such as molecular docking and receptor-based pharmacophore modeling, in terms
of finding active compounds. We further validated the results by performing virtual
screening (using the chemical binding similarity and receptor-based pharmacophore
methods) against a completely blind dataset for mitogen-activated protein kinase
kinase 1 (MEK1), ephrin type-B receptor 4 (EPHB4) and wee1-like protein kinase
(WEE1). The in vitro kinase binding assay confirmed that 6 out of 13 (46.2%) for MEK1
and 2 out of 12 (16.7%) for EPHB4 were newly identified only by the chemical
binding similarity model.

Conclusions: We report that the virtual screening results could further be improved by
combining the chemical binding similarity model with 3D-QSAR pharmacophore and
molecular docking models. Not only the new inhibitors are identified in this study, but
also many of the identified molecules have low structural similarity scores against
already reported inhibitors and that show the revelation of novel scaffolds.

Keywords: Evolutionary chemical binding similarity, Virtual screening, 3D-QSAR,
Machine learning, Ligand similarity, Pharmacophore, Molecular docking
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Background
The discovery of highly potent lead compounds is one of the most important steps in

drug discovery. There has been a massive and continuous effort to develop an efficient

lead discovery process because most identified hits are eventually dropped from the

lead optimization procedure owing to low efficacy, poor bioavailability, or high toxicity

[1, 2]. As an alternative to the tedious, expensive, and time-consuming experimental

screening procedure, computational methods that can screen the vast amount of

chemical compounds (virtual chemical library) have become an indispensable tool in

the early stage of drug discovery [2]. Of these, chemical similarity calculation has been

extensively used in drug discovery and proven effective in various applications such as

lead discovery and target identification [3, 4].

Various virtual screening (VS) approaches have employed 2D and 3D molecular

comparison methods that are based on fingerprints, substructures, and descriptors that

enable simple, fast and computationally inexpensive analysis [4, 5]. Similarity Ensemble

Approach [6] and SuperPred [7] are web based target prediction tools that use the 2D

fingerprint similarity principle to compare the input molecules to available ligands

(with target information) in the database. SwissTarget considers both 2D fingerprints

and 3D electroshape vectors for molecular comparison to provide information on

possible binding targets [8]. SpiDER [9] is another tool that compares the query

molecule with self-organizing maps through pharmacophore features and predicts

binding targets for a given molecule that may be an existing molecule or a designed

scaffold. The SHAFTS approach in ChemMapper [10] suggests targets for chemicals

based on both 3D pharmacophore mapping and shape overlay methods to compare

molecules. Even though several tools are available for target prediction and drug

identification, most of the methods are based on the structural similarity of chemical

compounds that often fail to represent the functional biological activity derived from a

specific combination of local spatial features [11]. Consideration of only structural

similarities based on single target binding molecules may not be suitable for VS as the

term activity cliffs are referred to compounds with high structural similarity but high

activity differences [12].

The phenotypic similarity of chemicals is possibly calculated to represent functional

activity similarity, irrespective of structural component similarity. For example, gene

expression databases such as Connectivity Map [13] and the Library of Integrated

Network-based Cellular Signatures [14] are used to identify chemical similarity. In

phenotypic drug-drug similarity, two molecules are similar if they share similar gene

expression, activities, or mechanisms for a query gene signature. The side-effect

similarity of drugs is another approach to define whether two different drugs share the

same or similar targets if they cause similar side-effects through drug-disease relation-

ships [15, 16]. Although these methods directly encode biological activity in the similar-

ity calculation, the phenotypic information of most chemical compounds is highly

limited so it is difficult to use in a general VS task.

We recently developed a machine learning-based chemical similarity model referred

to as a target-specific ensemble evolutionary chemical binding similarity (TS-ensECBS)

model that was designed to measure the probability that chemical compounds bind to

identical targets [17, 18]. The TS-ensECBS model encodes evolutionarily conserved key

molecular features required for target-binding into the chemical similarity score,
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making it an optimal similarity method to screen novel candidate molecules to check

for biological activity. Indeed, in our previous work [17], the TS-ensECBS model

outperformed the traditional ligand-based similarity methods in terms of finding similar

target-binding compounds.

In the present study, we compared the TS-ensECBS model with well-known ligand-

and structure-based VS approaches to recommend a cohesive route for effective early

stage lead identification. The chemical binding similarity method was tested on 51

kinases and compared to traditional structural similarity-based methods in terms of

finding active compounds as well as structure-based methods such as molecular

docking and receptor-based pharmacophore modeling. The chemical binding similarity

was further validated by performing VS for kinases against a completely blind chemical

dataset. Lastly, considering the distinct characteristics (prediction performance, running

time, underlying principle, and requirement to run) of VS methods, we proposed an

integrative screening approach adopting the TS-ensECBS model.

