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Abstract

Toll-like receptors (TLRs) that recognize pathogen associated molecular patterns and chemoattractant receptors (CKRs) that
orchestrate leukocyte migration to infected tissue are two arms of host innate immunity. Although TLR signaling induces
synthesis and secretion of proinflammatory cytokines and chemokines, which recruit leukocytes, many studies have
reported the paradoxical observation that TLR stimulation inhibits leukocyte chemotaxis in vitro and impairs their
recruitment to tissues during sepsis. There is consensus that physical loss of chemokine receptor (CKR) at the RNA or protein
level or receptor usage switching are the mechanisms underlying this effect. We show here that a brief (,15 min)
stimulation with LPS (lipopolysaccharide) at ,0.2 ng/ml inhibited chemotactic response from CCR2, CXCR4 and FPR
receptors in monocytes without downmodulation of receptors. A 3 min LPS pre-treatment abolished the polarized
accumulation of F-actin, integrins and PIP3 (phosphatidylinositol-3,4,5-trisphosphate) in response to chemokines in
monocytes, but not in polymorphonuclear neutrophils (PMNs). If chemoattractants were added before or simultaneously
with LPS, chemotactic polarization was preserved. LPS did not alter the initial G-protein signaling, or endocytosis kinetics of
agonist-occupied chemoattractant receptors (CKRs). The chemotaxis arrest did not result from downmodulation of
receptors or from inordinate increase in adhesion. LPS induced rapid p38 MAPK activation, global redistribution of activated
Rap1 (Ras-proximate-1 or Ras-related protein 1) GTPase and Rap1GEF (guanylate exchange factor) Epac1 (exchange proteins
activated by cyclic AMP) and disruption of intracellular gradient. Co-inhibition of p38 MAPK and Rap1 GTPase reversed the
LPS induced breakdown of chemotaxis suggesting that LPS effect requires the combined function of p38 MAPK and Rap1
GTPase.
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Introduction

Cells of myelomonocytic lineage constitute the first lines of

defense against pathogens. Of these, the short-lived, free-roaming

neutrophils are the primary sentinels that respond to intrinsic and

extrinsic chemical and environmental cues from the inflammatory

foci, and set up robust anti-microbial effector functions. Mono-

cytes and monocyte-derived macrophages subserve other functions

including, but not limited to phagocytosis, antigen presentation,

and initiation of acquired immunity.

Leukocytes are endowed with a diverse family of G-protein

coupled receptors (GPCRs) that sense chemoattractants and

regulate directed cell migration in the immune system [1]. During

chemotaxis, which is governed by spatially restricted integration of

diverse signaling pathways that lead to cell polarity [2], leukocytes

change rapidly from a roughly spherical to a polarized

morphology with distinct leading and trailing edges and F-actin

accumulation at the front [3].

Toll-like receptor (TLR) family members recognize microbial

products to usher in innate immune response and bridge the

innate and acquired immune response to pathogens Of the TLRs,

TLR4 forms hetero- and homo-dimers at the cell surface and is the

sole receptor for lipoplysaccharide (LPS). TLR signaling stimulates

various transcriptional pathways, which prime innate immune

cells against pathogens by facilitating pro-inflammatory cytokine

and chemokine secretion [4].

Both positive and negative effects of TLR ligands on neutrophil

chemotaxis have been documented. Besides being recognized as a

surrogate chemoattractant by neutrophils [5]; LPS treatment

enhanced neutrophil chemotaxis through increased expression

(and secretion) of chemokines and cognate receptors [6]; induction

of MMP-8 cleavage of LIX chemokine to enhance CXCR2

binding [7]; or downregulation of GRK2 and GRK5 (G protein-

coupled receptor kinase 2 or 5) mRNAs thus decreasing CXCR2

desensitization [8]. In contrast, septic neutrophils or control cells

treated with cytokines plus LPS or LTA were impaired for

chemotaxis through enhanced GRK2 and GRK5 expression [9]

or down-modulation of CXCR1/2 [10]. LPS also inhibited

migration towards endogenous chemokines through p38 MAPK

and concomitant inhibition of PI3K (phosphatidylinositol-3-

phosphate kinase) [11].
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TLR signaling also downregulates CKRs on monocytes. LPS at

100 ng/ml for 1 h decreased the steady state levels of CCR2 and to

a lesser extent, CCR1 and CCR5 mRNA [12,13] and promoted

tyrosine kinase mediated serine protease degradation of CCR2 [14];

LPS at 10 mg/ml enhanced chemokine secretion, which downreg-

ulated cognate receptors CCR1 and CCR2 through autocrine

pathway [15]; 20 hr treatment with Pam3CSK4 at 50 ng/ml

induced selective reduction in chemokine receptor transcript levels

[16]; while treatment with LTA at 10 mg/ml for 1 h downregulated

CCR1, 2 and 5 on human monocytes by recruiting the endocytic

machinery of agonist mediated downmodulation [17].

LPS at 1 mg/ml increased adherence of THP-1 monocytes

through PI3-K mediated LFA-1 (leukocyte function-associated

antigen-1 or integrin aLb2) activation [18] or by Rap1 GTPase

regulated Mac-1 (macrophage-1 antigen or integrin aMb2)

activation [19]; or by actin reorganization by phosphorylated

tyrosine kinase, Pyk2 and paxillin [20]. More recently it was shown

that while LPS at 1 mg/ml for 15 min increased integrin activation

and matrix adhesion and a corresponding decrease in TEM under

static conditions, it did not alter monocyte adhesion or migration

under conditions of physiological flow [21].

As extensive and varied as the above observations are, they

represent results of TLR signaling at high ligand inputs over

prolonged periods when the full gamut of TLR signaling is in play.

Here, we have evaluated the effects of short-term (15 min)

treatment of pro-inflammatory leukocytes with limiting amounts

of TLR agonists. We show that LPS (2 ng/ml), induced immediate

cell spreading and chemotactic arrest in primary human monocytes,

but not in PMNs and myelomonocytic cell line U-937. Chemotactic

arrest resulted from rapid global induction of PIP3 production,

which primed p38 MAPK and Rap1 signaling. These events led to

symmetric LFA-1 and Mac-1 activation and global F-actin

distribution, both of which combined to increase adhesion and

inhibit chemotaxis. Combined inhibiton of p38 MAPK and Rap1

GTPase restored chemotaxis in LPS treated cells.

