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Abstract

Background: Post-translational modifications (PTMs) on the N-terminal tails of histones and histone variants
regulate distinct transcriptional states and nuclear events. Whereas the functional effects of specific PTMs are the
current subject of intense investigation, most studies characterize histone PTMs/variants in a non-temporal fashion
and very few studies have reported kinetic information about these histone forms. Previous studies have used
radiolabeling, fluorescence microscopy and chromatin immunoprecipitation to determine rates of histone turnover,
and have found interesting correlations between increased turnover and increased gene expression. Therefore,
histone turnover is an understudied yet potentially important parameter that may contribute to epigenetic
regulation. Understanding turnover in the context of histone modifications and sequence variants could provide
valuable additional insight into the function of histone replacement.

Results: In this study, we measured the metabolic rate of labeled isotope incorporation into the histone proteins
of HeLa cells by combining stable isotope labeling of amino acids in cell culture (SILAC) pulse experiments with
quantitative mass spectrometry-based proteomics. In general, we found that most core histones have similar
turnover rates, with the exception of the H2A variants, which exhibit a wider range of rates, potentially consistent
with their epigenetic function. In addition, acetylated histones have a significantly faster turnover compared with
general histone protein and methylated histones, although these rates vary considerably, depending on the site
and overall degree of methylation. Histones containing transcriptionally active marks have been consistently found
to have faster turnover rates than histones containing silent marks. Interestingly, the presence of both active and
silent marks on the same peptide resulted in a slower turnover rate than either mark alone on that same peptide.
Lastly, we observed little difference in the turnover between nearly all modified forms of the H3.1, H3.2 and H3.3
variants, with the notable exception that H3.2K36me2 has a faster turnover than this mark on the other H3 variants.

Conclusions: Quantitative proteomics provides complementary insight to previous work aimed at quantitatively
measuring histone turnover, and our results suggest that turnover rates are dependent upon site-specific post-
translational modifications and sequence variants.

Background
In eukaryotes, stable genetic storage is accomplished
through the local organization of DNA around histone
proteins to form the chromatin fiber. Histones have
been long recognized as the structural scaffolds of chro-
matin, but more recent research has suggested that they
possess a broader role. The epigenetic influence of his-
tones is mediated primarily by post-translational

modifications (PTMs) and also by selective deposition of
histone variants, which in combination influence gene
transcription and other processes such as DNA damage
and replication [1]. In particular, histone PTMs such as
trimethylation of lysine 4 on histone H3 (H3K4me3)
recruit or displace other proteins that regulate transcrip-
tion, such as the chromatin remodeler nucleosome
remodeling factor (NURF) [2]. Although the underlying
mechanism through which histone variants influence
gene expression is unclear, certain histone variants have
been shown to be linked with specialized genomic roles.
For instance, replication-independent H3.3 variant
deposition occurs at the transcriptional start sites in
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various organisms [3]. This specificity probably involves
recognition by variant-specific remodeling complexes
and chaperones, as is the case for Mis16 and Mis18
interaction with the centromere-specific H3 variant cen-
tromere protein (CENP)-A [4].
Implicit to the current theories of histone epigenetic

regulation is that nucleosome occupancy over specific
genomic regions is intimately linked to transcription [5].
The biological consequences of histone turnover were
first explored with 14C-and 3H-radiolabeling, and among
the findings was that specific histone pools were
observed to turnover both dependently and indepen-
dently of DNA replication [6,7]. It is now known that
the majority of histone synthesis is synchronized with S-
phase, and that H3.1 and H3.3 are deposited in a repli-
cation-dependent and-independent manner, respectively
[8,9]. Expression of the histone genes, which are often
clustered within chromosomes, is further regulated at
the level of messenger (m)RNA expression, pre-mRNA
processing and mRNA stability [10]. Offsetting histone
synthesis and deposition is histone degradation and
eviction; for instance Saccharomyces cerevisiae SWR1
and human SRCAP (sucrose non-fermentation (SNF)2
C-AMP response element binding protein binding pro-
tein (CBP) activator protein replaces H2A with H2A.Z
in an ATP-dependent manner [11]. Excess production
of histones is known to result in defects in mitotic chro-
mosome segregation [12,13]. Thus, both histone synth-
esis/deposition and histone degradation/eviction must
occur at approximately equal rates to maintain steady
state DNA-bound histone levels and nucleosomal and
genomic stability. Yet the absolute value of the rates for
each process (synthesis/deposition and degradation/evic-
tion) can differ significantly depending upon the enzyme
and substrate. We describe the absolute values of these
rates as turnover. In contrast to the relatively slow turn-
over of histones, which are known to have half-lives in
the order of days as determined by radiolabeling studies,
the rapid modification of histones after synthesis and
incorporation into chromatin is known to be a rapid
process [14].
More recent studies exploring histone turnover have

mostly relied on tagging histones with green fluorescent
protein, Myc or other epitopes to allow fluorescence
recovery after photobleaching, chromatin immunopreci-
pitation or other techniques to measure turnover. One
notable finding includes the existence of at least two
pools of H1 with distinct DNA exchange rates in 3T3
cells [15]. Other studies involving the mapping of his-
tone turnover to the genome have shown increased his-
tone turnover on promoters relative to coding regions
in S. cerevisiae [16], and on binding sites for trithorax
group proteins relative to binding sites for polycomb
group proteins in Drosophila melanogaster S2 cells