Results
Performance of virtual screening methods for the large-scale kinase test set

The different VS methods (TS-ensECBS model, ligand-based shape similarity score,

receptor-based pharmacophore model, and molecular docking with either flexible or rigid

sidechains) were commonly applied to the kinase test set and their prediction accuracy was

compared using area under the curve (AUC) values in a precision and recall (PR) curve as

shown in Fig. 1. The TS-ensECBS model was a machine learning-based method trained

using precompiled protein-ligand interaction data. In cases of structural similarity between

chemicals, it was calculated through the molecular information obtained from chemical

structures and easily applicable to VS using the similarity score to known active molecules.

The chemical pairs were sorted by each chemical similarity method to compare the per-

formance for finding common target-binding chemical pairs (Fig. 1a). The TS-ensECBS

model showed higher performance than the structure similarity methods due to the

encoded target-binding information in the training data.

In contrast, the receptor-based pharmacophore model was a structure-based method

that extracted a set of critical steric and electrostatic features from a known protein-

ligand complex structure. Molecular docking only required knowledge of the receptor

structure without any prior binding site information and the calculated binding energy

was used to score chemical compounds. For the TS-ensECBS model, chemical com-

pounds were scored by assigning the maximum TS-ensECBS score to each test molecule.

The result suggested that the TS-ensECBS model showed higher performance to prioritize

the chemical compounds binding to a VS target (Fig. 1b).

The systematic comparison of these methods not only provided a performance

estimation of the individual methods but also revealed how to combine them for

improving VS procedures. The detailed steps about combination of effective VS

procedure can be found in ‘Discussion’ part.

Selection of kinases for the blind virtual screening test

For further performance validation, a small number of kinase targets were selected to

find novel inhibitory molecules from completely unseen chemical databases. We
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focused on three kinases (mitogen-activated protein kinase kinase 1 (MEK1), ephrin

type-B receptor 4 (EPHB4), and wee1-like protein kinase (WEE1)) that were selected by

the following criteria based on the screening results of the test set shown in Fig. 1; a

TS-ensECBS model PR AUC value greater than 0.8 (expecting high prediction accur-

acy), a number of known binding chemicals for the targets greater than 10 (ensuring

sufficient training data), an output TS-ensECBS score for the positive chemicals higher

than 0.8, and average score differences between positive and negative chemicals over

0.4 (expecting high discriminative power). These criteria were defined to select kinases

with reliable, high predictive performance models likely to have high accuracy in the

blind test. The PR AUC values of TS-ensECBS models were 0.93, 0.92, and 0.89

for MEK1, EPHB4, and WEE1, respectively. Similarly, the corresponding PR AUC

values of the pharmacophore models were 0.68, 0.61, and 0.92, respectively.

Hence, pharmaDB was used along with TS-ensECBS to further screen the un-

known databases.

Fig. 1 Validation of different virtual screening methods for the kinase test set. The AUC values in the
precision-recall curve calculated for data of each kinase are shown for each method tested. All methods
were validated on the 51 selected kinases using their known inhibitors along with unknown molecules
chosen based on random selection. a The LIGSIFT, ligand similarity using clique algorithm (LiSiCA) 2D,
LiSiCA 3D, shape-it, and Tanimoto ligand-based structural similarity methods were used for comparison
with the TS-ensECBS method. b The pharmacophore model (PharmaDB) incorporated in Discovery studio
2018, AutoDock VINA with both rigid and flexible side chains, the structure-based methods employed for
comparison with the TS-ensECBS method. Two different test sets were used for ligand-based and structure-
based methods. AUC values were calculated for each kinase and their distributions are shown in Figs. 1 and
SI Fig. 6. The TS-ensECBS model clearly outperformed the ligand-based 2D and 3D chemical similarity and
structure-based methods, although the pharmacophore model performed reasonably. However, molecular
docking performed poorly, regardless of the sidechain flexibility in the binding site. Therefore, we decided
to test the TS-ensECBS and receptor-based pharmacophore models further for unseen chemical databases

Durai et al. BMC Bioinformatics          (2020) 21:309 Page 4 of 18



Virtual screening for the three selected kinases

To find promising candidates in the chemical databases, we prioritized the chemical

compounds by TS-ensECBS or receptor-based pharmacophore score. First, chemical

compounds were only selected by TS-ensECBS score (cutoff 0.7), which resulted in 34,

53, and 238 for MEK1, EPHB4, and WEE1, respectively. Of these, the top 10 individual

hits by TS-ensECBS and receptor-based pharmacophore score were shortlisted for each

kinase target. Notably, only six molecules had a pharmacophore fit score above zero for

MEK1. From those constricted hits, we excluded molecules that were out of stock,

duplicates obtained as repetitive hits in more than one method, and those already re-

ported as inhibitors for MEK1, EPHB4, and WEE1 kinases or closely associated kinases.

