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Abstract: The use of wireless sensor networks (WSN) for monitoring variables in agricultural environ-
ments and natural forests has been increasing in recent years. However, the sizing of these systems is
affected by the inaccuracy of the radio wave propagation models used, leading to possible increased
costs and measurement errors. This systematic literature review (SLR) aims to identify propagation
models widely used in WSN deployments in agricultural or naturally vegetated environments and
their effectiveness in estimating signal losses. We also identified today’s wireless technologies most
used in precision agriculture (PA) system implementations. In addition, the results of studies focused
on the development of new propagation models for different environments are evaluated. Scientific
and technical analysis is presented based on articles consulted in different specialized databases,
which were selected according to different combinations of criteria. The results show that, in most of
the application cases, vegetative models present high error values when estimating attenuation.

Keywords: attenuation; vegetated environments; propagation models; path loss; systematic revision
of literature; wireless technologies; WSN

1. Introduction

Wireless sensor networks (WSNs) based on the Internet of Things (IoT) are widely
used in different scenarios, including agricultural or with the presence of natural vegetation.
These tools are used to obtain the values of the different variables of a plantation or forest,
whether related to climate, soil, or plants. They are one of the most promising data
collection methods in agricultural applications due to their low cost and improvements in
environmental monitoring [1,2]. This information is useful for the personnel in charge of
crop management as it facilitates the management of the processes in their plantations [3,4].
This form of crop management is called precision agriculture (PA) and allows managers to
more efficiently manage both the facilities and the inputs required by the plantation. It is
important to highlight that the monitoring of variables in PA contexts has a positive impact
on irrigation management, reduction in environmental impact, and fertilizer management,
among others [5,6].

The number of nodes that can be deployed and interconnected ranges from one or
two units to thousands, depending on geographical coverage and topography [5], which
is enhanced by the mMTC (Massive Machine-Type Communication) scenario of 5G [7,8].
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The correct deployment of the nodes in the field is based on the efficient management of
the transmitter power, knowing beforehand the signal attenuation through an adequate
propagation model that leads to adequate data collection [9–11].

The wireless signal is often obstructed in its path by trees, hills, mountains, and
buildings, among others [12,13], resulting in phenomena such as scattering, diffraction, and
reflection [14] (see Figure 1). Even the signal strength in line-of-sight (LOS) links and static
transceivers can be altered due to scatterers or moving objects affecting the propagation
environment [15]. For this reason and given the importance of WSN implementation
in PA contexts, it is necessary to bring propagation model estimates closer to observed
values as they are closely related to WSN performance prediction metrics (energy loss, path
optimization, and link reliability) [15,16].
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Propagation models that estimate path loss or characterize attenuation in wireless
links [19] play an important role in the deployment of WSNs in different large-scale
contexts [20]. As for its application in PA, it is used to model the attenuation through the
foliage, estimating metrics useful in planning the deployment of WSNs. In the scientific
literature, they are grouped into three main categories: empirical, deterministic, and
stochastic [21]. However, it is important to note that this classification cannot be considered
accurate as some models can be classified in more than one category without being mutually
exclusive. The empirical ones are obtained from rigorous field measurements in addition
to the analysis of the statistical characteristics describing the behavior of the signal using
an equation [22]. Deterministic ones are based on the study of propagation phenomena, as
well as on the knowledge of the environment in which the network is deployed; they can be
simple and range from only including the distance separating the nodes to considering more
complex factors in its development (e.g., multipath fading) [23]. Finally, stochastics result
from the modeling of the environment based on random variables [24], which generates
high error values in the results.

There are different propagation models oriented to WSNs. However, many of them
have high error values or are not very rigorous because they do not consider relevant
factors in their equations (e.g., antenna height).

The main objective of this review work is to determine which propagation models
are used in the characterization of signal losses of WSNs deployed in agricultural or
vegetation environments, as well as their efficiency in different scenarios (forest, outdoor
crop, greenhouse, meadow). The specific objectives of this systematic literature review
(SLR) are:

• Contextualize the use of propagation models used in WSN planning in PA and vege-
tated environments.
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• Identify applications in vegetation scenarios where propagation studies associated
with WSN deployment have been conducted.

• Identify the wireless technologies most used in propagation studies oriented to the
deployment of WSNs in agricultural or vegetation environments.

The main motivation of this study is to present an SLR that identifies the most widely
used models with the greatest impact on WSNs in agricultural contexts or environments
with similar characteristics.

The contributions of this document are specified below:

• Effectiveness of propagation models in WSN applications related to agriculture or
forestry environments.

• Identification of the predominant wireless technologies in propagation studies for
sizing WSN nodes in agriculture and similar scenarios.

• Identification of the most used techniques to validate propagation models in vege-
tated environments.

The structure of this article is as follows: Section 2 presents the related works, Section 3
presents the methodology used during the review, Section 4 describes the scientometric
analysis, and Section 5 presents the detailed technical analysis. Sections 6 and 7 present,
respectively, the discussion and the results obtained. Finally, Sections 8 and 9 present the
conclusions, recommendations, and future work.

2. Related Works

Regardless of the type or way of obtaining each propagation model (also called path
loss models), we must be aware of the particularities of the scenario where the WSN is
deployed. Therefore, it is normal to (a) consider the models validated and ready to be
applied, (b) adjust these models, and (c) develop a new one that allows to adequately
characterize the attenuation.

After searching specialized databases, the number of literature review articles on WSN-
oriented radio wave propagation models is minimal, let alone focused on their applications
in agricultural contexts. In Ref. [15], they reviewed and compared models, describing their
limitations in WSNs in general, without focusing on specific scenarios. In Ref. [25], they
evaluated different models frequently used in WSN planning through a simulation platform.
They demonstrated the usefulness of modeling the network in vegetation environments
because their results significantly influence network performance. In Ref. [24], they studied
different path loss prediction methods, not specifically intended for WSNs, and presented
a new taxonomy of models based on the similarities and differences between them.

Other works, although not of review, evaluate propagation models intended for
WSNs in agricultural or similar scenarios of forests or with the presence of pastures. In
Ref. [26], they contrasted several empirical models in different bands and crops, relating
received signal strength (RSSI) values to path loss data. In Ref. [27], the foliage attenuation
model recommended by the International Telecommunication Union (ITU-R), the Modified
Exponential Decay model (MED), and Weissberger model were simulated and analyzed
to predict the connectivity as well as the maximum coverage of the nodes within the
communication path. In Ref. [3], they described the effects of distance, antenna height, and
vegetation depth on the models. However, these papers focus on specific issues and do not
present a comprehensive systematic review on aspects of vegetation propagation modeling
for WSNs, such as: the effectiveness of the most used models, study scenarios, or analysis
of validation results.

The initial information search shows that the number of SLR or bibliometric review
articles on modeling radio wave propagation in WSNs deployed in vegetated environments
(e.g., agricultural fields) is small. On the contrary, numerous reviews are focusing, for
example, on sensors [28], optimization models [29], WSN applications in PA [30], and the
use of communication technologies from frequency bands, data rate, and transmission
range, among other aspects [31]. Therefore, researchers new to propagation modeling in
vegetated WSN systems do not have a wide variety of review literature at their disposal
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and must devote part of their working time to gathering a wealth of information due to
many scenarios under study, the available wireless technologies, and the lack of unified
methods to validate the results. In that sense, this SLR article will be a valuable tool
for consultation and support on the subject, not only for the identification of the most
used models, scenarios, and technologies in the research on the modeling of radio signal
propagation in agricultural WSN systems or similar but also the evaluation and analysis of
the effectiveness of these models from the statistical methods used as a validation tool.