[17,18]. These studies suggest that increased turnover
within a particular genomic region disrupts the local
chromatin environment and renders genes accessible to
transcription factors, subsequently leading to gene acti-
vation. The results from D. melanogaster also point to
an intriguing correlation between increased histone
turnover and binding of the origin recognition complex,
raising questions about the connection between DNA
replication and chromatin [18].
A valuable complement to these ongoing investiga-

tions is the study of histone turnover when distinct site-
specific PTMs and the specific histone variants are
simultaneously considered. To obtain a quantitative
measure of global histone turnover as a function of
modification status and type of sequence variant, we
designed a time course experiment using stable isotope
labeling with amino acids in cell culture (SILAC) in con-
junction with high-resolution mass spectrometry (MS).
MS enables precise quantification of both histone post-
translational modification sites, and allows sequence var-
iants to be identified, thus we believe these attributes
qualify MS as a useful technique for studying histone
biology in general [19]. Furthermore, because we studied
endogenous histones, there are no tags to interfere with
higher-order chromatin structure and our measurements
accurately capture global in vivo global histone turnover.
In this study, we report that turnover rates of histone
proteins vary widely depending upon the modification
status and sequence variant. Our approach also pro-
duced important quantitative information, thus provid-
ing a useful and complementary platform for
understanding chromatin biology.

Results and discussion
To track the turnover of histone variants and PTMs in
unsynchronized growing cells, we cultured HeLa cells in
standard Joklik media and then transferred the cells to
media containing exclusively 13C6

15N2-lysine, which is
essentially similar to performing pulse SILAC experi-
ments (Figure 1). Histones found to contain the isotopi-
cally ‘heavy’ 13C6

15N2-lysine residues were termed ‘new’,
as they are synthesized after the introduction of the
heavy media. This metabolic incorporation can be
assessed by direct examination of the population of pep-
tides on days 0, 1 and 6 (post incubation in heavy
media) (Figure 1) At day 0 we observed a doubly
charged peptide at 724.375 mass to charge ratio (m/z),
which after tandem MS (MS/MS) experiments (data not
shown) was found to correspond to the histone H3 73-
83 residue peptide, prEIAQDFKprTDLR (pr = propionyl
amide group from chemical derivatization). At day 1 we
observed a decrease in this peptide, and the appearance
of another peptide at 728.382 m/z. These peptides chro-
matographically co-elute and possess the same charge
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state, which is a characteristic of 13C15N labeled isotopic
peptides, but the heavier peptide contains an overall
mass shift that is an integer divisible of 8.011 Da (Δm/z
= ~4 Da on a 2+ charge peptide). By day 6, the heavier
peptide at 728.382 m/z was the most abundant species,
and the lighter peptide at 724.375 m/z is almost com-
pletely gone (Figure 1). MS/MS interrogation of the
peptide at 728.382 m/z (Figure 2) identified it as having

the same sequence as the respective unlabeled peptide,
but with all of the lysines substituted by the 13C6

15N2-
lysine. For all histone peptides that we studied in our
MS experiments, we observed at least one correspond-
ing isotopically labeled peptide during the time course
(see Additional file 1, Additional file 2).
Additionally, on histone peptides containing two or

more lysine residues, we detected peptide forms that
were fully unlabeled (all 12C6

14N2-lysines), fully labeled
(all 13C6

15N2-lysines) and partially labeled (a combina-
tion of 12C6

14N2- and
13C6

15N2-lysines) (see Additional
file 3). In general, for all the peptides observed in all of
the histone proteins, the partially labeled and fully
labeled peptides accumulated in relative abundance over
the time course and reached a final steady state level
approximately 4 days after introduction into 13C6

15N2-
lysine heavy media (Figure 3), indicating that the intra-
cellular lysine pool became increasingly populated with
13C6

15N2-lysine. A minute fraction of 12C6
14N2-lysine

remained within the cells, presumably due to macromo-
lecular decomposition during the timescale of our
experiments, and was observed in both the partially
labeled and fully unlabeled peptides.
To model the rate of accumulation of the newly labeled
histone peptides and the corresponding depletion rate of
the old unlabeled peptides, we fitted the relative distri-
butions of the different labeled states for each peptides
to a set of differential equations similar to those pre-
viously published (Figure 4, see Additional file 4)[20].
Our model accounts for all states corresponding to the

Figure 1 Experimental design. HeLa S3 cells were cultured in
unlabeled 12C6

14N2-lysine media, and transitioned into labeled
13C6

15N2-lysine media. Daily samples were collected and analyzed
by mass spectrometry (MS). MS spectra detected the 13C6

15N2-lysine
labeled peptide (gray circle, H3 73-83) co-eluting with the respective
unlabeled peptide (white circle) after the pulse at days 0, 1 and 6.
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Figure 2 Tandem mass spectrometry (MS/MS) spectrum of
labeled lysine peptide. MS/MS of the H3 73-83 peptide
unmodified on K79 and labeled with 13C6

15N2-lysine isotope.
Underlined nominal masses above and below the sequence denote
the b and y ions respectively that were annotated from the
spectrum. The expected and observed mass to charge ratio (m/z)
for the [M+2H+]2+ precursor ion is provided. pr = Propionyl (heavy,
D5-labeled).
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Figure 3 Isotopic labeling of histone variants. Average relative
distribution (markers) of the fully isotopically labeled (A) H3, H4 and
H1.4 peptides, (B) H2A peptides and (C) H2B variant peptides across
the labeling time course. Note the gradual accumulation of the fully
labeled peptide as time increases. The peptide labeled as H2A (V,Z)
corresponds to the sequence ATIAGGGVIPHIHK, and the peptide
labeled as H2A (types 1B, C, E and 3) corresponds to the sequence
NDEELNKLLGR. All other peptides correspond to > 3 different
histone proteins. Vertical lines represent standard deviation.