To further compare PharmaDB and TS-ensECBS methods, the chemical databases were

also later screened using only the PharmaDB receptor-based pharmacophore models.

The PharmaDB models stored in PDB IDs 3v01, 4aw5, and 1x8b were used to select

the candidate molecules using the pharmacophore fit score. The experimentally tested

molecules had diverse score ranges for both TS-ensECBS and pharmacophore fit score

(Fig. 2).

In vitro kinase binding assay

An in vitro binding assay was used to test the final candidate molecules for binding

specificity and binding affinity. As a positive control, hypothemycin, a predicted but

known inhibitor of MEK1, was also included to perform the experimental assay. Out of

32 molecules tested through the in vitro binding assay with 10 μM concentration,

SEW05801, 18864755, XBX00307, and CD09763 were successfully found to be poten-

tial inhibitors of MEK1 and GK03499 and GK03503 were found to be dual inhibitors

for MEK1 and EPHB4 (Figs. 2 and 3). The percentage of a kinase in solid support (that

confirms the competition between a test molecule and an immobilized molecule for

binding to a kinase) varied between 5.9 and 32% (Fig. 2 and Table 1). For the eight

active molecules (Fig. 3), we also calculated the dissociation constant (Kd) (SI Figs. 1

and 2) and the values were between 1500 nM and 8400 nM (Table 1). Contrastingly, no

active molecules were found for WEE1 that can be seen along with kinase diversity in

SI Fig. 3. Out of eight active molecules, only three had low to moderate pharmacophore

scores from PharmaDB screening (0.15, 0.44, and 0.52; Table 1). Nineteen molecules

had pharmacophore fit scores above zero but only three of them were active in the

competitive binding assay. Hence, receptor-based pharmacophore models may not be

suitable for final scoring in VS.

In contrast, the TS-ensECBS model consistently showed high performance in selecting po-

tential inhibitors for both MEK1 and EPHB4. All active molecules showed high TS-ensECBS

scores (above 0.87), whereas candidate molecules selected only using pharmacophore fit

scores were all inactive (Fig. 2). Molecules with both high TS-ensECBS and pharmacophore

scores were likely active (Fig. 2b). Taken together, the results suggested that the TS-ensECBS

model could serve as a promising primary VS tool.

Secondary 3D-QSAR Pharmacophore model for complementing the TS-ensECBS model

Despite the high accuracy of the TS-ensECBS model, the in vitro binding assay showed

that many of the candidate molecules with a TS-ensECBS score of 0.7 or higher were
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inactive, suggesting the possibility for further improvement. The training set of TS-

ensECBS model contains the randomly chosen negative molecules which are relatively

easy to predict with high AUC values. On the other hand, the biochemical binding

assay was performed for all positive-like molecules screened by TS-ensECBS. Notably,

those selected molecules possibly have several common structural features, which

makes the prediction much more difficult with lower AUC values. To complement the

TS-ensECBS model and refine the output scores, we constructed a secondary 3D-

QSAR model using only the in vitro binding assay data. The structure-based 3D-QSAR

model was relatively free from the overfitting problem that occurs in most machine-

learning methods, and more importantly, provided the 3D molecular features necessary

for optimal target-binding.

Six reliable 3D-QSAR models built using the competitive binding assay results were fi-

nally chosen for MEK1 and EPHB4. The 3D-QSAR pharmacophore models were gener-

ated via the Catalyst Hypogen algorithm that used the data (that is the training set,

conformational models, pharmacophore features, parameters, and so on) to generate

Fig. 2 The TS-ensECBS and pharmacophore scores of the candidate molecules tested using an in vitro
binding assay. The output score obtained from the TS-ensECBS model and PharmaDB screening for the
molecules verified via the in vitro binding assay are shown. a MEK1 and b EPHB4. c all in vitro binding
assay results (percentage of control (POC) values) are represented by a heat map where the lower POC
value indicates a higher binding affinity. * indicates the molecules were also selected to assess MEK1
inhibitory activity. The activity values were derived from the POC value of the in vitro binding assay. [100 –
POC] value is considered as the activity value shown. A lower POC value likely represents a higher binding
affinity because the lowest percentage of the control in solid support means there was competition
between a test molecule and an immobilized molecule for binding to the kinase
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predictive pharmacophores (Fig. 4). All pharmacophores (maximum five features) among

the two most active molecules were identified and stored by Hypogen. Pharmacophores

that fit the remaining active molecules were retained. Any pharmacophore that matched

more than half of the compounds identified as inactive was removed. The highest-scoring

unique pharmacophores were exported after optimization. The values of regression ana-

lysis by Hypogen, along with the chosen hypotheses, are shown in SI Fig. 4.