3. Methodology

Within the field of research, SLRs have become an important contribution to the scien-
tific community since they are articles that compile, summarize, criticize, and synthesize the
information available on a specific topic. This study considers the SLR recommendations
presented in Refs. [32–35]. The structure and methodology of the SLR articles used in
Ref. [36] were considered, where they established search criteria based on keywords found
in previous reviews and exclusion principles that allowed the information found to be
purified.

In the field of WSNs, they defined in Ref. [5] a set of questions to be solved in the
implemented SLR. They performed an information search in specialized databases and
created search strings from keywords. The selection criteria considered the period of
publication (in years), as well as the selection of articles included in journals indexed in
the Science Citation Index (SCI). In Ref. [30], they established an SLR process to identify
applications and criteria in PA technology selection. Based on these guiding references,
SLRs’ work on radio wave propagation models in agricultural environments was developed
in three phases: (1) design of the search string, (2) application of the search string and data
collection, and (3) analysis of the results.

In phase 1, a series of questions were posed:
Q1. What are the most used propagation models for sizing WSNs in agriculture?
Q2. In which crops, or scenarios with vegetation, has propagation modeling work

been done for WSN?
Q3. What are the communication technologies used as a tool for modeling attenuation

in WSNs in agricultural or similar environments?
Subsequently, the search strings were structured based on the compilation of the

information presented in review and overviews articles. Figure 2 shows the conceptual
map considered in its construction.
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Table 1 presents the thematic axes and explains the strategies for combining these
criteria in the elaboration of search strings. The combinations were created in ascending
and descending order. In addition, the terms used in the exclusion criteria are presented.

Table 1. Thematic axes and combination strategies used in the review.

Thematic Axis 1 Thematic Axis 2 Thematic Axis 3 Exclusion Criteria

Agriculture WSN Path loss Algorithm
Crop Path loss model Image
Farm Wave propagation Indoor

Vegetation Irrigation
Localization
Monitoring
Solar energy

Combinations

Link 1: Axis 1 AND Axis 2
Link 2: Axis 1 AND Axis 2 AND NOT Exclusion criteria
Link 3: Axis 1 AND Axis 2 AND Axis 3
Link 4: Axis 1 AND Axis 2 AND Axis 3 NOT Exclusion criteria
Link 5: Axis 2 AND Axis 3
Link 6: Axis 2 AND Axis 3 NOT Exclusion criteria

In phase 2, search strings were applied in five highly recognized specialized databases:
Scopus, Web of Sciences (WoS), Institute of Electrical and Electronics Engineers (IEEE),
Science Direct, and Springer. Other sources of information, such as Google Scholar and Re-
searchGate, were not considered. On these platforms, there may be cases where researchers
link documents that do not correspond to scientific articles. In addition, they do not apply
the same rigorous publication standards that apply to specialized databases.

Different terms were used to establish exclusion criteria. The concepts “algorithm”,
“image”, “irrigation”, “monitoring”, and “solar energy” were associated with results in
which the main topic was the implementation of WSNs for monitoring, so they were not
considered. Excluded as well were those articles in which the concepts “indoor” and
“localization” could be related to the topic of propagation, but most of them did not contain
aspects of WSNs, agriculture, or vegetation. The selected articles were published between 1
January 2011 and 31 December 2021. Those chains that did not yield results, or where the
results were not related to this SLR work, they were discarded.

The initial selection process of the articles was based on the analysis of the title,
keywords, abstract, and conclusions in order to establish their coherence with the main
objective of the research. Other exclusion criteria were language, publication status, and
journal classification. Only papers submitted in English were selected, and those in preprint
that had not undergone peer review were discarded. In terms of categorization, the selection
of journal articles was limited to those ranked between the first and fourth quartile (Q1–Q4)
in the Scimago Journal Report (SJR) and the Journal Citation Report (JCR), eliminating
uncategorized articles. The latter criterion was not applied to the documents corresponding
to the conferences. In the same phase, to strengthen the search, the review included the
references presented in the selected papers, adding 14 additional papers. The existence of
repeated documents in two or more databases was reviewed in detail, and 69 out of the
total number of articles chosen were eliminated and counted only once.

Initially, 138 articles related to the topic of propagation models for WSNs in agricultural
or vegetation environments were selected and analyzed. In this phase, the most relevant
references were identified, creating a database with scientific and technical information.
Subsequently, a more detailed analysis was carried out, reviewing in each article elements
such as problems addressed, methodology used, the technology employed, and problems to
be solved, which made it possible to reduce the number of articles to 84. The scientometric
and technical variables of each were documented. As an additional criterion for the
final selection, the information provided by the authors regarding the measurement or
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simulation environments, the methodology used, and the presentation of the results was
taken into account.

Finally, in phase 3, the results were analyzed based on quantitative and qualitative
information, correlating the different categories examined in the review process.

4. Scientometric Analysis

For each of the 84 references, the following scientometric information was quantified
and recorded: name of the journal or conference, quartile ranking in Scopus and WoS,
nationality of the journal in which it was published, country of origin of the work, and au-
thors’ institution of affiliation. Figure 3 shows the number of articles related to propagation
models, WSN, and agriculture.
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Figure 3. Number of publications per year.

It is evident that the number of publications on this specific topic demonstrates its rele-
vance within propagation and WSN research, mainly in works related to (1) characterization
of attenuation in environments with the presence of vegetation and evaluation of widely
recognized models, and (2) development of new propagation models associated with agri-
cultural or vegetated environments. Figure 3 shows that the maximum peak of publications
was reached in 2019, before the start of the pandemic caused by the SARS-CoV-2 virus; this
situation caused a large part of the research resources to be allocated to the study of aspects
related to the pandemic.

Figure 4 shows that 50% of the selected papers were published in journals, while
the remaining 50% corresponded to conferences. These indicators, as well as the large
percentage of publications, ranked in Q1 (see Figure 4a), demonstrate the relevance of this
topic in the field of research.
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The large number of countries that have journals or hold conferences dedicated to
the subject demonstrates the interest and importance that propagation studies generate
within the research community, especially regarding improving the layout of sensor nodes
in scenarios where vegetation affects the signal quality of communications links. Figure 5
shows that the countries with the highest number of articles received are the United
States, Netherlands, Switzerland, and China, which have five or more publications in their
different journals or conference proceedings.
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Figure 6 presents information on the countries with the largest number of papers
related to this SLR. The list is headed by China, followed by India, Malaysia, Japan, the
United States, and Spain, nations in which agriculture is of great importance as an economic
activity due to their growing population and because they dedicate part of their production
to exports. In addition, the information in the figure shows that there is a general interest in
much of the world for projects related to research activities in PA, WSN, and propagation.
As an evaluation criterion for this item, relevance was given to the country of affiliation
of the authors, and, in cases where the origin of more than one country was recorded, the
origin of the first author was chosen.
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Figure 6. Number of publications generated by country.

The journals with the highest number of publications related to the topic of this SLR
are presented in Table 2. The number of articles, as well as the categorization of the journals
according to quartile in SJR and JCR, show that the topic of radio signal propagation
aspects in WSNs deployed in agricultural or similar fields is of great importance in the
global scientific context.
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Table 2. Journals with the most publications.