Results

LPS and other TLR2/4 ligands induced cell spreading and
inhibited chemotactic polarization and migration of
primary human monocytes

LPS and other TLR ligands caused severe inhibition of

chemotactic potential of monocytes towards CCL2, CXCL12

(Figure 1 A) or fMLF (not shown) in the Trans-well assay. To

determine if this characteristic was limited to some TLR ligands,

we tested monocyte chemotaxis after treatment with TLR4

specific LPS, TLR1/2 heterodimer ligand MALP2 (macrophage-

activating lipopeptide-2), TLR3 targeting poly I:C, TLR2/6

specific tripalmitoylated lipopeptide, Pam3CSK4; TLR5 ligand

flagellin, poly(U) that binds TLR7 or 8, TLR9 ligand CpG ODN

(oligo-deoxynucleotide), lipid A (TLR4) and a NOD2 (nucleotide-

binding oligomerization domain) ligand, muramyl dipeptide.

Chemotactic inhibition was observed only with ligands for TLRs

at the cell surface like LPS, MALP2, Pam3CSK4 and to a less

extent flagellin (Figure 1 A).

Substantial inhibition of monocyte chemotaxis towards CCL2

or CXCL12 was observed with LPS around 0.2 ng/ml (Figure 1

B). A 3–10 min treatment with LPS or MALP2 inhibited

monocyte chemotaxis towards CCL2, CXCL12 or fMLF. While

the inhibitory effect of a 3 min LPS treatment was irreversible, a

longer exposure with MALP2 (10–30 min) was necessary to induce

a recalcitrant state (Figure S1). Preincubation with TLR2 or TLR4

antibodies prevented chemotactic inhibition by cognate TLR

agonists (Figure 1 C).

Within 2 min of addition of 20 nM CCL2 or CXL12,

monocytes displayed polarization and assembly of F-actin

polymers at the leading edge. However, a 15 min LPS

pretreatment abolished this response; instead the cells acquired

flattened morphology with circumferential distribution of F-actin

(Figure 1 D, Control vs. LPS). To evaluate the immediate effects of

TLR agonists, we adopted the cell polarization assay to examine

the time course of chemotactic polarization. LPS, MALP-2 and

Pam3CSK4 induced cell spreading with circumferential F-actin

within 3–10 min (Figure 1 E).

To evaluate the primacy of LPS induced arrest over chemokine

induced polarization, and vice versa, we treated monocytes with LPS

either simultaneously with or shortly after the chemokine stimulation.

As illustrated by Figure 1 F (top row), human monocyte polarized

within 2 min after CCL2 addition, slowly decaying to ground state

by 16 min. Adding LPS at the same time as CCL2 did not impair

this polarization (Figure 1F, bottom row). However, adding LPS

3 min prior to CCL2 inhibited polarization (Figure 1F, middle row).

Preincubation with TLR2 or TLR4 antibodies prevented chemo-

tactic inhibition by cognate TLR agonists (not shown).

Neutrophil polarization or chemotaxis was not inhibited
by short-term LPS treatment

We compared the LPS effect on polarization of PMNs vs.

monocytes towards their respective chemokines, CXCL8 or

CCL2. Persistent F-actin polarity and other cytoskeletal dynamics

in response to chemoattractants depend on polarized PI3K

activation leading to PIP3 accumulation at the leading edge.

LPS treated or untreated PMNs were stimulated with 20 nM

CXCL8 for 2 min, fixed and permeabilized and stained with

fluorescent phalloidin and anti-PIP3 mAb. CXCL8 induced

marked F-actin polarization with PIP3 at the leading edge whether

or not PMNs were treated with LPS (Figure 2 A). However, this

was not the case for LPS treated monocytes, which lost CCL2

induced F-actin and PIP3 polarization at the leading edge.

LPS at 0.02 pg/ml induced a mild inhibition of neutrophil

migration towards CXCL8, but there was no dose (LPS 0.02 pg–

0.2 mg/ml) dependent decrease in chemotaxis (Figure 2 B).

Neutrophils exposed to different TLR ligands at 20 ng/ml or less

for ,20 min were not significantly inhibited for migration towards

fMLF or CXCL8 other than the potent inhibitory effect of MALP-

2 (data not shown). Consistent with a previous report [10], longer

(1–2 h) LPS treatment at .200 ng/ml inhibited neutrohil

chemotaxis significantly (not shown), probably resulting from

down-modulation of chemokine receptor CXCR1/2 [10]. Che-

motaxis of human myelomonocytic cell line U937 towards CCL2

was also not significantly inhibited by LPS treatment over a range

of 2–200 ng/ml (Figure 2 C).

LPS treatment did not alter the steady state levels of
CKRs, their G-protein signaling potential or enhance
endocytosis of agonist occupied receptors

Inhibition of chemotaxis by LPS treatment might reflect

downregulation or degradation of CKRs or their respective

mRNAs. If TLR stimulated cells secreted chemokines, they might

desensitize cognate receptors in an autocrine manner. However,

this was unlikely since pro-inflammatory cyto- and chemokine

secretion occurred only after .2 h treatment with various TLR

ligands including LPS at 100 ng/ml or more (Figure S2 A and B).

Consistent with this observation, there was no loss in the steady-

state levels of many different immune cell receptors under the

limited LPS treatment conditions used here (Figure 3 A).

We inquired whether LPS treatment compromised chemoat-

tractant signaling or accelerated endocytosis of agonist occupied

TLR Signaling on Monocyte Chemotaxis
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receptors. We examined the earliest step(s) in GPCR signaling,

namely Gbc dissociation from the agonist occupied receptor. Gbc
dissociation was measured indirectly by monitoring intracellular

Ca++ flux from ER stores mediated by IP3 from PIP2 hydrolysis by

Gbc activated PLC-b. 26106 monocytes were preloaded with the

fluorescent Ca++ indicator FURA-2 and then treated with LPS or

not. We compared the agonist dose response profiles of Ca++ flux

in control and LPS treated cells after sequential stimulation with

CCL2 and CXCL12. LPS treated monocytes did not exhibit any

differences in the kinetics or the magnitude of calcium flux

(Figure 3B), with the exception of one donor whose monocytes

were attenuated by LPS for calcium flux from CXCR4 by 40% at

the lowest (10 nM) CXCL12 concentration.