The Fisher randomization option in Discovery Studio (DS) 2018 was used to ensure

that the generated hypotheses are acceptable. All the generated models had a statistical

significance of 90% or higher, which suggested that the 3D-QSAR models were trust-

worthy (Fig. 5).

In MEK1 models built based on POC (MEK1_POC1) and Kd (MEK1_Kd1) values,

one HBD, one HBA, and one RA were predicted to be common active features among

the six active molecules (Fig. 4). The statistical significance for MEK1 models generated

based on POC (MEK1_POC1) and Kd (MEK1_Kd1) values were 90 and 95%, respect-

ively (Fig. 4). For the hypothesis using POC values, the EPBH4_POC1 model consisted

Fig. 3 Two-dimensional structures of the experimentally validated lead compounds. Every lead molecule
with its two-dimensional structure, name of its binding target, binding constant (Kd in nM) and percentage
of control (POC) values are given. * represents dual inhibitors of MEK1 and EPHB4

Table 1 Competitive binding assay hits. Compounds identified in this study. * represents dual
inhibitors of MEK1 and EPHB4

Compound Target TS-ensECBS
score

Pharmacophore
fit score

Percent
of control
(POC)

Kd
(nM)

Rigid
docking
(kcal/mol)

Flexible
docking
(kcal/mol)

Shape
similarity

SEW05801 MEK1 0.87 0 5.9 1500 −8.4 −10.4 0.47

18864755 MEK1 0.98 0 8.1 2900 −9.7 −9.8 0.52

XBX00307 MEK1 0.97 0.15 18 3700 −8.6 −9.6 0.59

CD09763 MEK1 0.97 0 25 3800 −6.3 −7 0.43

GK03499* MEK1 0.9 0 23 4900 −8.2 −9.8 0.76

GK03503* MEK1 0.94 0 31 8400 −8.2 −9.8 0.85

GK03503* EPHB4 0.86 0.52 7.9 1600 −8.2 −9 0.72

GK03499* EPHB4 0.9 0.44 32 3300 −8.5 −9.5 0.67
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of two RA features and one HBA feature and its significance was 90% (Fig. 4). In the

case of EPHB4 models with Kd values taken as input, the significance was 95% for the

three selected hypotheses (Fig. 4). EPHB4_POC1 and EPHB4_Kd3 models had two RA

features and one HBA feature while EPHB4_Kd1 and EPHB4_Kd2 models had one

HBA, one RA, and one HY feature.

General applicability of the secondary 3D-QSAR models

Notably, the 3D-QSAR models were not just limited to our experimental data set but

were generally applicable to a larger data set without an overfitting problem because

the prediction results for the unseen large test set from the kinases still showed a

strong discriminative capacity for known binders (Fig. 5a and b). Specifically, the 3D-

QSAR models that were built with the MEK1 and EPHB4 inhibitors identified in this

study were employed to score the MEK1 and EPHB4 test set molecules used to validate

the structure-based methods (Fig. 5a and b). The fit scores of positives in MEK1 and

EPHB4 test set molecules for 3D-QSAR models were clearly discriminative against the

negatives (Fig. 5a and b). The highest pharmacophore fit score of both positive and

negative molecules from any of the selected model was used for calculation. Out of ten

MEK1 positive molecules tested, eight had a 0.86 or higher pharmacophore fit score.

Fig. 4 3D-QSAR models generated based on the percentage of control (POC) and binding constant (Kd in
nM) values from the biochemical assay. The newly identified lead compounds for MEK1 and EPHB4 were
respectively used to create the models. a MEK1 model based on POC values. b MEK1 model built with
binding constant values. c EPHB4 model generated via POC values. d to f EPHB4 models generated using
binding constant data. Hydrogen bond acceptor (HBA); hydrogen bond donor (HBD); hydrophobic (HY);
and ring aromatic (RA). Every interfeature distance is given as an angstrom

Durai et al. BMC Bioinformatics          (2020) 21:309 Page 8 of 18



Similarly, all nine EPHB4 active molecules had a 0.93 or higher pharmacophore fit

score. The total number of molecules used to as assess the performance of MEK1 and

EPHB4 3DQSAR models were 51 and 49, respectively.