Publishing Number
of Posts Country Type ISSN Quartile

in SJR
Quartile
in JCR

Computers and Electronics in Agriculture 9 Netherlands Journal 1681699 Q1 Q1

Sensors 5 Switzerland Journal 14243210 Q2 Q1

Progress in Electromagnetics Research C 3 USA Journal 19378718 Q3 Q3

Wireless Personal Communications 3 Netherlands Journal 1572834X Q3 Q4

5. Technical Analysis

When examining research that aims to characterize propagation in agricultural or
similar environments, different technical aspects are considered. The most relevant consid-
erations resulting from this SLR are presented below from three approaches: radio wave
propagation models for WSN in agricultural or vegetated scenarios, application scenarios
for propagation studies, and technologies used (wireless, frequency bands, and tools).

5.1. Radiowave Propagation Models for WSNs in Agricultural or Vegetated Environments

The path of radio waves in forest, crops, or similar environments is affected by numer-
ous parameters: the vegetation path length (d), the average tree height (hv), the height of
the receiving antenna (hr), the path elevation angle (θ), and the distance from the antenna
to the road forest (dw) [37] (see Figure 7). In addition, each crop and vegetated environment
has its propagation characteristics, so many studies aimed at characterizing radio signal
attenuation in the wireless channel are based on recognized models. This occurs when the
network must be planned and sized, or when the effectiveness of the proposed new models
must be evaluated.
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As a result of this SLR, it became evident that, in agricultural or forestry scenarios,
empirical models are the most used in the planning and installation of WSNs, as shown in
Figure 8.

Due to their high efficiency in loss estimation, in addition to their low mathematical
complexity, empirical models are highly appreciated in wireless network dimensioning.
Among them is the MED, one of the most widely used due to the high levels of accuracy it
offers when determining canopy losses [38]. The Equation (1) describing it is presented
below [39]:

AttMED = x f ydz (1)

where f corresponds to the frequency given in MHz, and d is the depth of the vegetation in
meters. In addition, x, y, and z are parameters that must be tuned from the measurements
made in each scenario where their use is required [40]. In Ref. [27], it was contrasted,
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along with other models, to establish which one provided greater effectiveness and, thus,
adequately sized WSNs in different environments, including agriculture. MED was also
applied in Refs. [38,39] for comparison with a model proposed by the authors.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 7. Parameters considered in the propagation path of the radio wave in vegetation. Source: 
Ref. [37]. 

As a result of this SLR, it became evident that, in agricultural or forestry scenarios, 
empirical models are the most used in the planning and installation of WSNs, as shown 
in Figure 8. 

 
Figure 8. Types of models identified in the SLR. 

Due to their high efficiency in loss estimation, in addition to their low mathematical 
complexity, empirical models are highly appreciated in wireless network dimensioning. 
Among them is the MED, one of the most widely used due to the high levels of accuracy 
it offers when determining canopy losses [38]. The Equation (1) describing it is presented 
below [39]: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑥𝑥𝑓𝑓𝑦𝑦𝑑𝑑𝑧𝑧  (1) 

where f corresponds to the frequency given in MHz, and d is the depth of the vegetation 
in meters. In addition, x, y, and z are parameters that must be tuned from the measure-
ments made in each scenario where their use is required [40]. In Ref. [27], it was con-
trasted, along with other models, to establish which one provided greater effectiveness 
and, thus, adequately sized WSNs in different environments, including agriculture. MED 
was also applied in Refs. [38,39] for comparison with a model proposed by the authors. 

Different models have emerged from the MED, such as Weissberger, ITU-R, adjusted 
ITU-R (FITU-R), and the COoperation in science and technology (COST-235), which have 
been widely reported in the literature. In the selected papers in this SLR, the ITU-R model 
was the most used in the estimation of radio signal power loss in vegetated environments 
where they implemented or simulated WSNs. The Equation (2) representing the losses of 
this model is presented below [12]: 

74%

23%

3%

Empirical Deterministic Stochastic

Figure 8. Types of models identified in the SLR.

Different models have emerged from the MED, such as Weissberger, ITU-R, adjusted
ITU-R (FITU-R), and the COoperation in science and technology (COST-235), which have
been widely reported in the literature. In the selected papers in this SLR, the ITU-R model
was the most used in the estimation of radio signal power loss in vegetated environments
where they implemented or simulated WSNs. The Equation (2) representing the losses of
this model is presented below [12]:

PLITU−R(dB) = 0.2 × f 0.3 × d0.6. (2)

where f is the frequency in MHz and d corresponds to the distance. The model was used in
Ref. [41] in the calculation of signal losses in different types of plantations, in addition to
different variations of garden scenarios (coconut trees with green grass, dry open grass, and
wet green grass), and, in Ref. [26], a comparison was made concerning the measurements
made in each of these scenarios. In Refs. [3,27], they presented models that were examined
to determine which best represented the losses in the proposed scenarios. However, in
these cases, they were compared with simulations and not with actual measurements. In
Refs. [12,18,42–44], the ITU-R estimates were compared with the results obtained when
developing new models to calculate the effectiveness of the models.

Another widely used model within the set of articles examined in this SLR is COST-235,
which also comes from adjustments made to the MED. Equation (3) represents it [45]:

CL(dB) =
{

15.6 × f−0.009 × d0.26, in lea f
26.6 × f−0.2 × d0.5, out o f lea f

. (3)

In this equation, f is the frequency value in MHz and d is the distance in meters.
Like the models described above, COST-235 was also used to identify a suitable method
describing foliage losses in crop or forestry scenarios, as is the case reported in Ref. [46],
where the impact of the orientation of WSN nodes was also analyzed.

Like ITU-R and COST-235, the Weissberger model is derived from the MED and has
been widely used in the work that is part of this SLR. Equation (4) describes the losses of
this model [47]:

L(dB) =

{
1.33 × f 0.284 × d0.588; si 14 < d ≤ 400

0.45 × f 0.284 × d; si 0 < d < 14
(4)

In this case, the frequency (f ) is given in GHz and d in meters. This model is only
defined at a foliage depth of up to 400 m.

The FITU-R model is also derived from the MED and is one of the most widely used in
the articles considered in this work. It was proposed for situations where the transmitting or
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receiving antenna is located near a small strip of trees so that most of the signal propagates
through them. Equation (5) represents it [3]:

LFITU−R(dB) =

{
0.37 × f−0.18 × d0.54, out o f lea f
0.39 × f−0.39 × d0.25, in lea f

(5)

where f is expressed in MHz and d in meters.
Although empirical models are the most used in the works considered in this review,

the use or development of deterministic models is also reported, as is the case of the Two-
Ray model. It considers the effects of direct and reflected waves to the ground on signal
propagation [48]. Equation (6) describes the losses of this model [49]:

PLTwo(dB) = 40 log(d)− 20 log(ht)− 20 log(hr)− 10 log(Gt)− 10 log(Gr) (6)

where ht and hr are the heights in meters of the transmitting and receiving antennas,
respectively, and Gt and Gr are the gains of the transmitting and receiving antennas in dBi.