LPS treatment has been demonstrated to modulate the cell

surface levels of many receptors through facilitated endocytosis by

direct binding [17], enhanced constitutive endocytosis or recruit-

ing alternative endogenous agonist(s). To obtain a quantitative

measure of receptor clearance in the control vs. LPS treated cells,

we compared the dose-response and rate curves of agonist-

mediated receptor internalization from the LPS vs. untreated

monocytes. LPS treatment inhibited the magnitude of CCR2 and

CXCR4 internalization at the higher concentrations of chemo-

kine. As illustrated in Figure S3 B, the EC50 was 3–4 fold higher

and t1/2 values two fold more in LPS treated cells for the two

agonist:receptor combinations.

LPS induced the phosphorylation of p38 MAPK and p44/
42 ERK (extracellular-signal-regulated kinase), but
inhibition of these kinases alone did not reverse
chemotaxis arrest by LPS

Since many downstream signaling events of TLR stimulation

have been attributed to MAPK activation [4], we evaluated the

Figure 1. LPS treated human monocytes displayed flattened morphology and are inhibited for chemotaxis. A) Relative chemotactic
inhibition by different TLR ligands. Primary human monocytes were treated with the indicated TLR ligands exactly as described under Methods and
allowed to migrate towards 20 nM CCL2 or CXCL12 in the Trans-well chamber. Data are plotted as histograms with error bars (n = 3; **, p,0.03; ***,
p,0.01). B) LPS dose response of chemotactic inhibition of monocytes. Monocytes (56105) were pretreated for 15 min with the various
concentrations of LPS, washed 3 X and placed in the upper wells of 5.0 mm Trans-well and allowed to migrate towards 20 nM CCL2 or CXCL12 in the
bottom wells. Relative fraction (%) of input cells that migrated to the bottom well is plotted in the histogram with error bar (n = 3; *, p,0.03, **,
p,0.04). C) Chemotaxis of monocytes towards CCL2, CXCL12 or fMLF after preincubation with TLR2, TLR4 ligands in the presence of TLR2, TLR4
antibodies or isotype IgG control. Relative fraction (%) of migrated cells is plotted in the histogram with error bars. D) LPS pretreatment abolished
chemokine induced F-actin polarizarion. Fresh monocytes on cover slips were treated with or without LPS (2 ng/ml) for 15 min at 37uC prior to 2 min
stimulation with 20 nM CCL2 or CXCL12. Cells were fixed and stained with Alexa-488 conjugated phalloidin and examined by fluorescent microscopy
and interference optics (DIC). E) Time course of morphological change in monocytes induced by various TLR ligands (LPS, 2 ng/ml; MALP-2, 200 ng/
ml; and Pam3CSK4, 50 ng/ml). Cells were fixed and stained for F-actin as above. F) F-actin polarization was preserved in monocytes stimulated with
20 nM CCL2 prior to (top row) or simultaneously (bottom row) with LPS at 2 ng/ml. The middle row shows results with cells pretreated with LPS for
3 min before CCL2. Figures in D, E and F represent three independent experiments using monocytes from different donors.
doi:10.1371/journal.pone.0030404.g001
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Figure 2. Differential effects of LPS on neutrophil and monocyte chemotaxis. A) LPS pre-treatment affects the polarization of CCL2 treated
monocytes but not CXCL8 treated neutrophils. Human monocytes and neutrophils were plated on cover slips and treated with or without LPS (2 ng/
ml) for 10 min at 37uC. After washing, cells were treated with CXCL8 (PMNs) or CCL2 (MONOCYTES) at 20 nM at 37uC for 2 min. Cells were then fixed,
permeabilized and stained with Alexa568- phalloidin and FITC mAb against PIP3 and imaged by fluorescence and DIC microscopy. B) LPS did not
significantly inhibit neutrophil chemotaxis. Human neutrophils (16106 cells in triplicate) were treated with various concentrations of LPS in 100 ml
RPMI with 5% FBS for 10 min at 37uC. After washing, cells were suspended in 100 ml RPMI with 1% FBS and added to the upper chambers of 5.0 mm
Trans-well (Corning Inc.), with or without 20 nm CXCL8 or fMLF (not shown) in the bottom well, and incubated for 2 h at 37uC. Migrated cells were
collected and counted, as described under Methods. Fraction (%) of migrated input cells are presented in the histograms (with error bars), n = 3. C)
LPS treatment at 20 ng/ml induced little or no inhibition of of U937 myelmonocytic cell chemotaxis towards 20 nM CCL2, n = 3.
doi:10.1371/journal.pone.0030404.g002
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phosphorylation status of p44/42 ERK and p38 MAPK during

LPS treatment, using flow cytometry and immunoblotting.

Phosphorylated 44/42 ERK increased significantly after CXCL12

treatment, reaching a maximum at 2 min, then decaying slowly

after 5 min of continuous agonist occupancy (Figure 4 A1). By

comparison, p44/42 ERK reached a maximum after 30 min LPS

treatment, slowly decaying after 30 min (Figure 4 A2 and A3).,

Phosphorylation of p38 MAPK followed the same temporal profile

as that of p44/42K after CXCL12 treatment (Figure 4 B1). p38

MAPK was phosphorylated after 15 min of LPS treatment, and

maintained similar levels of activation up to 100 min after LPS

(Figure 4 B2 and B3). Although p38 MAPK phosphorylation by

immunoblotting was observed consistently only after 15 min LPS

treatment, phosphorylated p38 MAPK immunoreactivity was

detected within 5–10 min by flow cytometry (not shown). Since

the temporal profile of p38K activation corresponded with that of

chemotaxis arrest, we used small molecular weight inhibitors,

PD98059 and SB203580 to block activation of p44/42 ERK and

p38 MAPK respectively and evaluated monocyte adhesion,

chemotactic polarization and migration. Neither kinase inhibitor

significantly reversed LPS mediated inhibition of chemotactic

polarization or migration towards CCL2 as shown later in the

manuscript.