Zee et al. Epigenetics & Chromatin 2010, 3:22
http://www.epigeneticsandchromatin.com/content/3/1/22

Page 3 of 11



fully labeled, fully unlabeled and partially labeled pep-
tides. An assumption implicit to our method of normali-
zation and modeling is that the post-translationally
modified forms, when summed across all isotopically
labeled states, remain at steady state relative to each
other. We confirmed that the standard deviations of the
relative abundances for each modified peptide, summed
over all the labeled states and across the time course,
were < 0.051 (see Additional file 5). This is the thresh-
old at which 95% of the observed variability cannot be
accounted for by 10% of the instrument measurement
variability, a common metric for accessing the reprodu-
cibility of MS experiments [21]. Based upon these mea-
surements, we concluded that all of the peptides
occurred at steady state throughout the experiment.
Next, we extrapolated the turnover rate for bulk his-

tones (Figure 3, Table 1). For this purpose, we examined
the 24-35 (DNIQGITKPAIR) H4 peptide, the 33-53
(KASGPPVSELITKAVAASKER) H1.4 peptide and the
65-70 (KLPFQR) and 117-128 (VTIMPKDIQLAR) H3
peptides (labeled amino acids underlined), which our
laboratory has previously found are not modified for
HeLa S3 (unpublished data). Thus, we postulated that
the measured turnover rates for these peptides should
reflect the general turnover rates of bulk H4, H3 and
H1.4 histones, respectively. We found that H1.4 has a
faster turnover than H3, which in turn has a slightly fas-
ter turnover than H4. These findings are consistent with
our previous work, in which we labeled HeLa S3 cells
with 13CD3-methionine and tracked incorporation of the
heavy methionine isotope, with a 4.021 m/z shift for
every new methionine added [22]. Histone H1.4 is

known to repress transcription and condense chromatin
more efficiently than other H1 subtypes, partly due to
its increased chromatin binding affinity [23,24]. It is
likely that the faster turnover of H1.4 compared with
H3 and H4 is not due to a difference in epigenetic func-
tion, but rather to its different location relative to the
core nucleosome. In the future, it would be interesting
to examine how H1.4 turnover compares relative to
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Figure 4 Modeling of histone turnover. Average relative
distribution (markers) of various isotopically labeled and modified
histone peptides on histones H1.4, H2A, H3 and H4 across the
labeling time course (days). Lines represent optimized fits of the
observed relative distributions for the particular peptide.

Table 1 Histone post-translational modification and
variant-specific turnover.1

Peptide2-4,6 Turnover, per
day5

Peptide2-4,6 Turnover, per
day5

H3K65un 0.6230 ± 0.0001 H3K27unK36un 1.9213 ± 0.0001

H3K122un 0.6400 ± 0.0001 H3K27me1 1.1391 ± 0.0000

H3K4un 0.6638 ± 0.0001 H3K36me1 1.6913 ± 0.0000

H3K4me1 0.4863 ± 0.0000 H3K27me2 0.8207 ± 0.0000

H3K56un 0.6378 ± 0.0000 H3K36me2 1.0892 ± 0.0000

H3K56ac1 2.4335 ± 0.0014 H3K27me3 0.5148 ± 0.0000

H3K18K23un 0.6806 ± 0.0001 H3K27me1K36me2 0.7540 ± 0.0000

H3K18/K23ac14 0.8793 ± 0.0000 H3K27me2K36me1 0.6210 ± 0.0001

H3K18ac1K23ac1 1.1446 ± 0.0001 H3K27me2K36me2 0.4537 ± 0.0000

H3K79un 0.6785 ± 0.0001 H3K27me3K36me1 0.3681 ± 0.0000

H3K79me1 0.4526 ± 0.0000 H3K27me1K36me3 0.4547 ± 0.0000

H3K79me2 0.3841 ± 0.0000 H4K5K8K12K16un 0.6495 ± 0.0000

H3K9unK14un 1.1335 ± 0.0001 H4K5/K8/K12/
K16ac14

0.7773 ± 0.0000

H3K9me1 0.7967 ± 0.0001 H4K5/K8/K12/
K16ac24

0.9819 ± 0.0000

H3K9me2 0.6620 ± 0.0000 H4K5/K8/K12/
K16ac34

1.0423 ± 0.0000

H3K9me3 0.4652 ± 0.0000 H4K5K8K12K16ac4 1.0056 ± 0.0000

H3K9/K14ac14 1.3393 ± 0.0001 H4K20un 2.2672 ± 0.0005

H3K9me1K14ac1 0.9205 ± 0.0000 H4K20me1 1.3340 ± 0.0002

H3K9me2K14ac1 0.6454 ± 0.0000 H4K20me2 0.5177 ± 0.0000

H1.4K26un 0.7721 ± 0.0000 H4K20me3 0.3307 ± 0.0000

H4K31un 0.6182 ± 0.0001 H2A:
ATIAGGGVIPHIHK

0.8016 ± 0.0001

H2A:
GKQGGKAR

0.7222 ± 0.0000 H2A:
NDEELNKLLGR

0.7135 ± 0.0000

H2A: KGNYAER 0.6311 ± 0.0000 H2B: LAHYNKR 0.6448 ± 0.0000

H2A: KGNYSER 0.7215 ± 0.0001 H2B: PEPAK 0.6293 ± 0.0000
1Absolute turnover values (mean ± standard deviation per day) extrapolated
from the relative distribution of the isotopically labeled bulk H3, H4 and H1.4
peptides with a particular post-translational modification.
2me = methyl
3ac = acetyl
4The H2A and H2B turnover values are averages of all histone variants
containing the specific peptide sequence.
5The model was iterated 200 times for each individual peptide, where the
average and standard deviation were taken for parameters within 105% of
the determined optimum parameter.
6For H3K18/K23ac1, H3K9/K14ac1, and H4K5/K8/K12/K16ac1, ac2 and ac3, the
localization of the acetyl(s) on the multiple lysines was not determined.
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other less efficient chromatin-compacting H1 subtypes,
such as H1.1 and H1.2.
We also examined peptides from several H2A and