Although Two-Ray is one of the most widely used in WSN propagation studies in
PA contexts, most papers report its use in comparison to other models to estimate its
effectiveness, as presented in Refs. [50–53]. Furthermore, in Refs. [16,54], it was used in the
characterization of WSN radio wave propagation in fields or scenarios with the presence of
vegetation. In the SLR performed in Ref. [15], it was considered within the group of most
important propagation models in the estimation of signal losses in WSN in agricultural
environments or where vegetation is an important factor in the propagation behavior.

Regarding the development of deterministic models, only one case is reported in
Ref. [55], where they considered the effects of corn and potato field vegetation on propaga-
tion by simulating the dielectric properties of these crops.

Concerning stochastic models, they usually present high error values in the estimation
of signal loss in a wireless channel. Despite this, there are reports of papers that consid-
ered its use. In Ref. [56], the authors proposed a new model for WSN applied to forest
environments using the Green Obadait and other models in evaluating the effectiveness
of their proposal. The use of the One-Slope model was also reported in research relating
WSNs and PA. In Ref. [57], it was used to validate the use of Xbee modules in agricultural
environments; while the SLR presented in Ref. [15] considered it one of the most useful in
characterizing signal power loss in WSNs.

Within the wide range of radio wave propagation models that appear in the literature,
it is evident that one of the most widely used is the Free Space Loss Model (FSPL). Ideal
propagation conditions are assumed here without considering the phenomena of diffraction,
reflection, refraction, and absorption. Moreover, it is only valid in the far-field region [58].
However, although it is a general-purpose model, it is very useful in studies of radio signal
wave propagation in agricultural plantations or vegetated environments, and as with the
Two-Ray, it serves as a complement to the MED or its derivations, such as ITU-R, FITU-
R, and COST-235, because the losses predicted by these models are concentrated in the
foliage and not in the entire path. Therefore, FSPL losses are usually summed to calculate
path losses [15]. Equation (7) describes the losses in free space, where the frequency (f ) is
expressed in MHz and the distance from the receiving antenna to the transmitting antenna
d is given in kilometers [59]:

PL(dB) = 32.44 + 20 log d + 20 log f (7)

Figure 9 shows the most used models according to the articles that were subject to SLR
according to the number of times they were considered in the different studies. Several
papers considered more than one model in the characterization of loss in different scenarios
or the comparative analysis of new proposals.

Although the models described in this section have already been validated and widely
used, they generally present restrictions in their use, which have an impact on the efficiency
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of loss estimation Therefore, many studies focus on the development of new propagation
models. For example, in Refs. [18,43,44,56,60,61] empirical models were proposed based on
the estimation of signal power losses in each of the scenarios considered in the respective
papers. As documented in the widely known models, deterministic proposals are not
commonly used; however, some developments are also presented in Refs. [53,62]. Table 3
contains a summary of the most important characteristics of the models commonly used in
research related to radio wave propagation in vegetated environments.
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Table 3. Summary of propagation models most used in the SLR articles.

Model Vegetative
Model

Antenna
Height

Antenna
Gain Conditions Observations References

MED Yes No No d < 400 m
200 MHz < f < 95 GHz

Applicable in
communication links
obstructed by dense,

dry, leafy trees;
present in temperate

latitude forests.

[27,38–40,63]

ITU-R Yes No No

d < 400 m
200 MHz < f < 95 GHz
For f above 1 GHz, it

only considers the
diffracted components
around the vegetation

and from above, in
addition to the

component reflected
from the ground.

It is proposed for
cases where the
transmitting or

receiving antenna is
located near a small

grove of trees,
allowing most of the
signal to propagate

through
the vegetation.

[3,12,27,40–42,46,53,64–66]

COST-235 Yes No No 200 MHz < f < 95 GHz

Consider the presence
and absence of leaves

on trees.
It can be used in

vegetation scenarios
up to

200 meters wide.

[3,12,18,26,41,46,53,60,67,68]

FITU-R Yes No No d < 400 m

Consider the presence
and absence of leaves

on trees.
Suitable for modeling

the propagation of
radio waves in

different seasons of
the year.

[3,9,53,60,63]

Weissberger Yes No No
d < 400 m

230 MHz < f < 95 GHz

Useful when the path
between the

transmitter and the
receiver is occupied
by dense vegetation
consisting of trees

with low humidity.

[3,12,18,26,40–42,46,53,64]
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Table 3. Cont.

Model Vegetative
Model

Antenna
Height

Antenna
Gain Conditions Observations References

FSPL No No Yes d >> λ

This model does not
consider the

mechanisms of radio
wave propagation

(e.g., reflection,
diffraction, refraction,
absorption). It is used

as a reference to
compare the

performance of
different wireless
communication

technologies. It is also
a complement to

vegetation models to
calculate losses over

the entire
channel path.

[15,16,26,39,46,48,56,57,69–71]

Two-Ray No Yes Yes d >> ht + hr

This model considers
the effects of the
ground and the

reflection of the ray
LOS (line-of-sight).

Useful for modeling
propagation over long
distances. It is also a

complement to
vegetation models to
calculate losses over

the entire
channel path.

[15,16,45,46,48,69]

5.2. Application Scenarios for Propagation Studies

Most of the models presented in Section 5.1 are used in environments where the
presence of vegetation affects the power of the radio signal. This SLR focuses on the study
of WSN radio wave propagation models in agricultural and forestry fields. Many articles
have estimated the effectiveness of new or validated models in scenarios where vegetation
is present but which do not necessarily correspond to crop fields. Specifically, four types of
environments predominate in the works reviewed: (1) agricultural fields, (2) agricultural
greenhouses, (3) lawns or pastures, and (4) forest or jungle.

As for agricultural fields, also called outdoor crops, radio wave propagation has been
modeled for a considerable number of crop types. The SLR highlights that most of the
work is in cereal fields, especially rice [41,50,54,72,73], corn [25,41,74], and wheat [12,75,76].
Fruit plantations, which are also part of the outdoor crops category, have been mainly:
mango [39–41] and guava [39,41].

Greenhouse crops, unlike traditional outdoor cultivation, require a closed circuit and
protection from the outside, which directly affects the radio signal propagation conditions.
There are not many papers presented in this SLR that consider this type of scenario in
greenhouse contexts. Representative cases include the simulations developed in Ref. [29],
where different models are evaluated without detailing the characteristics of the plantation.
Greenhouse propagation studies of tomato seedlings were conducted in Refs. [18,47].

For grass or turf crop scenarios, most research estimates signal power loss in environ-
ments with grass of considerable height, as presented in Refs. [51,52,77,78]. Short-grass
scenarios represent fewer challenges from the point of view of radio wave propagation;
some of these analyses are presented in Refs. [16,77,79]. A special case is presented in
Ref. [80], where the calculation of foliar losses is performed in sugarcane plantations, but,
due to the characteristics of the plantation, it could also be considered as tall grass.