LPS pretreatment prevented the polarized distribution of
activated LFA-1 and Mac-1 in chemokine stimulated
monocytes

Among the integrins, LFA-1 and Mac-1, which share b2

integrin, respectively with aL and aM subunits play important

roles in immune cell migration. Integrin activation exposes

hidden epitope(s), and antibodies against these epitope(s) are used

as markers of integrin activation Preincubating monocytes with

antibodies against (fully extended conformation) LFA-1 (CD11a)

or Mac-1 (CD11b) partially inhibited their chemotaxis towards

CCL2, CXCL12 or fMLF. However, the blocking antibody L130

against b2 integrin induced an almost complete chemotactic

arrest (Figure S4 A). Monocytes treated for 2 min with 20 nM

CCL2 or CXCL12 localized activated LFA-1 (Figure 5 A, left)

and Mac-1 (Figure 5 A, right) to the leading edge enmeshed

within F-actin fibrils whereas in cells pretreated with LPS for

20 min, activated LFA-1, Mac-1 and F-actin were distributed

globally (Figure 5 A, bottom panels). We inquired whether LPS

induced polarization inhibition could be overcome by higher

chemokine levels. We did polarization assays at lower or higher

chemokine concentrations. With primary monocytes, optimal

polarization was observed after 20 nM CCL2 or CXCL12 for

Figure 3. Short term stimulation of monocytes with TLR2 or TLR4 ligand did not significantly modulate cell surface expression of
selected immune cell receptors and LPS treatment did not alter the G-protein signaling potential (as measured by intracellular Ca2+

flux) to CXCL12 or CCL2 treatment(s). A) Monocytes were treated with LPS (2 ng/ml) or Pam3CSK4 (50 ng/ml) for 15 min before staining with
fluorescent mAbs against the indicated immune cell receptors. Receptor densities were measured by flow cytometry and the MFVs in stimulated cells
are expressed relative (%) to untreated cells as histograms (with error bars, n = 3). B) Agonist dose response of intracellular Ca2+ flux to sequential
stimulation with CXCL12 and CCL2 in monocytes. C) Ca2+ flux profiles of LPS (2 ng/ml, for 15 min after calcium dye loading) treated (interrupted line)
and untreated monocytes to sequential stimulation with increasing concentrations of CXCL12 and CCL2. Plots represent results using monocytes
from four donors.
doi:10.1371/journal.pone.0030404.g003
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2 min. At less than 5 nM, F-actin and integrin polarizations were

quite modest. 100 nM or higher chemokine levels induced rapid

desensitization and signaling decay. LPS pretreatment for 10–

15 min abolished integrin polarization induced over a 5–50 nM

range of chemokine levels.

Human leukocytes contain a large pool of free b2 integrin,

CD18 [22]. A monoclonal antibody, MEM-148, which recognizes

free form of b2 integrin induces a high-affinity conformation in the

native LFA-1, exposing and binding to its cognate epitope [23].

Mg++/EDTA or low pH (5.5–6.5) treatment also exposes the same

epitope. Within 15 min of TLR agonist treatment(s), there was a

50% increase in MEM-148 binding, reaching 2.5–3 fold times

basal levels after 2–3 h. Among the different TLR ligands, flagellin

was the least effective in inducing this conformational change,

while ligands for intracellular TLRs (i.e. pI:C, CpG, poly(U) and

muramyl peptide) were ineffectual (Figure S4 B).

MEM-148 also localized to the leading edge of CCL2 or

CXCL12 treated monocytes (Figure 5 B). Whether the polarized

MEM-18 staining reflected free CD18 or CD18 dissociated from

quiescent or activated LFA-1 or Mac-1 heterodimers, LPS blocked

b2 integrin localization at the leading edge of CCL2 or CXCL12

treated cells (Figure 5 B). In contrast, CCL2 or CXCL12

treatments did not induce polarized distribution of b1 integrins,

visualized by staining with N29 and 21C8 mAbs against b1

integrin heterodimers (data not shown).

We evaluated proximity interaction(s) between activated b2

integrin and the LPS receptor, TLR4 by live FRET microscopy.

We measured FRET efficiency on the basis of the increase in the

donor fluorescence upon photobleaching the acceptor fluoro-

phore. There was a significant increase in the FRET efficiency

between Alexa-568 conjugated MEM-148 mAb recognizing

activated b2 integrin (CD18) and Alexa-488 mAb against TLR4

Figure 4. LPS induced phosphorylation of MAPKs. p44/42 ERK (A1–A3) and p38 MAPK (B1–B3) were phosphorylated after CXCL12 (20 nM)
stimulation or LPS (2 ng/ml) treatment. Human monocytes (26106 cells for each time point) treated with or without CXCL12 were collected at 1.5, 2,
3 and 5 min. Monocytes (56106 for each time point) treated with or without LPS were collected 0, 15, 30, 60 and 100 min. Half of the cells treated
with or without LPS and all the cells treated with or without CXCL12 were extracted with RIPA buffer and proteins were resolved by 4–20% gradient
SDS-PAGE. Phospho-ERK and total ERKs were detected by immunoblotting with phospho-ERK specific mAb, E10 and rabbit antibody against total
ERK (A1 and A2). Reacting with anti phospho-p38 MAPK (T180/Y182) mAb and rabbit antibody against total p38 detected phospho-p38 and total
p38 respectively (B1 and B2). Immunoblots are representative of results with monocytes from 3 donors. The remaining half of the cells treated with
or without were stained with a mixture of Alexa-647 E10 mAb against phospho ERK (T202/Y204) and Alexa-488 28B10 mAb against phospho-p38
MAPK (T180/Y182) and analyzed by flow cytometry. Ratios of MFVs for the respective phosho-MAPKs in LPS treated vs. untreated cells are plotted as
histograms (n = 5, * p,0.03, ** p,0.01). The remaining cells were extracted with RIPA buffer and proteins resolved by 4–20% gradient SDS-PAGE.
Phospho-ERK and total ERKs were detected by immunoblotting with phospho-ERK specific mAb, E10 and rabbit antibody against total ERK. Reacting
with anti phospho-p38 MAPK (T180/Y182) mAb and rabbit antibody against total p38 detected phospho-p38 and total p38 respectively (A3 and B3)
Immunoblots are representative of results with monocytes from 5 donors.
doi:10.1371/journal.pone.0030404.g004
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Figure 5. LPS treatment induced global activation of LFA-1 and Mac-1 in human monocytes, which was not reversed by chemokine
stimulation. A) Human monocytes on cover slips were incubated with (LPS) or without (CON) LPS at 2 ng/ml for 15 min at 37uC. Cells were then
washed and treated with CCL2 or CXCL12 (20 nM) for 2 min at 37uC. Cells were fixed, permeablized and stained with phalloidin-568 and murine
mAbs against ß2 integrin activation epitopes in LFA-1 (mAb24, left) or Mac-1 (CBRM1/5, right) followed by Alexa-488 conjugated anti-mouse IgG. B)
Cells treated as described above were stained with phalloidin-568 and mAb MEM148 (followed by Alexa-488 conjugated anti-mouse IgG), which
recognizes ß2 integrin activation epitope, irrespective of the heteromeric context. Individual channels corresponding to phalloidin and integrin
staining and composite 2-color images are shown along with DIC images. C) Acceptor photobleaching FRET assay of proximity interaction between
TLR4 and integrins. Human monocytes on cover slips treated with or without LPS (2 ng/ml) for 15 min were fixed and stained with biotin conjugated
anti-TLR4 HTA-125 mAb (TLR4) and MEM148 mAb against a b2-integrin activation epitope (CD18) or CBRM1/5 mAb against activated Mac-1 (CD11b),
followed by staining with Alexa-488 steptavidin and Alexa-568 goat anti-mouse IgG. FRET was performed in a Leica TCS SP5 confocal microscope.
Photo-bleaching was performed with high-intensity laser scanning at 514 nm at 100% power output in defined ROIs (regions of interest). Pre-
bleaching and post-bleaching images were acquired, and the average fluorescence intensity of both donor (Alexa-488) and acceptors (Alexa-568) in
the bleached ROIs were measured using the proprietary Leica acceptor photobleaching program. Ef = (Ipost2Ipre)/Ipre calculated FRET efficiency (Ef),
where I corresponds to average intensity of donor (Alexa-488). FRET values averaged from ,6 ROIs in each of the 6–10 cells from each of 3 separate
experiments with different donor cells are plotted in the graph with the mean and standard error drawn as box and whiskers (n = 3, *** p,0.01).
doi:10.1371/journal.pone.0030404.g005
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in LPS treated cells, suggesting intimate molecular association