H2B variants. Similar to the aforementioned unmodified
peptides for H1.4, H3 and H4, we never observed forms
of the H2A or H2B peptides to be modified and thus
reasoned that they also represented bulk turnover of
their respective protein (Figure 3, Figure 4). However,
some of the tryptic peptides are not unique to a particu-
lar variant, as many variants are largely homologous
(Table 1). For example, we could only link the peptide
NDEELNKLLGR, which is found in H2B types 1-C, 3
and 1-B/E, to the average turnover associated with all
the homologous histones. We observed that the H2B
variants containing the peptide sequence LAHYNKR or
PEPAK had turnover rates similar to H3 and H4 (see
Additional file 6). By contrast, a broader range of turn-
over values was found for the H2A variants, with some
being notably faster than H1.4. This wide range of turn-
over values observed for the H2A variants suggests that
different variants may serve different purposes in chro-
matin assembly. For instance, the human H2A variants
that contain the sequence ATIAGGGVIPHIHK, which
include H2AZ, have the fastest turnover (see Additional
file 6). Intriguingly, H2AZ is known to localize specifi-
cally to transcriptional start sites, and the increased
turnover is consistent with previous work showing that
histones over promoters have a faster turnover than his-
tones over the gene coding region [16,25]. It is impor-
tant to note that H2AZ localization over promoters
does not indicate that H2AZ is associated with gene
activation, but is currently believed to bind to and
prime silent promoters for subsequent activation [26].
Despite the differences in turnover values between the
core histones, all the core peptides have a turnover rate
in the order of ln(2) = 0.6931/day, which is approxi-
mately the expected rate if half of peptide population
become labeled after each day. Thus, with few excep-
tions, bulk H1.4, H2A, H2B, H3 and H4 peptides gener-
ally turnover at a rate indistinguishable from the rate
predicted from HeLa division approximately every 24
hours. This is consistent with previous work showing
that most newly synthesized histones are deposited onto
newly replicated DNA during S phase, and that the dif-
ferent histone families are synthesized in equal stoichio-
metry with each other [12,27].
To place our bulk histone turnover values in the con-

text of previous work, our finding that specific H2A var-
iants have faster turnover than the other core histones
is consistent with previous radiolabeling work with tri-
tiated amino acids in Friend murine erythroleukemia
cells [28], Another radiolabeling study that administered
tritiated water to mice and examined liver histones
found that histone turnover generally occurs on the

same time scale as cellular proliferation, which is in
excess of 100 days for these cell types [29,30]. Despite
the heterogeneity of cell types with vastly different pro-
liferation rates in adult tissue, the whole-animal work is
similar to our findings in HeLa cells; namely, that most
bulk histones turn over with the cell cycle.
We next examined histone turnover as a function of

their PTM status (Figure 5, Figure 6, Table 2). We
defined the relative turnover as the turnover with
respect to the unmodified peptide, in contrast to the
absolute turnover we have discussed previously. Among
the notable findings, we observed that the relative turn-
over of acetylated histones is significantly faster than
that of methylated histones (Wilcoxon rank sum, p =
6.1 × 10-5). For instance, a peptide containing
H4K20me2 has a slower turnover rate than H4K31un
(general H4 turnover), whereas the triacetylated H4K5/
K8/K12/K16ac3 has a faster turnover than H3K31un
(Figure 5,d Table 2). Furthermore, progressively acety-
lated and methylated peptides have a faster and slower
turnover, respectively, than their unmodified peptide
counterparts. For instance, the doubly acetylated
H3K18acK23ac peptide has a faster turnover than the
monoacetyl H3K18/K23ac1 peptide, which in turn has a
faster turnover than the H3K18unK23un peptide (Table
2; see Additional file 7). Additionally, the monomethy-
lated H3K9me1 peptide has a slower turnover than the
respective unmodified peptide (Figure 6, Table 2). Inter-
estingly, we also observed a trend for peptides with tran-
scriptionally active PTMs, such as H3K36me2, to have
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Figure 5 Turnover of modified H4 peptides. Mass spectrometry
spectra of the H4 triacetylated 4-16 peptide (H4K5K8K12K16ac3),
unmodified 24-35 peptide (H4K31un) and dimethylated 20-23
peptide (H4K20me2) during the labeling time course. Isotopic
distributions of peptides that were 12C6

14N2-lysine unlabeled (white
circle) or 13C6

15N2-lysine labeled (gray circle) are denoted on the
spectra. Note the intermediate isotopic distribution (one white circle
+ three gray circles) of the 4-16 peptide has three of its four lysines
labeled with 13C6

15N2-lysine.

Zee et al. Epigenetics & Chromatin 2010, 3:22
http://www.epigeneticsandchromatin.com/content/3/1/22

Page 5 of 11



faster relative turnovers than peptides with silent PTMs,
such as H3K27me2 (Kruskal-Wallis, p = 6.3 × 10-4).
How acetylation and methylation structurally affect

the nucleosome itself is not entirely clear. Some notable
examples of a direct structural effect of histone PTMs
and nucleosomal structure are the electrostatic interac-
tion between the H4 tail with respect to H2A/H2B on
the adjacent nucleosome [31], the electrostatic interac-
tion between H3K56ac and the DNA backbone [32],
and the general destabilization of the nucleosome bound
to positively supercoiled DNA by the hyperacetylated
histones H3 and H4 [33]. The acetyl moiety removes
the positive charge from lysines due to resonance effects
of the carbonyl group, whereas the methyl moiety stabi-
lizes charge by raising the acid dissociation constant
(pKa) of the remaining acidic protons. We believe that
our PTM-specific data supports a general model in
which changes to higher-order chromatin structure via
charge stabilization or removal respectively impedes or
facilitates, subsequent chromatin remodeling. ATP-
dependent chromatin remodeling generally proceeds via
three pathways: nucleosome sliding along the DNA,
nucleosome conformational change, and nucleosome
eviction from the DNA [34,35]. Because we measured
turnover by quantifying the appearance of isotopically
labeled histones after a pulse, our turnover measure-
ments may reflect the activity of remodelers and