Combined use of 3D-QSAR and chemical binding similarity

Thanks to the reliability and generality of the 3D-QSAR models, we compared the

predicted values of 3D-QSAR models and the chemical binding similarity scores for the

MEK1 and EPHB4 inhibitors found in this study to check the possibility of their com-

bined use (Fig. 5c and d). The competitive binding assay results from 13 MEK1 and 12

EPHB4 candidates were used to show the kinase inhibiting properties of molecules.

The lowest predicted activity log value from any of the selected 3D-QSAR models for

the screened molecules was used for this comparison. The results suggested that the

combined use of TS-ensECBS models with the 3D-QSAR model clearly separated the

active molecules from the inactive molecules. Accordingly, this strategy for generating

a secondary 3D-QSAR model would be useful for further inhibitor screening or in

structure-activity relationship studies aiming for new molecules when used along with

the ECBS method. As discussed in the individual validation results of both the TS-

Fig. 5 The TS-ensECBS scores and predicted activity values from 3D-QSAR models. a and b 3D-QSAR
pharmacophore models generated based on binding affinity experiments tested with the already reported
inhibitors as well as negative molecules that were used earlier to validate the structure-based models. The
highest fit value from any of the 3D-QSAR models was selected for each molecule. c and d Output scores
obtained from the TS-ensECBS and 3D-QSAR models for inhibitors confirmed via the competitive binding assay
and show activity-based comparisons. The log values of predicted 3D-QSAR activity scores were calculated based
on experimental input values (used for 3D-QSAR model generation) for MEK1 and EPHB4. The lowest predicted
activity log value from any of the 3D-QSAR models chosen for the target was selected for each molecule
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ensECBS and 3D-QSAR methods in earlier sections, these methods were also individu-

ally effective as VS tools against unknown molecules.

Molecular docking to predict the binding pose of active molecules

Although molecular docking showed poor performance in the VS test, it was useful to

predict the binding mode and present the atomic details of protein-ligand interaction

when the binding pair was fixed. When the native ligands were docked to the target

proteins for a docking pose prediction test, the ligand binding complexes were very

close to the corresponding x-ray structures with RMSD values of 1.58 Å and 1.23 Å for

MEK1 and EPHB4, respectively. The results suggested the potential use of molecular

docking to predict binding modes, even though it could not be used as a primary VS

tool based on its binding energy score. The molecules with the highest binding affinity

value from the competitive binding assay were chosen to predict the binding models.

The binding models of MEK1-SEW05801 and EPHB4-GK03503 complexes are shown

in Fig. 6.

In the MEK1 crystal structure, the ligand was involved in bidentate interactions with

Ser212 and formed a halogen bond with Val127. In the case of the EPHB4 complex,

Asp234 and Met172 formed hydrogen bond interactions with the ligand in addition to

several hydrophobic interactions. Binding modes of identified inhibitors in this study

suggested that they may not share any conserved interactions with their respective co-

crystallized ligands. Their predicted interaction details are discussed below. When mo-

lecular docking and 3D-QSAR models for MEK1 were compared, the hydrophobic in-

teractions were disclosed through an RA feature that was similar in all protein-ligand

interactions. Specifically, XBX00307 and 18864755 inhibitors were assumed to interact

with Val22 and Leu14 of MEK1. The residues Gln93 and Met159 in MEK1 may play a

role in binding with XBX00307 and SEW05801, respectively. Interaction with Ile181

may be necessary for GK03503 and GK03409 to bind in the MEK1 cavity. The Leu155

residue in MEK1 may play an essential role in binding to CD09763. For EPHB4 bind-

ing, interactions with Ile15, Ala39, Leu141, and Asp152 may be significant for

GK03499 and GK03503.

Discussion
Integrative approach for virtual screening

In the VS tests based on kinases, the TS-ensECBS models proved effective as a primary

screening tool (Fig. 1). The success percentage of the TS-ensECBS models on MEK1

and EPHB4 were 46.2 and 16.7%, respectively, and the TS-ensECBS scores for all ex-

perimentally active molecules were high (between 0.86 and 0.98; Table 1). The newly

discovered molecules had a low structural similarity to the already reported inhibitors

(Table 1) (0.43–0.85 by LiSiCa-2D). However, as previously stated, no hits were con-

firmed in the competitive-binding assay for WEE1 kinase, which requires further

investigation.

The structure-based methods such as 3D-QSAR fitted to the binding assay data may

be beneficial to compensate for the limitations of the TS-ensECBS model by rescoring

the selected candidates. Although molecular docking was earlier ruled out for primary
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screening due to its low performance, its binding model prediction for inhibitors could

be significant in revealing atomic details for the protein-ligand interactions (Fig. 6).