between these two proteins. Interaction between activated Mac-1

heterodimer, visualized by CBRM1/5 mAb (CD11b) and TLR4

was not altered by LPS treatment (Figure 5 C). Collectively, these

findings suggested that b2 integrin is activated globally at or very

close to activated TLR4 sites.

Global integrin activation would be expected to increase cllular

adhesion to the substratum and thus counter polarizing chemo-

tactic forces [18,21]. To address this, we performed a HUVEC

(human umbilical vein endothelial cells) cell adhesion assay. We

treated monocytes with LPS for 3, 10, 20, 30, 60 min, or 2 h.

Alternatively cells were treated with LPS for 30 min, followed by a

wash and incubation in LPS free medium for 3, 10, or 120 min.

Monocytes were loaded with Calcein A and allowed to adhere to

HUVEC monolayer for 30 min. Unbound cells were washed

before analysis using Flexstation photometer. As shown in Figure

S4 C, increase in the adhesive potential of LPS treated monocytes

was inconsistent until after 120 min treatment. However, if the

monocytes were rested for 10 min after 30 min LPS treatment

resulted in more consistent increase in monocyte adhesion (Figure

S4 C). Under our LPS treatment conditions, only the inside-out

signaling that leads to partial (and reversible) integrin activation

may be operative and may not be sufficient to sustain strong

adhesions. In contrast, leukocyte adhesion to inflamed vascular

endothelium with chemokines immobilized on the cell surface

GAGs (glycoso-aminoglycan) [24] or to LPS treated HUVECs

over-expressing ICAM-1 (inter-cellular adhesion molecule) and

VCAM-1 (vascular cellular adhesion molecule) [21,25,26] are

driven by bidirectional signaling that induces fully extended

integrin conformations with high-affinity and increased avidity.

The inconsistent increase in the adhesion of LPS treated

monocytes to untreated HUVECs that we observed may not be

sufficient to arrest chemotaxis in the first 15 min of LPS treatment.

Rap1 is markedly activated and distributed globally in
LPS treated monocytes

Integrin activation by chemoattractants and inflammatory

mediators is mediated by inside out signaling through the small

GTPase, Rap1 [19,27]. Rap1 was activated within 2 min with

CCL2 or CXCL12 stimulation (Figure 6 A, lanes 2–3) or after

15 min treatment with LPS alone (Figure 6 A, lane 4), but CCL2 or

CXCL12 treatments following LPS did not further enhance Rap1

activation (Figure 6 A, lanes 5–6). Rap-1 levels were not significantly

altered during a 15 min incubation with increasing amounts (2–

100 ng/ml) of LPS (Figure 6 B). We then examined the sub-cellular

distribution of activated Rap1 by reacting with Ral GDS-RBD (Ral

guanine nucleotide dissociation stimulator Ras binding domain)

GST (glutathione S-transferase) fusion protein followed by FITC-

conjugated anti-GST antibody. There was significant sequestration

of activated Rap1 at the leading edge of cells polarized by CCL2

(Figure 6 C). In cells pretreated with LPS for 15 min, activated

Rap1 was globally distributed at the plasma membrane (Figure 6 C).

Total Rap1 was distributed all along the peripheral membranes in

CCL2 treated cells and in all membranes and focal adhesions in the

LPS treated cells (Figure S5 A).

Five different GEFs, namely CalDAG (Ca++ and diacyl-

glycerol), PDZ GEF1, PDZ GEF2, Epac1 and C3G [28] activate

Rap1 under different conditions and in various cell types. Among

these GEFs, we found that Epac1 exhibited leading-edge co-

localization with F-actin polymers in monocytes polarized by

chemoattractant treatment(s); LPS pretreatment induced global

recruitment of Epac1 (Figure 6 D).

Since both the release of Epac1 from auto-inhibition and its

recruitment to plasma membrane is critically dependent on cAMP

(cyclic AMP adenosine (39-59) cyclic monophosphate) [29], we

inquired whether LPS induced Rap-1 activation followed this

pathway. While LPS treatment enhanced cAMP synthesis slightly,

this occurred only after 30 min (data not shown). We therefore

inquired whether LPS effects could be simulated by treatment with

the cAMP analog, 8-(4-chloro-phenylthio)-2-O-methyladenosine-3,5-

cyclic monophosphate (8CPT-2Me-cAMP) that specifically targets

Epac and not PKA [30] and has been shown to induce integrin

activation in U937 cells [31]. While 8CPT-2Me-cAMP induced

monocyte cell spreading (Fig S5 B) and global Epac1 recruitment, it

did not inhibit chemotaxis in primary monocytes (data not shown).

Simultaneous inhibition of p38 MAPK and Rap1 reversed
the LPS induced chemotaxis arrest

Rap1 independent pathways may also activate integrins [32].