chaperones responsible for histone eviction and replace-
ment. To a lesser extent, our turnover measurements
may also reflect how quickly the histones become modi-
fied into a different peptide; for instance, an unmodified
peptide that becomes quickly acetylated would probably
have a faster turnover than another peptide that is less
rapidly modified.
When mechanistically considering histone turnover in

the context of transcription, another non-mutually
exclusive pathway for histone turnover emerges. Several
models have proposed the displacement of the nucleo-
some encountered by RNA polymerase onto the
upstream DNA strand [36] or even onto the nascent
RNA strand, followed by rebinding onto DNA [37].We
believe that our measurements reflect this nucleosomal
event only to a small extent, as we tracked the incor-
poration of newly synthesized histones. In particular,
given the reported high affinity of H2A and H2B for
RNA, it is unlikely that our observed turnover of H2A
and H2B occurs during the RNA transition state [37].
However, the lack of preferential affinity for either DNA
or RNA by the H3/H4 tetramer as reported in the same

Figure 6 Effect of post-translational modifications status on H3
turnover. Mass spectrometry (MS) spectrum of the H3 9-17 peptide
(left) unmodified and (right) monomethylated on K9 collected from
cells before and 1 day after the labeling time course. Contour plots
below the H3K9un and H3K9me1 MS spectra are shown for the
optimization of the turnover parameter (k-1) versus the addition of
two labeled lysines (k2), where the contours represent values (color
bar) of the objective/error function of the model in explaining the
variability of the data. The boundaries of the contours equal z(k) ×
(1+3/11 × F0.05(3,11)), where z(k) is the global minimum of the
calculated objective value for the H3K9un and H3K9me1
optimization. Note the lack of overlap of the two contours.

Table 2 Relative turnover of H3 and H4 modified
peptides

Peptide1,2 Relative turnover3 Epigenetic Function4,5

H3K4me1 0.7326 A [52]

H3K9me1 0.7029 A [52]

H3K9me2 0.5840 S [52]

H3K9me3 0.4104 S [52]

H3K9/K14ac1 1.1816 A [38]

H3K18/K23ac1 1.2919 A [38]

H3K18ac1K23ac1 1.6818 A [38]

H3K27me1 0.5929 A [52]

H3K27me2 0.4272 S [52]

H3K27me3 0.2679 S [52]

H3K36me1 0.8803 A [52]

H3K36me2 0.5669 A [53]

H3K56ac1 3.8155 A [38]

H3K79me1 0.6671 A [54]

H3K79me2 0.5661 A [54]

H4K5/K8/K12/K16ac1 1.1968 A [38]

H4K5/K8/K12/K16ac2 1.5118 A [38]

H4K5/K8/K12/K16ac3 1.6048 A [38]

H4K5K8K12K16ac4 1.5483 A [38]

H4K20me1 0.5884 A [52]

H4K20me2 0.2283 S [55]

H4K20me3 0.1459 S [56]
1me = Methyl
2ac = Acetyl
3Relative turnover, with respect to the relevant unmodified peptide, is
determined for various modified forms of H3 and H4.
4A = active marks
5S = silent marks
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study may facilitate H3/H4 turnover during this transi-
tion state when the tetramer is no longer bound to the
H2A/H2B dimer.
A major strength of mass spectrometric analysis is the

ability to simultaneously sequence and quantify multiple
modifications on the same histone peptide. In the 9-17
peptide on histone H3 (KSTGGKAPR), we observed the
presence of both methylation and acetylation on K9 and
K14 in HeLa cells. Interestingly, for H3K9me1K14ac1,
the turnover is faster than for the exclusively mono-
methylated H3K9me1 peptide, but slower than for the
exclusively monoacetylated H3K9/K14ac1 peptide. For
H3K9me2K14ac1, the turnover is slower than for both
H3K9me2 and H3K9/K14ac1. These two observations
suggest that histone acetylation, generally considered an
active mark, is epistatic to active methyl marks (such as
H3K9me1) yet antagonistic towards silent methyl marks
[38]. The presence of both active and silent marks in
the H3K27K36 peptide (KSAPATGGVKKPHR), such as
H3K27me2K36me1, is also consistent with this trend. In
particular, the H3K27me2K36me1 peptide has a much
slower turnover than a peptide containing either the
silent mark H3K27me2 or the active mark H3K36me1
(Table 1). Likewise, the H3K27me1K36me2 peptide has
a slower turnover than a peptide containing either
H3K27me1 or H3K36me2. However, it should be noted
that the slower turnover of these doubly modified pep-
tides is not believed to result simply from the total
number of methyl groups, because the
H3K27me1K36me2 peptide has a faster turnover than
the H3K27me2K36me1 peptide.
The presence of antagonistic PTMs may result in a

chromatin domain similar to bivalent domains, which
contain histones bearing H3K4me3 and H3K27me3
marks, and are believed to poise genes for either activa-
tion or silencing [39]. In principle, the conversion of a
bivalent domain to either a fully activating or silencing
domain can be achieved by histone-modifying enzymes
or replacement of the histone molecule with a new
unmodified histone that becomes modified. Given that
known bivalent domains are bound by polycomb pro-
teins that methylate H3K27, the former mechanism
explaining how bivalent domains function in vivo seems
more likely [40]. Thus, a slower histone turnover would
be expected if the bivalent domains switch epigenetic
function through modification changes rather than pro-
tein eviction and exchange, consistent with our observa-
tions for the H3K9me2K14ac and H3K27me2K36me1
peptides. We believe a similar logic can be applied to
binary switch domains; for instance, an effector mole-
cule (that is, heterochromatin protein 1) recognizing
methylation on H3K9 would engage in competitive
binding against another effector molecular recognizing a
phosphorylation on H3S10 [41].