Considering the results from the current study, we propose an integrated approach

for VS using TS-ensECBS, biochemical assay, 3D-QSAR, and molecular docking

models (Fig. 7). The TS-ensECBS model is optimal for an initial screening to perform

an in vitro assay. Furthermore, 3D-QSAR models built using experimental data may be

used for secondary screening together with TS-ensECBS. Likewise, based on the

docking results tested with the known inhibitors of MEK1 and EPHB4, the near-native

protein-ligand binding model can be achieved via molecular docking.

Biological significance of the newly identified MEK1 and EPHB4 inhibitors

Protein kinases have been widely targeted for drugs in the last three decades mainly

due to their role in the initiation and development of human cancer [19]. Kinases also

play a significant role in several non-cancerous disorders such as immunological and

metabolic diseases [19]. In the human genome, 518 kinase genes phosphorylate more

Fig. 6 Predicted binding poses of the newly identified inhibitors. The binding modes were predicted using
AutoDock Vina. The crystal structures (PDB IDs 3v01 and 4aw5) were used for MEK1 and EPHB4 docking,
respectively. Residues that interacted with any of the identified inhibitors are shown as orange ball-and-
sticks. The ligands are represented as sticks. Cyan represents the native ligand in the X-ray crystal structure.
The ligands shown in green display the predicted binding poses of the native ligands for method
validation. The yellow ligands represent the identified inhibitor with the highest binding affinity to its
target. a The overlay of crystal and the predicted docked pose of MEK1 ligand present in PDB ID 3v01. b
The ligand in PDB ID 3v01 and the docking result of SEW05801 overlap. c The overlay of crystal and the
predicted docked pose of the EPBH4 ligand in PDB ID 4aw5. d shows the ligand molecule in PDB ID 4aw5
and the docking model of GK03503
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than 30% of the proteome, which is essential for signal transduction in various path-

ways. Thus, kinases pave the way for exploring numerous target-based therapeutic op-

tions [19].

Mutations in the genes encoding receptor tyrosine kinases or MEKs lead to deregula-

tion of this signaling pathway, which causes cancer [20]. Thus, inhibitors for receptor

tyrosine kinases and MEKs are essential to reduce disease progression. Almost one-

third of cancers are proven to have continuous MAPK pathway and MEK1 activation

that leads to genetic alteration [21]. MEK inhibitors are also required to clear tumors

by immune system reactivation when there are immune evasion and resistance to T cell

checkpoint inhibitors [19]. EPHB4 is significant in vascular development but increased

EPHB4 expression is found in breast and lung cancers [22, 23]. EPHB4 is also involved

in pathological vessel formation such as angiogenesis; hence, molecules to inhibit

EPHB4 activity are valuable [24]. Therefore, the newly identified compounds in this

study might serve as potential lead compounds for treating various cancers (SI Fig. 5).

Conclusions
The high success ratio of the TS-ensECBS model in the competitive binding assay (6

out of 13 molecules for MEK1 and 2 out of 12 molecules for EPHB4) suggested that

the TS-ensECBS model could be used as a primary VS tool to discover lead compounds

for desired targets. Interestingly, several inhibitors identified in this study also have low

structural similarity scores to already known inhibitors and thus believed to have novel

core structures. Similarly, 3D-QSAR models obtained using the activity data from the

in vitro binding assay seemed to complement the TS-ensECBS model by clearly distin-

guishing the active and inactive compounds. Molecular docking successfully predicted the

Fig. 7 Proposed integrated virtual screening approach. The TS-ensECBS model can be used as a primary initial
screening tool owing to its high accuracy. Furthermore, the TS-ensECBS and 3D-QSAR models (built using the
obtained experimental data) may be used together for a secondary screening to improve the virtual screening
success rate. Molecular docking can be used to predict the protein-ligand binding model for active compounds
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near-native docking conformations, despite a low VS performance. Hence, the TS-

ensECBS model combined with the in vitro binding assay, 3D-QSAR model, and molecu-

lar docking should be an effective integrative procedure for VS (Fig. 7). Since the accuracy

of proposed combinatorial VS approach needs improvement, involving several other com-

putational methods along with TS-ensECBS may show more valuable results.