There are also results of work on the characterization of wireless signal attenuation in
forests or jungles. In this case, most of the articles do not present detailed information on the
type of shrubs present in these environments. Pine forests are the most referenced, presented
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in Refs. [62,81,82], as well as oak forests, also studied in Refs. [62,82]. In Refs. [43,52,56,60],
it is indicated that the considered scenario corresponds to a forest, while, in Ref. [51], it
was characterized as an environment of scattered trees. In this same category are classified
the jungle environments, which are not extensively examined in this SLR since few studies
were found on this aspect, such as Refs. [83,84]. Figure 10 shows the distribution of the
environments that were considered in the articles that were part of this SLR.
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5.3. Wireless Technologies, Frequency Bands, and Tools Used

Two technical factors are important in work conducted on radio wave propagation:
(a) wireless technology used in data transmission and (b) frequency band. These two
aspects are important in the selection of the technological tool to be used to perform RSSI
measurements, which is the parameter used to determine the received power at the receiver.
Equation (8) is used to estimate this value [48]:

RSSI = 10 log Pr(d). (8)

where Pr(d) corresponds to the received power and d is the distance from the transmitter to
the receiver. In addition, the relationship between the power at the receiver and the path
loss (PL) is expressed by Equation (9) [85]:

PL(d) = Pt + Gt + Gr − Pr(d). (9)

where Pt is the transmit power in dBm, Gt is the transmit antenna gain in dBi, Gr is the
receiver antenna gain in dBi.

Different wireless technologies can be used for the transmission of data obtained in the
motes that make up a WSN, and their choice is conditioned by different factors, including
transmission speed, coverage, power consumption, and cost. Research on radio wave
propagation in WSNs applied to the environments that have been the subject of analysis
of this SLR indicates that the trend in wireless communication technology is towards the
use of Zigbee, followed by the Long-Range Wide Area Network (LoRaWAN) protocol. In
addition, there are reports of measurements with Bluetooth and LoRa. Table 4 presents a
comparison of these standards. In addition, there are reports of measurements with WiFi
and Bluetooth. Table 4 presents a comparison of these standards.

Table 4. Comparison of Bluetooth, LoRaWAN, WiFi, and Zigbee technologies. Sources: Refs. [86–89].

Technology Frequency Bands Speed Rate Coverage Range (Typical) Energy Consumption

Bluetooth 2.4 GHz 720 kbps–1 Mbps 1–10 m Low

LoRaWAN 433 MHz, 868 MHz 250 bps–50 kbps >10 km Low

WiFi 2.4 GHz, 5 GHz 1.2 Mbps–54 Mbps Hasta 100 m High

Zigbee 870 MHz, 902–928 MHz, 2.4 GHz 20 kbps–250 kbps 10 m–1.6 km Low
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The technology most used in the research is Zigbee, a protocol based on the IEEE
802.15.4 standard. Some of its main features are low transmission speed, low power con-
sumption, and low cost [86]. Of the spectrum usage possibilities offered by Zigbee, 2.4 GHz,
which is part of the ISM (Industrial, Scientific, and Medical) band, was the most widely
used in the research consulted in this SLR. In the development of new propagation models
and the characterization of attenuation in the different environments presented in the
previous section, most of the projects favored the use of commercial equipment. XBee
devices were the most widely used in the development of new models, as presented in
Refs. [38,41,42,44,46,50,52,53,61,74,75,83,90,91]. Texas Instruments transceivers were also
widely used in those research studies that opted for Zigbee communication technology,
being considered in the development of new models [18], or in the propagation characteri-
zation performed in Refs. [74,92]. Not all the research with Zigbee implementation worked
in the 2.4 GHz band. For example, in Ref. [54], the operating frequency of the transceiver
modules was 920 MHz.

Other articles report the use of WiFi in the implementation of the wireless solution.
This technology is based on the IEEE 802.11 standard, and some of its features are high
speed, low coverage, and reduced power consumption [93]. All the articles reporting their
implementation used the 2.4 GHz band, with equipment working on the IEEE 802.11g
standard [60,94], IEEE 802.11b [73,94], and IEEE 802.11n [94]. No information on the
standard or working frequency was presented in Ref. [95], and no data on the equipment
used was presented in Ref. [56].

Other technologies meet the conditions that allow their use in the communication
stage of WSN motes, but their use is not widely reported in the articles analyzed by this
SLR. Bluetooth, which is based on the IEEE 802.15.1 standard, is characterized by high
speed, low cost, and reduced coverage. In this review, evidence of its use was only found
in Ref. [83]. It was one of the wireless solutions used in the evaluation of technologies,
operating the tests in the 2.4 GHz band.

LoRaWAN is another specification that can be used in WSN communications infras-
tructure in agricultural or similar environments. It is a wide-area, low-speed, high-coverage-
range, and reduced-power-consumption protocol [96]. One of its main advantages is that it
works in bands below 1 GHz [97], which is advantageous in signal propagation. In Ref. [98],
the author does not develop a new model and does not characterize the attenuation in the
environment, but this technology was used to calculate losses in the environment using
propagation models. Although the number of papers reporting the use of LoRa is small
compared to Zigbee, due to its characteristics, it is possibly the most promising wireless
technology in WSN-based IoT applications in scenarios that require wide coverage, as is the
case of cropping systems, the reason for which is its use increased considerably between
2020 and 2021, reported in Refs. [99–102].

In the works that do not present a specific wireless communication standard and
that are related to WSN planning, radiofrequency (RF) equipment (signal generators and
spectrum analyzers) that are generally used in field tests were available. Although, in
these circumstances, the use of the 2.4 GHz band is also predominant, and an additional
set of frequencies of the radio spectrum is part of other works. In this type of study, the
development of new propagation models was not a common activity, with only one report
in Ref. [43], in which the selected frequency band was 433 MHz. The rest of the papers
in which they used RF equipment at the time of RSSI measurements present attenuation
characterization or model comparison activities. Within the set of frequencies evaluated
in the use of such tools are the 3.5 GHz and 5.8 GHz frequencies examined in Ref. [82],
the frequencies at 500 MHz, 1.2 GHz, and 2.5 GHz used in Ref. [40], while, in [41,43], they
performed measurements at 870 MHz. Figure 11 presents information on the number of
articles referring to each communication technology.
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Figure 11. Number of articles that used the different communication technologies that appear in
the SLR.

6. Discussion

We discuss the analysis of the techniques used in different investigations. We analyze
the techniques used to determine the effectiveness in terms of attenuation prediction in the
models used. It is important to note that there is no uniformity in the criteria used in the
evaluation of the results, and, in many cases, there is no quantitative description. In contrast,
much of the work that has considered factors other than frequency and distance has focused
on loss behavior at different antenna heights or the type of foliage or distribution of trees in
the environment. This section presents the most used evaluation methods during SLR.

This review identified the absence of standard validation techniques that determine
the effectiveness of radio wave propagation models in agricultural or forestry environments.
In most of the articles, the validation of the effectiveness of the propagation models was
performed based on a comparative analysis of field measurements at different distances
between the transmitter and receiver nodes. Some works do not make a conversion
from RSSI to decibel losses [18,50,60,72,90,95]. In other cases [27,40,41], the analysis was
conducted from the path loss contrast, considering the depth of the vegetation.

Regarding radio spectrum, although ISM bands facilitate the deployment of WSNs
in PA, unlike licensed spectrum, excessive use of the 2.4 GHz portion increases the future
probability of interference due to saturation of this band. Many measurements were taken
in the 2.4 GHz band, and, at times, attenuation at other frequencies was also characterized.
For example, in Ref. [40], they performed tests at 500 MHz; in Ref. [43], they took data at
870 MHz, while, in Ref. [54], it was completed at 920 MHz.