Another layer of complexity for histone H3 is that it
exists as three major variants: H3.1, H3.2 and H3.3, and
the less abundant, centromere-specific variant CENP-A.
Generally, H3.2 and H3.3 are associated with silent and
active gene expression, respectively, whereas the evolu-
tionarily younger H3.1 variant is associated with both
expression states [42]. Because high-performance liquid
chromatography (HPLC) fractionation is able to resolve
H3.1, H3.2 and H3.3, we can examine the H3 variant
specific turnover of peptides with particular modifica-
tions [43]. In general, we found that turnover of the
modified peptides from the three H3 variants did not
differ significantly from one other (Table 3). In quies-
cent human lymphocytes that were stimulated to re-
enter the cell cycle, different histone H3 variants were
observed to exchange with each other [29,44] Because
our steady-state measurements were performed on
actively dividing and asynchronous HeLa cells, it is likely
that this difference would not be observed generally for
H3 variant turnover. A notable exception is K36
dimethylation; the H3.2 peptide containing this

Table 3 H3 variant-specific turnover.

Peptide1-3 Turnover4

H3.2/H3.1 H3.3/H3.1 H3.2/H3.3

K4un 1.0707 1.0437 1.0258

K4me1 1.0372 1.1400 0.9098

K79un 1.0598 1.0720 0.9887

K79me1 1.0251 1.0496 0.9767

K56un 1.0461 1.0170 1.0286

K9un 1.1022 0.9726 1.1332

K9me1 1.0462 1.0101 1.0357

K9me2 1.0507 0.9799 1.0723

K9me3 0.9925 1.0105 0.9822

K9me1K14ac1 1.1077 1.0187 1.0874

K9me2K14ac1 1.0116 0.9786 1.0337

K18un 1.0419 1.0086 1.0331

K18/K23ac1 1.0510 1.0140 1.0365

K18ac1K23ac1 1.0391 1.0374 1.0017

K65un 1.0745 1.0473 1.0259

K122un 1.0146 0.9936 1.0212

K27un 1.5204 1.9049 0.7982

K27me2 1.0330 1.0400 0.9933

K27me3 1.0057 1.1336 0.8872

K36me2 1.3324 0.9307 1.4316

K27me1K36me2 0.9910 1.0099 0.9813

K27me1K36me2 0.9777 1.1848 0.8252
1me = Methyl
2ac = Acetyl
3un = Unmodified
4Relative turnover of various post-translationally modified peptides from H3.1,
H3.2 and H3.3 variants with respect to each other.
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modification has a greater turnover than H3.1 or H3.3.
Previous studies have shown that K36me2 is generally
enriched in H3.3 over H3.2 [45]. Based on our turnover
data, we speculate that the elevated turnover of K36me2
in H3.2 is essential for maintaining this PTM at a low
level, and that it is the absence of K36me2 on H3.2
rather than its presence on H3.3 that is crucial for epi-
genetic function. Future experiments to test this hypoth-
esis could resort to substitution of site-directed
mutagenesis, with K36 on H3.2 mutated to a cysteine
and then alkylated with the appropriate reagent to
mimic dimethylation. Wild-type H3.2 contains a single
cysteine at position 110, which can be mutated to an
alanine to prevent derivatization [46]. Similarly, a
‘K36me1 mimic’ can be made on H3.3 to prevent
dimethylation [46].
The unmodified 27-40 peptide that contains K27 and

K36 also has a higher turnover in both H3.2 and H3.3
than inH3.1. We suspect that this is due to the fact that
K27 and K36 become immediately methylated in both
H3.2 and H3.3 variants respectively, as both PTMs are
known to be enriched on the two variants [45]. Conse-
quently, the unmodified peptide in the H3.2 and H3.3
fractions should turn over faster than in H3.1, because
it is immediately methylated into a different peptide.

Conclusion
Using mass spectrometry and SILAC, we found that his-
tones are generally stable proteins, with the H2A var-
iants exhibiting the largest range of global turnover
rates, and H1.4 turnover being faster than that of H3
and H4. Exploring the relationship between post-transla-
tional modifications and turnover, we found that turn-
over is significantly greater when a histone peptide
becomes acetylated than when it is methylated. When
classifying the H3 and H4 modified peptides according
to epigenetic function, we found that active marks have
a significantly faster turnover than silent marks. How-
ever, the dual presence of a silencing and activating
mark on the same peptide led to vastly distinct turnover
rates compared with either mark alone. The various
modified forms of the H3 variants (H3.1, H3.2 and
H3.3) generally had a similar global turnover, with the
notable exception of K36me2. In conclusion, this study
offers novel insights into histone turnover by using tech-
niques complementary to those already in standard use
by the general chromatin biology community to examine
the role of histone turnover in epigenetic regulation.

Methods
Cell culture maintenance and SILAC time course
HeLa S3 were maintained between 5-10 × 105 cells/ml
throughout the experiment and, before the time course,
were grown in minimum essential Joklik modified media

(Sigma Aldrich, St. Louis, MO, USA) as previously
described [22]. At the start of the time course, cultures
were pelleted at 300 g for 3 minutes in a refrigerated
centrifuge, decanted, and resuspended in Joklik media
depleted of unlabeled lysine (ThermoScientific HyClone,
Logan, UT, USA) and supplemented with L-lysine-
13C6

15N2 (Cambridge Isotope Laboratories Inc., Cam-
bridge, MA, USA), 5% fetal bovine serum (Thermo-
Scientific Hyclone), penicillin, streptomycin and 1%
Glutamax (Invitrogen, Carlsbad, USA). Before resuspen-
sion, flasks were rinsed with Joklik media depleted of
lysine. Every 24 hours for 6 days, half of the culture was
separated by centrifugation at 600 g, washed twice with
Tris-buffered saline, flash-frozen in liquid N2, and stored
at -80°C. The culture was replenished with an approxi-
mately equal volume of labeled media after sample
collection.