However since LPS induced marked Rap1 activation, we inquired

whether knocking down membrane recruitment and activation of

Rap by a specific geranyl transferase inhibitor, GGTI-298 would

reverse the chemotaxis arrest by LPS. While GGTI-298 drastically

reduced LPS mediated Rap1 activation (Figure 7 C), it did not

reverse the cell spreading or the loss of F-actin polarization or

trans-well chemotaxis in response to CCL2 in LPS treated cells

(Figure 7 A and B).

LPS-induced cell spreading probably reflects unpolarized b2-

integrin activation. A linear pathway starting with TLR4/MD1

MyD88 (myeloid differentiation primary response gene 88), IRAK

(interleukin-1 receptor-associated kinase), p38 and Rap1 regulates

LPS induced b2-integrin activation [19]. Although both MAPK

(Fig. 4 A and B) and Rap1 (Figure 6 A) were activated upon LPS

simulation, inhibiting either MAPK or Rap1 alone did not reverse

the chemotaxis arrest in LPS treated cells (Figure 7 A and B). LPS

mediated cell spreading and chemotaxis arrest was reversed only

when both Rap1 and p38 MAPK were inhibited with a

combination of GGTI-298 and SB203580. In contrast, co-

inhibition of Rap1 and ERK (PD98059) was not effective

(Figure 7 A and B). We evaluated Rap-1 activation in response

to some of these pharmacologic treatments. LPS induced Rap1

activation was inhibited in monocytes pretreated with GGTI alone

or with GGTI and p38 MAPK inhibitor, SB203580, but not with

SB203580 alone (Figure 7 C). However, combined use of GGTI-

298 and SB203580 or PD98059 decreased both chemotactic

polarization and migration potential of even the non-LPS treated

cells by ,50%, suggesting that a synergism between MAPK and

Rap1 signaling is required for optimal chemotactic response.

LPS induced rapid global accumulation of PIP3 at the
monocyte plasma membrane

Consistent with the previous reports [18,33], we observed that

LPS treatment increased PIP3 production in monocytes within

3 minutes, which decayed rapidly to basal levels by 5 min (Figure S5

C). In LPS treated cells PIP3 was distributed globally at the plasma

membrane, unlike CCL2 treated cells where PIP3 was localized to

the leading edge in the absence of LPS pretreatment (Figure 2A,

right). LPS pretreatment abolished the F-actin anisotropy in

response to CCL2 (Figure 7 D, right). While PI3K inhibitors

LY2940002 and wortmannin did not significantly alter chemotactic

polarization in untreated cells (Figure 7 D, left), both inhibitors

reversed the LPS induced cell spreading and partially restored

chemotactic polarization in response to CCL2 (Figure 7 D, right).

Discussion

Through multiple criteria, we have shown that LPS and other

TLR2/4 ligands induce a rapid arrest of chemotaxis towards
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Figure 6. Whereas either chemokine or LPS treatment induced Rap-1 activation in monocytes, LPS treatment disrupted the leading
edge localization of activated Rap1 GTPase and Epac-1, the Rap1 GEF. A) 107 monocytes were treated with or without LPS (2 ng/ml) for
15 min followed by 2 min treatment with 20 nM CCL2 or CXCL12. Cytoplasmic extracts were prepared and activated (GTP+) Rap1 was isolated using
a commercial pull-down assay followed by SDS/PAGE and imunoblotting with anti-Rap1 mAb (upper). Cytoplasmic aliquots were analyzed directly for
total cellular Rap1 (lower). B) Rap-1 levels were not significantly altered during a 15 min incubation with increasing amounts (2–100 ng/ml) of LPS.
Cytoplasmic aliquots were analyzed directly for total cellular Rap1. The relative pixel values for Rap1 represent averaged results from using monocyte
from three donors. C) LPS treatment abolished polarization of activated Rap1. Human monocytes on cover slips treated with or without LPS (2 ng/ml)
for 15 min at 37uC were stimulated with 20 nM CCL2 for 2 min. Cells were fixed, permeabilized and incubated with Ral-GDS RBD GST (Thermo
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CCL2, CXCL12 and fMLF in primary human monocytes by

inducing p38 MAPK activation and preventing polarized

activation Rap1. This effect was obvious within 15 min of LPS

treatment at LPS levels far lower than required for induction of

pro-inflammatory cytokine expression. If monocytes were stimu-

lated with CCL2 or CXCL12 before or simultaneously with LPS,

chemoattractant signaling is predominant. However, given the

protracted nature of TLR signaling and since cells are desensitized

rapidly for chemoattractants, cell spreading and chemotactic arrest

are the eventual outcome with concomitant chemokine and LPS

treatments.

Previous reports have shown that TLR agonists inhibit

monocyte chemotaxis through downregulation or degradation

CCR2 or other CKRs and/or their mRNAs [12,13,14,15,16] or

by endocytic clearance of receptors from the plasma membrane

[17]. Although we observed loss of CCR2 and CXCR4 after

prolonged (.1 h) LPS, under more limited treatment conditions,

there was no reduction in their steady-state levels or G-protein

signaling potential. Furthermore, limited LPS treatment did not

enhance, but induced a modest decrease in the endocytosis of

agonist occupied CKRs.

Chemokines trigger integrin-dependent leukocyte arrest on the

vascular endothelium. Integrin activation harbingers a multi-step

adhesion cascade that orchestrates trans-endothelial migration of

inflammatory cells [34,35]. During trans-endothelial migration

and subsequent chemotaxis through the parenchyma, leukocytes

must execute a delicate balance of adhesion/de-adhesion cycles

[34,35,36,37], which is disrupted during pathogen invasion across

the vascular barrier.

Through inappropriate and persistent integrin activation LPS

induces cell spreading and adhesion, which results in chemotactic

arrest [21]. Monocyte adhesion to HUVECs requires LPS

treatment at 10 ng/ml for at least 30 min [21,38], but this was

insufficient to block chemotaxis during the first 3–10 min. We

have shown that within 2 min of CCL2 or CXCL12 addition,

activated integrins are polarized at the leading edge. While LPS

and other TLR agonists induced substantial global activation of

integrins after 30 min, just 10 min LPS pretreatment was sufficient

to subvert the polarized activation of integrin by chemoattrac-

tant(s).

Inside out signaling through the small GTPase, Rap1 regulates

integrin activation by chemoattractants and other inflammatory

mediators [19,27,39]. Subsequent signals from activated Rap1 are

transduced to RAP1 effector to RapL [40,41], and then to LFA

through SKAP1 [42] and/or Mst1 kinase [43]. In the case of

Rap1 activation by LPS or other extracellular stimuli, the Rap1

signal is transduced through distinct effector(s) like RIAM (Rap1–

GTP-interacting adapter molecule), KRIT-1/CCM (Krev-1/

Rap1 interaction trapped 1/cerebral cavernous malformation)

and AF-6/Cno (ALL1-fused gene from chromosome 6 protein)

proteins, which can assemble adhesion complexes that are

distributed uniformly [28].