More than 15 validated propagation models are identified from this SLR. However,
the results show that there is a preference both for the use of certain general models not de-
veloped for agricultural, forestry, or similar environments (e.g., FSPL and Two-Ray) and the
use of vegetation models (e.g., MED, COST-235, FITU-R, ITU-R, and Weissberger). There-
fore, the discussion of the results has been based on the models presented in Section 5.1,
without suggesting that other models should not be considered. As for the criteria used
to identify the level of effectiveness of the validated models, the most frequently used
techniques are the root mean square error (RMSE), the mean absolute percentage error
(MAPE), and the graphical method. Of these three, the most widely used method is the
RMSE, calculated by Equation (10) [42]:

RMSE =

√
1
n
×

n

∑
i=1

(xi − x̂i)
2. (10)
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where xi, y, x̂i. are measured and predicted values, respectively, while n corresponds to the
number of samples taken in the experiment.

Another statistical technique used is MAPE, which is less susceptible to extreme
values [46] and is obtained by Equation (11):

MAPE =
1
nk

nk

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100%. (11)

where xi is the i-th empirical value, x̂i. is the i-th theoretical value, and nk is the number
of samples. In both cases (RMSE and MAPE), the closer its value is to zero, the better the
efficiency of the model [103].

Finally, many papers perform the analysis of the results from graphical means, making
comparisons of distance regarding losses or RSSI. It is important to note that this type of
analysis usually shows an underestimation or overestimation of losses without present-
ing quantitative information. Therefore, the results and conclusions presented could be
subjective, which would reduce scientific rigor.

In the case of processes to evaluate the effectiveness of the proposed new models, the
coefficient of determination, also called R2, is usually used, which is a widely used metric
when applying regressions. In this case, the closer the R2 is to a value of one, the better the
correlation with the real values [104]. The coefficient of determination is calculated using
Equation (12) [46]:

R2 =
Explained Variation

Total Variation
=

∑N
i=1(xi − x)2

∑N
i=1(x̂i − x)2 (12)

Although the statistical techniques presented in this section have been widely used
in the validation of different models, each of them has characteristics that make them
more useful under certain conditions. This becomes an opportunity to develop validation
techniques that apply to different models and under different test conditions. Table 5
summarizes the criteria used in the delimitation of the model analysis, consistent with the
information provided earlier in this SLR.

Table 5. Criteria used in SLR performance evaluation.

Canon Measure

Models COST-235, ITU-R, FITU-R, Weissberger, MED, FSPL, Two-ray

Characterization of attenuation Loss vs. distance
RSSI vs. distance

Track predictions

Graphical method
RMSE
MAPE

R2

Prediction effectiveness
Follow measurements closely

Overestimate
Underestimate

7. Results

The results are divided into two approaches. First, the effectiveness of the models
described in Section 5.1 is examined and, in the second part, the behavior of the new models
is detailed. The results were analyzed in articles with information on their effectiveness in
predicting signal loss, using quantitative data shown in tables, figures, or detailed text.

As for COST-235, only Ref. [41] reports similar predictions to measurements made on
different outdoor crops. In Ref. [26], the authors state that the values obtained using this
model were like their field measurements. However, they presented a loss overestimation
of more than 10 dB difference. The other articles show that the performance of this model
was deficient, presenting even very high errors, as in Ref. [46], underestimating losses
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with MAPE values up to 78%, or in Ref. [18], where the percentage error calculated in
short distances was higher than 50%. Even when combined with FSPL and Two-Ray, the
estimation of losses is far from the real measurements, as is the case presented in Ref. [53],
which shows errors of 10.69% and 38.14% for the sum with each of the models.

The results obtained using the ITU-R demonstrate its inability to maintain a low level
of error when describing signal loss in scenarios with the presence of vegetation, as well as
the COST-235, preventing correct planning of WSN nodes. For example, in Refs. [38,67],
they maintained a behavior close to the measurements, but, as the distance between the
transmitter and receiver increased, they overestimated the measurements. Moreover, in
Ref. [67], they used two antenna heights in two experimental scenarios; the first one places
the antennas at 2.5 m and 3.4 m from the ground, presenting underestimation. The second
scenario, with heights of 2.5 m and 4.4 m, fitted the measurements better. The remaining
publications conclusively indicate that ITU-R is not able to characterize losses efficiently,
confirming that variations in the environment and experimental conditions affect the results.
Thus, in Ref. [40], the RMSE values range from 9.8 dB to 24.2 dB for different combinations
of antenna heights and frequencies evaluated in mango plantations. On the other hand,
under the same considerations in palm plantations, the RMSE values ranged from 4.9 dB to
18.1 dB. In this study, they combined the ITU-R model and the FSPL, achieving an average
RMSE of 1.7 dB. For this model, there are reports of studies with high errors. For example,
in the forest environment of Ref. [46], the MAPE values were 89%, and the RMSE reached
87.5 dB.

Regarding FITU-R, it only performed well in estimating losses under certain experi-
mental configurations. In Ref. [38], the measurements and predictions are similar in leafless
cherry crops, but, in the presence of foliage, there is an underestimation. In Ref. [62], this
model is overestimated by reducing the height of the antennae near the canopy. In some
cases, it was combined with other models not specifically developed to measure casing
losses to increase its efficiency. For example, in Ref. [18], when combined with FSPL, the
percentage error was less than 5% when the distance from the transmitter to the receiver
was equal to or greater than 9.8 meters, but, at short distances, the error is high, reaching
35.22% at 2.6 meters. The rest of the articles analyzed show that the FITU-R is inadequate
for predicting losses in the scenarios considered, although they do not report excessively
high errors, unlike what occurred when other models (COST-235 and ITU-R) were used. In
some scenarios, it presents underestimation when using the model [53], while, in Ref. [60],
its prediction was above the measurements.

Regarding Weissberger, there is no information on the low levels of error in his
estimation that establishes signal loss. Even with adjustments, as is the case presented in
Ref. [42], the R2 only reaches a value of 0.67. The results of most papers show a tendency
for this model to underestimate losses. Only in Ref. [18] were the FSPL and Two-Ray
models combined, showing an overestimation in the measurements made inside a tomato
greenhouse and an antenna height of 0.5 meters at its nodes. In Ref. [46], they recorded the
highest error of this model, reaching a MAPE value of 39%.

Finally, concerning the vegetation models, the MED performed well in the application
scenarios, although this does not indicate that it is suitable for sizing WSNs in agricultural
or similar environments. In Ref. [40], they performed an adjustment process to improve
its performance, obtaining RMSE values of 10.6 dB at 2.2 m and 2.57 dB at a measurement
height of 2.6 meters. However, the band used was the 400 MHz band, which has much lower
losses in contrast to other more commonly used bands, for example, the 2.4 GHz band.

The FSPL and Two-Ray models are widely used, either in comparison or in combi-
nation with other models. Regarding FSPL, all the articles report results that indicate
significant differences when compared with measurements made in different study settings.
In addition, there is no tendency to overestimate or underestimate. In Refs. [43,46,53], the
solutions given by the model at each distance were below the obtained measurements.
In contrast, in Ref. [56], he estimated above the real data. In all the articles analyzed, the
change in the conditions in the experiment affected the results. For example, in Ref. [18],
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there was an underestimation when the antennas were located at 0.5 m, while, when increas-
ing to 1.5 m, the behavior was of overestimation. Possibly due to its design characteristics,
it presented high differences concerning the measurements. In Ref. [105], the minimum
MAPE obtained was 30% at short distances, while Ref. [53] recorded values up to 82.44%
using the same statistical analysis.