Methods
Test set generation for kinase targets

First, we shortlisted 395 kinases that were available to test through in vitro binding assays

(KINOMEscan, DiscoverX, CA, USA). We selected a subset of the kinases with prebuilt

receptor-based pharmacophore models in the PharmaDB database DS2018 [25, 26] that

also had protein-ligand complex structures in the PDBbind database [27] for molecular

docking simulation. The final test set consisted of 51 kinases; their known active mole-

cules were retrieved from DrugBank [28] and BindingDB [29]. The active molecules in

BindingDB were used only when the binding affinity value was below 100 nM by Ki, IC50,

Kd, or EC50 values to exclude any promiscuous binders.

The test set for the TS-ensECBS comparison with ligand-based similarity methods

was generated through chemical pairs of the active molecules. That is, the chemical

pairs that bound to a common kinase target or evolutionarily related kinase targets

were considered positive samples. To generate a negative sample, the fourfold random

molecules were sampled from the DrugBank and BindingDB databases for each active

molecule. Each of them was paired with the active molecule to generate a negative

chemical pair that was unlikely to bind to a common target or evolutionarily related

target. The positive and negative chemical pairs were scored by ligand-based similarity

methods to compare prediction performance with the TS-ensECBS method.

The test set for the TS-ensECBS method comparison with structure-based methods

was separately prepared using the active molecules and randomly sampled (inactive)

molecules derived from the previous test set. The individual test molecules (not chem-

ical pairs) were scored using structure-based methods. The TS-ensECBS method was

compared to the structure-based methods by assigning the maximum TS-ensECBS

score to each test molecule. It should be noted that the TS-ensECBS method outputs a

similarity score in terms of binding to the predefined VS target. Redundancy between

molecules used for training the TS-ensECBS model and the test set molecules used to

validate the methods was checked and removed by comparing InChIKey.

The prediction performance of different VS methods was compared using the AUC

values in a PR curve. The PR curve was calculated where Precision = True Positives /

(True Positives + False Positives) and Recall = True Positives / (True Positives + False

Negatives). The receiver operating characteristic was also calculated where Sensitivity =

True Positives / (True Positives + False Negatives) and False Positive Rate = False Positives /

(False Positives + True Negatives).

Virtual screening methods

Evolutionary chemical binding similarity

The ECBS model is based on classification similarity-learning [30] where a binary clas-

sifier is built for distinguishing evolutionarily related chemical pairs (ERCPs) from
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unrelated pairs. The chemical pairs are defined as “evolutionarily related” when their

targets are identical or have common evolutionary annotation. Diverse evolutionary in-

formation defined at multiple levels (e.g., motif, domain, family, and superfamily) is

used to annotate binding targets. The classification similarity learning model is then

adopted for each evolutionary information to construct a binary classification model

distinguish the ERCPs from randomly chosen negative data. The multiple ECBS models

built from diverse evolutionary information are integrated by constructing a secondary

classifier model. The output prediction scores from each model are combined as train-

ing data for the secondary ensemble model (ensECBS) to generate a final output simi-

larity score for a given chemical pair. Among variants of ECBS models, TS-ensECBS is

used for VS because the output similarity score is specialized to find chemical pairs

binding to a predefined target. In the TS-ensECBS model, the ERCPs are only defined

for the targets that are evolutionarily related to a VS target, and the multiple ECBS

models based on the target’s evolutionary information are integrated. Accordingly, the

ERCPs binding to the VS target are prioritized by the TS-ensECBS model, where the

output similarity score estimates the possibility of chemical compounds commonly

binding the VS target. The output similarity score ranges from 0 to 1 where the higher

similarity represents a higher binding probability. The underlying principles and de-

tailed model construction procedure for the ECBS models can be found in our previous

work [17].

TS-ensECBS models were separately created for the 51 kinases including MEK1,

EPHB4, and WEE1 and used to score the chemical pairs generated from the input

chemical set (all-versus-all pairs). The maximum ECBS score assigned for each mol-

ecule was considered as a final target-binding probability.

Receptor-based Pharmacophore model

The prebuilt receptor-based pharmacophore models (PharmaDB) incorporated in

DS 2018 were used for VS. The pharmacophore features present in PharmaDB

were first generated using complex structures by converting them into features

such as HBA, HBD, positive ionizable (PI), negative ionizable, HY, and RA. At

last, the final 10 models selected using Genetic Function Approximation were

considered [31]. More than 117,000 pharmacophore models were included in the

PharmaDB database from binding site information in the sc-PDB 2012 database

[32].

We used the Ligand Profiler protocol in DS 2018 to screen the PharmaDB models

corresponding to the selected kinase test set. For example, the pharmacophore models

present in PDB IDs 3v01, 4aw5, and 1x8b were used to select potential inhibitory mole-

cules for MEK1, EPHB4, and WEE1, respectively. The default settings were used in

Ligand Profiler except for BEST conformations with a maximum of 255 conformers

and flexible fitting type options. Fit values were given as an output score between 0 and 1.