Of the five different Rap1 GEFs, we found that Epac1 was

recruited to the leading edge in chemokine treated monocytes.

LPS pretreatment subverted this polarized distribution of Epac1.

In both the social ameba, Dictyostelium and leukocytes many

chemoattractants increase cAMP synthesis through activation of

adenylyl cyclase isoforms II, IV, VII and IX by dissociated Gbc

[44] and as such, cAMP synthesis was relatively enriched at the

leading edge of the polarized leukocyte. We found that LPS

treatment slightly enhanced cAMP synthesis (data not shown),

which may lead to global Epac1 recruitment.

Rap1 independent pathways also activate integrins [32]. For

instance, LPS at 1 mg/ml increased adherence of THP-1

monocytes to immobilized sICAM-1, through PI3K mediated

LFA-1 activation [18]; or through actin reorganization by

activated proline-rich tyrosine kinase 2 (Pyk2) and paxillin [20];

or through a signaling pathway via MyD88, IRAK, p38, and

Rap1 [19]. Consistent with these reports, we found that PI3K

inhibitors reversed LPS induced cell spreading and restored the

chemotactic polarization in response to CCL2.

However, PI3K inhibitors did not block the CCL2 mediated F-

actin polarization in monocytes. Of the multiple isoforms of PI3K,

denoted as Class Ia, Ib, II and III [45], only PI3Kd a Class Ia

member, and PI3Kc, the sole Ib enzyme, have central roles in

leukocyte chemotaxis [46,47,48]. PI3Kc is activated by the Gbc
subunits dissociated from the agonist bound GPCR [45], whereas

Class Ia enzyme(s) are activated by binding to phospho-tyrosine

motifs on receptors utilizing protein tyrosine kinases as their

proximal signal transduction element [49,50] as during TLR

signaling. General PI3K inhibitors, such as wortmannin or

LY294002 may not have knocked out the different PI3K isoforms

equally well. Alternatively, the failure of PI3K inhibitors may

reflect alternative regulation of chemotaxis by PLA2 and PLC

(phospholipase A2 and C) [51,52,53]. PI3K itself is regulated

through PIP2/PTEN by the PLC pathway, while PLA2 depends

on cytosolic Ca++, which is regulated by IP3 (and thus indirectly by

PLC), fatty acids (and thus partly by PLA2), and Ca++ uptake.

An intracellular signaling hierarchy regulates neutrophil

migration in opposing gradients of intermediate vs. end-stage

chemoattractants (i.e.CXCL8 vs. fMLF) that use PI3K or p38

MAPK pathways respectively [54,55]. Furthermore, LPS was

shown both in vitro and in vivo to be a p38 MAPK dependent

disrupter of neutrophil migration towards intermediate chemoat-

tractants [11], however the corresponding mechanisms are not as

well defined for monocytes. PI3K/Akt pathway has been reported

to be able to, in turn negatively regulate TLR signaling pathways

at different steps including MAPK cascades (JNK, p38, ERK) and

NF-kB signaling network [56,57].

We confirmed the previous leads showing that LPS induced

modulation of monocyte and neutrophil chemotaxis was depen-

dent on p44/42 ERK and/or p38 MAPK signaling [11,54,58,59],

While small molecular weight inhibitors against MAPKs were

unsuccessful in reversing the LPS effect on monocytes, a partial

reversal of LPS effect was achieved monocytes through the

combined inhibition of Rap1 and p38 MAPK with the caveat that

chemotaxis of untreated cells was also decreased by these agents.

Integrin activation by chemoattractants and other inflammatory

mediators is mediated by inside out signaling through Rap1

[19,27,39]. Polarized Rap1 activation helps reinforce the leading

edge by providing focal nodes for integrin activation and F-actin

attachment. While global Rap1 activation in LPS treated cells

would subvert the nascent leading edge, leading to cell spreading,

inhibiting Rap1 alone may not be sufficient to reverse the LPS

effect through other p38 MAPK targets. Inhibiting both Rap1 and

p38 MAPK would be expected to have a cumulative suppressive

Scientific) for 30 min followed by staining with FITC conjugated anti-GST (BD FACS) and phalloidin-568. D) LPS treatment abolished polarization of
Rap1 GEF, Epac-1. Monocytes on cover slips treated as above were fixed, permeabilized and incubated with anti-Epac-1 followed by staining with
Alexa-488 conjugated anti-rabbit IgG and phalloidin-568. Individual channels corresponding to phalloidin and Rap1 and composite 2-color images
are shown along with DIC images. Data are representative of 3 experiments with human monocytes from 3 different donors.
doi:10.1371/journal.pone.0030404.g006
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effect on cell polarization and chemotactic potential. Since RAP1

and p38 MAPK activation constitute the earliest cellular response

to LPS treatment, inhibiting both of them eliminates LPS effect on

chemotactic polarization.