Nuclei isolation and histone extraction
Cell pellets were thawed on ice before nuclei isolation
and histone extractions as previously described [47].
Briefly, cells were lysed using NP-40 in nuclei isolation
buffer with 5 μmol/l microcystin, 0.3 mmol/l 4-(2-ami-
noethyl) benzenesulfonyl fluoride hydrochloride
(AEBSF) and 10 mmol/l sodium butyrate. Histones were
isolated from nuclei by extraction with 0.4 N H2SO4,
precipitated with trichloroacetic acid, washed in acetone,
dried overnight and resuspended in water.

Reversed-phase HPLC separation of bulk histone
Based on the Bradford assay, 125 μg of protein was allo-
cated for one-pot propionic anhydride derivatization.
The remaining extract was separated on a C18 column
(4.6 mm internal diameter × 250 mm (Vydac, Hesperia,
CA, USA) using HPLC (System Gold HPLC; Beckman
Coulter, Fullerton, CA, USA) with a gradient of 30-60%
B over 100 min, followed by 20 minutes at 100% B (buf-
fer A was 5% acetonitrile in 0.2% trifluoroacetic acid
(TFA), buffer B was 90% acetonitrile in 0.188% TFA)
and a flow rate of 0.8 ml/min. Fractions spanning a sin-
gle variant were pooled, and then dried to completion in
a vacuum centrifuge.

Histone preparation for MS analysis
The 125 μg bulk extract and HPLC-separated histone
H3.1, H3.2, H3.3 and H4 were derivatized and desalted
for MS as previously described, with the exception that
the reagent was composed of 3:1 isopropanol:propionic
anhydride instead of 3:1 methanol:propionic anhydride
[48]. For HPLC-purified H1, H2A and H2B, samples
were resuspended in 100 mmol/l ammonium bicarbo-
nate (pH 6-7), digested using trypsin for 20 minutes
with a 20:1 substrate/enzyme ratio, and subsequently
propionylated.
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MS and MS/MS analysis
Samples were loaded by an autosampler (AS-2; Eksigent
Technologies Inc., CA, USA) onto a 75 μm fused silica
capillary column with ESI tip hand packed with 130 mm
of C18 reverse phase resin (5 μm particles, 200Å pore
size) (Magic C18; Michrom BioResources Inc., Auburn,
CA, USA). Samples were resolved on a 110 minute 1-
100% buffer B gradient (buffer A = 0.1 mol/l acetic acid,
Buffer B = 70% acetonitrile in 0.1 mol/l acetic acid) at a
flow rate of 0.070 ml/min controlled by an HPLC pump
(1200 series; Agilent, Santa Rosa, CA, USA). The HPLC
was coupled to a mass spectrometer (LTQ-Orbitrap;
ThermoFisher Scientific, Carlsbad, CA, USA) with a
resolution of 30,000 for full MS followed by seven data-
dependent MS/MS analyses. Ions selected for MS/MS
interrogation were placed on an exclusion list for 30
seconds. Targeted runs were performed on a number of
samples to increase the identification of low-abundance
modifications.

Data analysis and modeling
Peptide abundance was calculated by manual chromato-
graphic peak integration of full MS scans using Qual
Browser software (version 2.0.7; ThermoFisher Scientific
Inc.). Peptide sequence and modifications were con-
firmed by inspection of the MS/MS data. To identify
histone H1, H2A and H2B peptides, a database search
was performed using the SEQUEST algorithm within
the Bioworks Browser (version 3.3; ThermoFisher Scien-
tific). The search was performed against human histone
variants for fully enzymatic tryptic digests, allowing for
five missed cleavage sites due to the propionyl derivati-
zation, propionylation of unmodified and monomethy-
lated lysines and N-termini (+56.026 Da) and oxidation
of methionine (+15.995 Da).
As a labeling convention, we appended each peptide

with two numbers, the first referring to the total num-
ber of lysines and the second to the number of labeled
lysines. For instance, H3K9me1 2:0, H3K9me1 2:1 and
H3K9me1 2:2 refer to the same 9-17 monomethylated
peptide containing 0, one and two isotopically labeled
lysines, respectively. For quantifying the dynamics of
histone turnover, we normalized the relative abundances
of each labeled state with respect to all labeled states of
the same modified peptide to determine the relative dis-
tribution of that labeled state. Thus, we normalized
H3K9me1 2:0 to the sum of the H3K9me1 2:0, 2:1 and
2:2 peptides. This method of normalization avoids com-
plications arising from variations in ionization efficien-
cies between peptides with different modification states.
A fundamental requirement of our turnover modeling

is that the relative abundance of a post-translationally
modified peptide, summed across all its isotopically
labeled states, should remain at a steady state. Assuming

that 95% (standard score = 1.96) of our observed data
can be accounted by a measurement variability of 10%,
a commonly cited upper bound, we checked whether
the standard deviation of the relative abundances for a
particular modified peptide across the time course
remained within 0.10/1.96 = 0.051. For instance, if
H3K79un, H3K79me1 and H3K79me2 fitted this criter-
ion, we declared that all the modified forms of the pep-
tide were at steady state relative to each other. For
peptides that we never observed to be modified, such as
the H4 24-35 peptide, we could not make this calcula-
tion because we normalized the peptide to itself and we
assumed that these unmodified peptides were at steady
state.
For each modified peptide, we then fitted a set of dif-