As for Two-Ray, there are also no case reports indicating an approximation to the
empirical data. Its use generated overly high errors, especially in Ref. [18], where the
percentage error was over 90% at any distance between the transmitter and receiver at an
antenna height of 1.5 m, although, when reduced to 0.5 m, it decreased considerably to a
maximum of 26.25%.

The compilation of results presented in the different works considered in this SLR
demonstrates the low efficiency of traditional vegetation models when used as tools for
loss estimation between the transmitter and receiver of a WSN. In addition, the lack
of standardization in terms of the validation of the results and the limited information
provided by some authors prevent a more detailed analysis of the results obtained in
some experiments. However, the information gathered allows inferring that the vegetation
models historically used in the characterization of attenuation in PA environments or with
the presence of vegetation are not the most appropriate when used in the sizing of WSNs in
these environments. Table 6 presents a summary of the references selected in the evaluation,
with the results obtained in each case from the previously validated models.

As for the research aimed at developing new models considered in this review, the
results are acceptable from a statistical point of view. In most cases, the criterion used was
the R2, although there are reports of analysis of results based on RMSE and MAPE.

In three of the articles reviewed, the low estimates of the nontraditional models
developed are reported. In Ref. [60], only 65.82% of the loss variations could be explained
by the proposed regression model, a result that corresponds to the case where the node
antenna is located at a height of 3.5 m since, at a height of 7 m, the R2 was 0.94. Ref. [50] also
reports that the proposed development presents an acceptable behavior in the estimation
of losses in a rice field during its different growth stages but does not present quantitative
data. Finally, in Ref. [38], they indicate that the proposed model provides good agreement
near the tree canopy but underestimates the attenuation at mid-height. Moreover, in this
case, the error increases with the presence of leaves and with increasing distance. In the
rest of the articles, the criteria used in the evaluation of the proposed models yielded
favorable values, so it can be affirmed that they are capable of characterizing, from a
statistical point of view, the attenuation in each of the environments studied. For example,
in Refs. [78,105,106], the values of R2 were 0.95, 0.98, and 0.98, respectively.

The RMSE was also used to validate the results of the new models. In Ref. [43],
they used it in the validation phase of the effectiveness of their proposal concerning field
measurements, obtaining values of 1.6 dB in the 870 MHz band and 1.5 dB in the 2.4 GHz
band. In Ref. [62], they reported that the calculated RMSE was less than 1.5 dB for all the
antenna heights and crop conditions considered.

As for the relative error, only Ref. [48] reports its use as a statistic for the validation of
the results. In this case, the proposed model had a difference of less than 2% concerning
attenuation variations.

The results associated with the development of new models contrast with those
obtained with traditional vegetation models. In this case, the models obtained from the
measurements and the considerations of the specific environment in which the WSN is
planned to be installed allow modeling losses with much lower error levels. However, the
multiple variations of crops and associated environments represent a challenge for future
researchers since it has not been possible to obtain a standard model that can be applied in
all scenarios with good results and that avoids the characterization of each crop or wooded
area where a WSN is intended to be installed. Table 7 presents a summary of the new
models and their results.
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Table 6. Summary of the results of the evaluation of the previously validated models.

Reference Models Environment Technology Summary of Results

[16] FSPL, Two-Ray Grass RF equipment - Two-Ray and FSPL do not adequately represent measurements.

[12] COST-235, ITU-R, Weissberger Agricultural fields Zigbee - COST-235 was the largest overvaluation of losses in all growth stages of the crop.
- Weissberger was the one with the greatest underestimation of losses in all stages of the crop.

[27] COST-235, FSPL, Weissberger Agricultural fields RF equipment
- FSPL, Weissberger, and ITU-R show similar trends and differ from the observed path

loss values.
- COST 235 features higher precision.

[38] ITU-R Agricultural fields Zigbee - FITU-R was the most accurate in a setting with no leaves on the trees.
- FSPL presented the highest difference concerning the measures.

[40] FITU-R, ITU-R, Weissberger Agricultural fields RF equipment - FITU-R was more accurate at frequencies below 2 GHz.
- COST235 was more accurate at frequencies above 2 GHz.

[39] FSPL, MED Agricultural fields Zigbee

- FSPL, adjusted to the measurements, was the most accurate with grass heights of 15 cm (RMSE
of 4.5) and 1 m (1.62).

- MED, adjusted to measurements, was the least accurate with grass heights of 15 cm (RMSE of
4.65) and 1 m (1.9).

[42] ITU-R, Weissberger Agricultural fields Zigbee - Weissberger was the most accurate with an R2 of 0.62 when adjusted.

[43] COST-235, FITU-R, FSPL, ITU-R Agricultural fields RF equipment
- FITU-R was more accurate at 2.4 GHz.
- ITU-R and FITU-R show similar trends at 870 MHz.
- FSPL was the one with the greatest difference concerning the measurements.

[44] COST-235, FITU-R, Weissberger Agricultural fields Zigbee

- FITU-R, in all the combinations of the experiment, presented the highest precision (RMSE
between 3.8 and 13.6).

- COST-235, in all the combinations of the experiment, presented the highest overvaluation
(RMSE between 8.0 and 26.8).
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Table 6. Cont.

Reference Models Environment Technology Summary of Results

[18] COST-235, FSPL, ITU-R,
Two-Ray, Weissberger Greenhouse Zigbee

- Two-Ray presented was more accurate with node antenna height of 0.5 m (% error between
0.65% and 26.25%).

- FSPL presented the greatest difference with node antenna height of 0.5 m (% error between
4.52% and 42.84%).

- ITU-R added with Two-Ray and Weissberger added with Two-Ray were the most accurate with
a node antenna height of 1.5 m.

[46] COST-235, FSPL, ITU-R,
Two-Ray, Weissberger Forest or jungle Zigbee - Two-Ray was more accurate (MAPE 25%).

- ITU-R was the one with the greatest difference concerning the measurements (MAPE of 89%).

[48] FSPL, Two-Ray Agricultural fields Zigbee
- FSPL presented a low performance in all stages of the culture (RMSE between 10.33 dB and

18.19 dB).
- Two-Ray showed a decrease in RMSE when increasing the height of the node antenna.

[53] COST-235, FITU-R, FSPL, ITU-R,
Two-Ray, Weissberger Greenhouse Zigbee

- COST-235 added with FSPL was the most accurate (MAPE of 10.69%).
- Weissberger added with Two-Ray presented the greatest difference concerning

the measurements.

[56] FSPL Forest or jungle WiFi - FSPL presented high overvaluation of the measurements.

[58] COST-235, FITU-R,
FSPL, Weissberger Forest or jungle RF equipment - All models underestimated the measurements (RMSE up to 68 dB at 25 m).

[60] COST-235, FITU-R Forest or jungle WiFi - FITU-R and COST-235 presented high overvaluation of the measurements.

[82] FSPL, ITU-R Forest or jungle RF equipment
- ITU-R overestimates at distances less than 20 m and underestimates at distances greater

than 20 m.
- FSPL overestimates measurements.

[67] COST-235, FITU-R, ITU-R, MED Agricultural fields Zigbee

- MED was more accurate with antenna heights of 2.0 m and 2.3 m.
- ITU-R had good prediction in short distances (up to 54 m) with an antenna height of 2.3 m.
- FITU-R improved performance as distance increased with 2.0 m and 2.3 m antenna height.
- COST-235 overestimated measurements in all cases.
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Table 6. Cont.