The higher the score, the better the fit.

Molecular docking

Molecular docking was performed using AutoDock Vina (ADV) [33]. The receptor

structures for the selected kinase set were retrieved from the PDBBind database [34].
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In ADV, water molecules were removed and the number of rotatable bonds in the lig-

and was left unmodified. The grid box was set around the bound ligand to perform mo-

lecular docking with an exhaustiveness of 20. X, Y, and Z dimension sizes were all 25

Å. X, Y, and Z center coordinates varied for targets according to the bound ligand and

target. In cases of flexible docking, side chains of residues around 5 Å from the bound

ligand were allowed to repack during the docking simulation. The script “prepare_flex-

receptor4.py” provided in MGLTools was used to define the residue flexibility. Molecu-

lar docking for MEK1, EPHB4, and WEE1 was performed on the wild type proteins

and the native ligands in 3v01 (2.7 Å), 4aw5 (2.33 Å), and 1x8b (1.81 Å), respectively.

Chemical structure similarity

Chemical structure similarity was calculated using different methods. The molecular finger-

prints, MACCS, and FP4 in the ChemmineOB package [35] were used for similarity calcula-

tions. 2D chemical structure similarity was evaluated using the Tanimoto coefficient (i.e.

ratio of intersection-bits over union-bits). Moreover, LiSiCA [36], shape-it [37], and LIGS

IFT [38] were used with default options to calculate ligand shape similarity. LIGSIFT used

Gaussian volumes to calculate the similarity score between molecules irrespective of their

size and also calculated the statistical significance for similarity [38]. Shape-it also used

Gaussian descriptors for the alignment between reference and query molecules [39]. LiSiCA

calculated 2D or 3D chemical similarity through pairwise comparison of chemical features

by converting them to molecular graphs [36].

For considering 3D conformational similarity in LiSiCA (−d 3 option) and LIGSIFT,

test molecule conformers were generated using the BEST method in DS 2018 with

default options (RMSD cut-off: 0.2 Å). The energy-minimized structure obtained using

CHARMm force field [40] was compared with each of the 50 low energy conformers

and the maximum similarity score was considered a representative similarity score. For

LIGSIFT, the ShapeSim score was used to calculate the similarity score.

Chemical databases for virtual screening

Chemical databases for VS were prepared from marine natural products in MarinLit

(22049) [41] and synthetic molecules from Chembridge DIVERSet-CL Library (60000)

and Maybridge screening collection (53334) after duplicates were removed. The chem-

ical structures were converted to fingerprint-based features to apply the TS-ensECBS

model [35].

Competitive kinase binding assay

Biochemical experiments were performed through the KINOMEscan service provided

by DiscoverX based on a kinase interaction map [42]. Active site (steric or allosteric)

binding of a compound was biochemically assessed via the quantity of kinase captured

by test and control molecules through a qPCR method. The candidates that bound to

kinase impeded the immobilized ligand from binding to the kinase, and thus, the

amount of kinase in the bead was diminished. The values of binding between candi-

dates and kinases were given based on a POC, where the lowest percentage of the con-

trol (kinase) in solid support confirmed the competition between a test molecule and

Durai et al. BMC Bioinformatics          (2020) 21:309 Page 15 of 18



an immobilized molecule for binding to the kinase. Likewise, the Kd was also obtained

via a dose-response curve using the Hill equation [43].

Construction of the 3D-QSAR pharmacophore model

The POC and Kd values from the in vitro binding assay were used to obtain 3D-QSAR

pharmacophore models in DS. The Catalyst Hypogen algorithm [44] in DS predicted the

models where binding values helped to provide the “activity property” and “uncertainty

property”. The activity value was given same as the experimental values of molecules

against the targets. For uncertainty value, if the activity property was 0.001 and the uncer-

tainty property was set to 3.0, the active values were considered to be between 0.001 /

3.0 = 0.00033 and 0.001 × 3.0 = 0.003. So, the uncertainty values for targets were separately

chosen based on experimental values of molecules. The “3D QSAR pharmacophore model

generation” module in DS 2018 was used with default settings except the activity data

were rescaled to 4 orders of magnitude, the energy threshold to 10, and the minimum

inter-feature distance to 1.5. The “feature mapping” module was first performed for the

active ligands to identify all available features. Further, we chose HBA, HBD, HBY, PI, and

RA features for pharmacophore model generation. The 15 molecules retrieved from

BindingDB [29] based on varying IC50 and Kd values were used for model validation [29].

Fisher validation [45] of 90% was used to assess model quality.
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