ferential equations (see Additional file 1 and 3) to the
relative abundance distributions for all labeled states
using MATLAB (version 7.9.0; Mathworks, Natick, MA,
USA) and iterated the program using 100-200 different
initial parameter values to determine the set of opti-
mized parameter values that results in the lowest objec-
tive or error value. For statistical comparison, we used
either the Wilcoxon rank sum test or Kruskal-Wallis
test (MATLAB version 7.9.0) for data points that were
normally or non-normally distributed, respectively.
We adopted two independent and complementary

approaches to assess the quality of the parameter esti-
mates and the fit of the model to the data. Specifically,
we examined the squared norm of the residual and
computed confidence regions in parameter subspaces to
elucidate parameter significance and independence.
In parameter estimation problems, confidence inter-

vals (based on the Student t-test distribution) and/or
elliptical confidence regions (based upon a Taylor series
expansion around the parameter estimate) are often
used to provide a range of values over which the para-
meter estimates are valid (that is, how much the esti-
mated parameters are allowed to vary while still
allowing the model to fit the data well). However, these
aforementioned approaches, which are based on linear
approximations [49], are only valid when the parameters
vary symmetrically around the optimal estimates, and
are not accurate for models with even moderate degrees
of non-linearity [50]. To avoid the limitations associated
with the inherent assumptions of these methods, we
computed confidence regions around the parameter esti-
mates using the F-test method (see Additional file 8)
[51]. This F-test approach was applied to every pair of
parameters to manually validate that the parameter esti-
mates were indeed significant from zero and to visually
assess any degree of nonlinearity in the confidence
regions. The parameter estimates were found to be sig-
nificant, and it was also observed that the confidence
region was only slightly nonlinear (see Additional file 8).
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Additional material

Additional file 1: Figure S1: Tandem mass spectrometry (MS/MS)
spectra of labeled peptides analyzed. MS/MS spectra of partially and
fully 13C6

15N2-lysine labeled peptides, where the red and blue peaks
correspond to the b and y ions annotated by Bioworks Browser.

Additional file 2: Table S1: List of all histone peptides analyzed: All
histone peptides quantified in our experiment are provided below, with
their charge state, expected and observed mass to charge ratio (m/z). ac
= Acetyl, me = methyl, ox = oxidation pr = propionyl, un = unmodified.
*Charge state of the peptide is included; †unable to differentiate based
on MS/MS.

Additional file 3: Figure S2: Detection of labeled isotopes. Mass
spectrometry spectrum of the unmodified H3 18-26 peptide after 1 day
of 13C6

15N2-lysine labeling, where the isotopic distributions for the
peptide containing two 12C6

14N2-lysines, one
12C6

14N2-lysine and one
13C6

15N2-lysine, and two 13C6
15N2-lysines are detected.

Additional file 4: Figure S3: Model for histone turnover. Set of
differential equations that extrapolate histone turnover for a peptide
containing one, two, three and four lysines. We found that at steady
state, the rate of histone removal for a particular labeled state should
equal the sum of all the rates of histone addition. This provides a
constraint in the optimization procedure. Furthermore, because the rate
of addition = rate of removal, k-1 becomes a measure of overall turnover
for that peptide. For a peptide containing two lysines, we needed to
include an additional factor of 2 for k1 because we were unable to
differentiate which of the two lysines are isotopically labeled. For similar
reasons, we modifid the differential equations for peptides containing
more than one lysine. P# = relative abundance of peptide, where #
indicates the number of labeled lysines. k-1 = Rate of histone removal. k#
= Rate of histone addition, where # indicates the number of labeled
lysines.

Additional file 5: Figure S4: Steady state assumption. Steady state
levels for histone post-translational modifications. Standard deviations
(vertical bars) of the relative abundances for the H3 and H4 peptides
across the labeling time course are shown relative to their respective
means (black circles). Horizontal dashed lines denote a standard
deviation of 0.051, the threshold at which 95% of the observed variability
cannot be accounted by 5-10% of the instrument measurement
variability. ac = Acetyl, me = methyl, un = unmodified.

Additional file 6: Figure S5: Comparison of turnover between
histones. (A) Relative distribution of the fully labeled H2A variant (black
diamond), H3 (green diamond), H2b variant (pink diamond), H4 (dark
blue diamond) and H1.4 (light blue diamond) core peptides during the
time course. Lines represent fits based on the optimized kinetic
parameters for the respective peptides. (B) Contour plots of the kinetic
parameters for the respective core peptides (same color scheme as in
(A)), where kmax = k1 for H2A, H2B, H3 and H4, and k2 for H1.4. The limits
of the contour plots are defined by z(k) × (1+2/5 × F0.05(2,5)) for all the
histone peptides except the H1.4 peptide, where the limit is defined by z
(k) × (1+3/11 × F0.05(3,11)) because of the additional lysine on the H1.4
peptide.

Additional file 7: Figure S6: Progressive modifications and turnover.
Turnover modeling (colored lines) of the relative distribution of the fully
labeled unmodified (H3K18un, blue circle), monoacetylated (H3K18/
K23ac1, green circle) and diacetylated (H3K18ac1K23ac1, red circle) H3
18-26 peptides across the labeling time course. Note the increasingly
faster accumulation of the fully labeled peptides (increasingly leftward
shift) as acetylation increases.

Additional file 8: Figure S7: Confidence regions for parameter
estimates. For each pair of estimated rate constants, we compared
confidence regions using the F-test, which is presented below, where k
is the vector containing the rate constants (that is, k0, k1,..., kN), k̂ is the
vector of estimates for these rate constants as determined by solving the
regression problem, z(k) is the value of the objective function for the
regression problem (that is, the sum of the squared differences between
the predicted and actual relative abundances), and Fp n p, −

a is the upper
a critical value for the F distribution for p parameters and n data points.

Thus, the corresponding confidence region for a given estimate k̂ is
the union of all k values that satisfy equation 1.
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