Reference Models Environment Technology Summary of Results

[104] FSPL, Two-Ray Forest and grass Zigbee - Two-Ray was the most accurate (average RMSE of 19.8).
- FSPL presented the highest difference concerning the measurements (mean RMSE of 34.37).

[106] FSPL, ITU-R, Two-Ray Agricultural fields Zigbee

- Without adjusting, Two-Ray was more accurate with an antenna height of 0.5 m (average RMSE
of 10.33 dB).

- Without adjusting, FSPL was more accurate with antenna heights of 1.0 m and 1.5 m (average
RMSE of 10.22 dB and 8.26 dB, respectively).

- Without adjusting, ITU-R had the highest difference concerning the measurements in all
scenarios (RMSE greater than 60 dB).

- By adjusting Two-Ray, it was the most accurate in all scenarios (average RMSE less than 2.5 dB).
- When adjusting, it presented a greater difference with the measurements (average RMSE

between 1.93 dB to 2.06 dB).
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Table 7. Summary of evaluation results of new models.

Reference Environment Technology Summary of Results

[43] Forest or jungle RF equipment - RMSE = 1.6 dB at 870 MHz.
- RMSE = 1.5 dB at 2.4 GHz.

[44] Agricultural field Zigbee
- Average RMSE of 4.48 in all combinations of the experiment.
- R2 between 0.87 and 0.9 with logarithmic adjustment.

[48] Agricultural field Zigbee - Relative error < 2%

[60] Forest or jungle WiFi
- R2 = 0.66 with antenna height of 3.5 m.
- R2 = 0.94 with antenna height of 7 m.

[38] Agricultural field Zigbee

- Good match near the treetops.
- Underestimation at a medium height.
- The error increased with the presence of leaves and with

increasing distance.

[18] Greenhouse Zigbee

- % average error = 2.76% with a minimum of 0.06% and a
maximum of 8.81% at distances of 2.6 m and 13.4 m, respectively,
with antenna height of 0.5 m.

- % average error = 1.57% with a minimum of 0.26% and a
maximum of 3.01% at distances of 6.2 m and 4.4 m, respectively,
with antenna height of 1.5 m.

[50] Agricultural field Zigbee - Acceptable results.

[62] Forest or jungle RF equipment - RMSE between 0.97 to 1.49 with antenna height of 2 m.
- RMSE 0.19 to 1.33 with 3 m antenna height.

[77] Grass Zigbee
- R2 = 0.95 in short grass.
- R2 = 0.92 in tall grass.

[104] Forestry and turf Zigbee
- R2 = 0.99 in grass.
- R2 = 1 in a sparse tree environment.

[105] Forest or jungle Zigbee - R2 = 0.98

[106] Agricultural field RF equipment
- R2 = 0.98 under (LoS) conditions.
- R2 = 0.98 under non-line-of-sight (NLoS) conditions.

8. Conclusions

The results of this SLR show that, although there is a large set of radio wave propa-
gation models validated in vegetated environments, the characterization of attenuation
in agricultural, or similar, environments is an area of engineering that requires further
research. In addition, this SLR identifies the models most used in planning the sizing of
WSNs in crops, as well as the scenarios in which most research has been conducted, as well
as trends in the use of wireless technologies required for node connectivity. The criteria and
values that determine the validity of a model and/or its effectiveness were also identified.

The number of articles in this research area had been increasing from 2015 to 2019,
decreasing from 2020, probably a product of the SARS-CoV-2 pandemic, which forced the
suspension of activities in different research areas. Although the number of articles found
in publications not categorized as proceedings is high (50%), it is also important to note
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that 26% of the papers consulted in this SLR are found in journals or proceedings of events
classified as Q1, which demonstrates the relevance of the research area for journals that
address this type of topic.

Six countries account for most of the publications generated (China, India, Japan,
Malaysia, Spain, and the United States). The remaining articles come from 18 other na-
tions, demonstrating that there is a diversity of institutions around the world researching
this topic.

The technical analysis allows us to identify that, of the validated and recognized
models, the most widely used are of the empirical type, highlighting the use of the MED
and its derivatives. However, the results of RMSE above 10 dB and MAPE above 10% in
most investigations show that vegetation models are inefficient in estimating radio signal
loss in foliage when applied in scenarios other than those considered in their development.
Therefore, adjustments are needed to increase the accuracy under specific experimental
conditions and in the configuration of the communication system elements.

Several papers consider non-specific models for vegetated environments (e.g., FSPL
and Two-Ray). However, these are generally used as an aid to calculate attenuation over the
entire communication link and not only in vegetation. Like vegetation models, they lead to
high errors. The results reported on the use of vegetation models and their effectiveness in
estimating attenuation in the scenarios studied indicate that none can be rated as the most
accurate in predicting signal losses in environments with the presence of bushes, plants,
grass, or similar. All the vegetation models considered showed variations in their accuracy
in the cases in which they were applied, with no definite trend of estimation above or below
the real loss values. The poor effectiveness of vegetation models demonstrates the need for
more comprehensive developments that include factors other than distance and frequency,
e.g., antenna height, obstacle dimensions, and shrub spacing.

As for the models considered new, most of them adequately fitted the attenuation
curve in the scenarios in which they were developed, and, in the conditions proposed in
different experiments, reached R2 values higher than 0.9 in most of the investigations.

Regarding the scenarios considered in the characterization of attenuation and the
evaluation or development of new models, most of the studies focus on outdoor agricultural
environments and greenhouses. In these, since there is generally a uniform layout and
one type of shrub predominates in the fields, modeling the effects of vegetation on the
signal in the wireless channel is facilitated. As for environments dominated by grasses
or pastures (common in livestock environments), they present favorable conditions for
radio wave propagation. However, the results show that, in most cases, it is necessary to
adjust the vegetation models to reduce error levels. As for forest environments, which, in
many cases, have similarities with some types of crops, they represent a great challenge in
the estimation of signal loss because the uniform positioning of trees and plants does not
predominate. In addition, it is normal that there are different species of vegetation, and
each of them has its geometrical characteristics.

Regarding the wireless technologies used in WSNs for agricultural applications, the
results show that, from 2011 to 2021, there is a preference for the use of Zigbee. However, as
of 2019, there is a growing trend in the use of LoRa. Its coverage, power consumption, and
cost characteristics position it as one of the wireless technologies with the highest future
demand in WSN and IoT applications.

9. Future Works

Future developments of new models should further study the effects of plant geometry,
composition, and layout on radio signal loss. In the case of greenhouse crops, it is desirable
to study how the infrastructure that houses them influences signal attenuation. For the
study of radio wave propagation in agricultural environments or with the presence of
bushes or grass, it is advisable to use techniques that have not been used in studies of
radio wave propagation in these scenarios, such as machine learning. In addition, this SLR
identifies the lack of standard validation techniques to adequately evaluate and compare
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propagation models centered on PA scenarios, opening the possibility of lines of research
in this area. It is also suggested to analyze those technologies that have not been widely
documented and that have interesting features, such as large coverage, e.g., Sigfox.

Regarding the application context, studies are proposed focused on crops of great
importance for food sustainability, such as cassava, banana, or soybean, and ecosystems
located in marine–coastal transition zones, such as mangrove forests, among others.
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