It was of interest that neutrophil polarization and chemotaxis

were unaffected by TLR ligands under conditions used for

monocytes. However, neutrophils were just as competent as

monocytes in setting up pro-inflammatory cytokine expression

after TLR stimulation. Neutrophils have a short lifespan and are

more proficient sentinels of pathogen invasion than monocytes. It

is therefore reasonable that they have a higher set point for

chemotactic arrest by LPS or other TLR ligands. Although they

Figure 7. Simultaneous inhibition of Rap1 and p38 MAPK or PI3K inhibition reversed LPS induced block of F-actin polarization and
chemotaxis in moncoytes. A) Monocytes in RPMI with 5% FBS were treated with 20 mM Rap1 inhibitor GGTI-298 (Calbiochem, EMD Biosci Corp),
10 mM 42/44ERK MAPK inhibitor PD98059 (Cell signaling), 10 mM p38 MAPK inhibitor SB203580 (Tocris Corp), 20 mM GGTI-298+10 mM PD98059 and
20 mM GGTI-298+10 mM SB203580, or DMSO control for 30 min at 37uC. Cells were plated on cover slips and treated with or without LPS (2 ng/ml) at
37uC for 15 min, followed by stimulation with 20 nM CCL2 for 2 min. Cells were fixed and stained with phalloidin-488, and images were collected
with Leica TCS SP5. B) 107 monocytes were treated with inhibitors as described above for 30 min followed by a 15 min incubation with or without
(control) LPS (2 ng/ml). ,0.56106 LPS treated or untreated cells in 100 ml of RPMI with 1% FBS were loaded in the upper Transwell chambers (Nunc
5.0 mm) challenged with or without 20 nM CCL2 in the bottom chambers, and incubated at 37uC CO2 incubator for 2 h. Chemotaxis was measured as
described under Methods. Migrated cells for control and LPS treatments after respective inhibitors are plotted pair wise in the histograms (with error
bars). n = 3, ***p,0.01,**p,0.04, *p,0.05. C) LPS induced Rap1 activation was inhibited in monocytes pretreated with GGTI-298 alone or with GGTI-
298 and p38 MAPK inhibitor, SB203580, but not with SB203580 alone. Activated (GTP+) Rap1 was extracted from cytoplasmic extracts using a
commercial pull-down kit followed by SDS/PAGE and imunoblotting with anti-Rap1 mAb. Numbers represent relative fraction (%) of Rapi that was
activated (n = 3). D) PI3K inhibitors reversed LPS induced block of F-actin polarization in monocytes stimulated with CCL2. Monocytes in 5%FBS/RPMI
were treated with 50 mM LY2940002, 1 mM wortmannin, or DMSO control for 30 min 37uC. Cells were plated on cover slips and treated with or
without LPS (2 ng/ml) at 37uC for 20 min, followed by 20 nM CCL2 for 2 min. Cells were fixed and stained with phalloidin-488, and images were
collected with Leica TCS SP5.
doi:10.1371/journal.pone.0030404.g007
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eventually succumb to LPS mediated arrest, they are endowed

with a robust PI3K/PTEN system [60,61,62] that preserves

chemotactic polarization under the more limited LPS treatment

conditions. Neutrophils are also relatively deficient in some key

Rap-1 activators such as Epac1, which is recruited to the plasma

membrane by cAMP [31]; instead they prefer CalDAG GEF,

which is recruited by products of PIP2 hydrolysis by Gbc activated

PLC-b [63]. If and when neutrophils reach the pathogen zone, the

high levels of PAMPs can initiate a robust TLR signaling leading

to chemotactic arrest and formation of neutrophil extracellular

traps (NETs) [64,65].

Blood monocytes are a heterogeneous population and in

humans three different populations have been identified on the

basis of CD14 and CD16 expression [66] and two major human

monocyte subsets, the CD14+CD162 and CD14loCD162 mono-

cytes are defined by CX3CR1 expression [67]. CD14+CD162

monocytes, which constitute about 90% of fresh blood monocytes

were arrested for chemotaxis by LPS treatment. On plating

overnight, CD14loCD162 and CD14+CD16+ species emerge,

which preserved LPS induced chemotaxis arrest (not shown) [55].

Monocytes represent a systemic reservoir of relatively immature

myeloid precursors, which differentiate to macrophages DCs

(dendritic cells) and other APCs depending upon the cytokine

environment [68,69,70]. The chemotactic arrest monocytes

experience upon entering the pathogen milieu is consistent with

their rear guard role against pathogen invasion, both by way of

enhanced phagocytosis (Figure S5 C) and antigen processing.

Exposure to low level LPS and other bacterial antigens may

influence monocyte differentiation potential into macrophsges or

DCs and thus modulate the induction of adaptive immune

responses to infection [71]. Stimulating monocytes simultaneously

with multiple TLR ligands as during natural infection may

enhance chemokine secretion, and thus overcome the temporary

inhibition of chemotaxis. By the same token, multiple bacterial

ligands may impose more lasting adhesion and chemotaxis

inhibition. However, the relative magnitudes of these phenotypes

can only be evaluated in sepsis or during massive experimentally

induced peritonitis. Our model is still valid for most natural (pre-

clinical) infections where neutrophils are active patrollers and

monocytes and DCs initiate the transition from innate to acquired

immunity.

Materials and Methods

Cells
Elutriated human monocytes of .98% purity (as judged by

CD14 receptor density) was from the Department of Transfusion

Medicine at the NIH Clinical Center. Human neutrophils were

purified from whole blood as described [72]. HUVECs and U937

cells were purchased from ATCC.

Biochemicals and Reagent Kits
Lipopolysacharide (LPS, from E.coli, serotype O55:B5 or R515

(Re)), lipid A (from E.coli, Serotype R515 (Re)), Macrophage

stimulatory lipopeptide 2 (MALP2), Flagellin, poly (I:C), poly U,

CpG OND, Pam3CSK4, Ac-muramyl-Ala-D-Glu-amide were

purchased from Alexis Biochemicals. Human CCL2, CXCL8,

CXCL12 and fMLF were purchased from Biosource; FURA-2

AM for calcium signaling and phalloidin-568 or phalloidin-488

from Invitrogen. Active Rap1, Rac1, CDC42, pull-down and

detection assay kits and Rap1 assay reagent (Ral GDS-RBD-GST)

were from Piercenet subsidiary of Thermo Scientific; human

cytokine test kits for use in the Luminex plate reader were from

Millipore; p38 kinase inhibitor, SB203580, ERK inhibitor,

PD98059; PI3K inhibitors, LY2940002 and wortmannin; and

Rap-1 specific geranyl-geranyl-transferase inhibitor, GGTI-298

were bought from Calbiochem, EMD Biosciences. 8CPT-2ME-

cAMP was from Tocris Corp.

Antibodies
Unconjugated or Alexa dye conjugated murine mAbs against

phospho-Akt (S473), phospho-p44/42 MAPK (T202/Y204) (clone

E10), phospho-p38 (T180/Y182) (clone 28B10) were from Cell

Signaling; unconjugated or biotinylated anti-PIP3 IgM mAb was

from Echelon Corp. Murine anti-CD11a, anti-CD11b, anti-CD18

(L130) mAbs were from BD scientific; unconjugated or Alexa dye

conjugated antibodies against CD4, CCR2A/2B, CCR3, CCR5,

CCR7, CXCR-1, 2, 3 and 4 were purchased from R&D systems,

MN or BD Biosciences, CA.; murine mAb, CMBR1/5 against

activated Mac-1 was from eBiosciences; N29 and 21C8 mAbs

against activated b1 integrin heterodimers and CBRM1/5 mAb

against activated b2 integrin in Mac-1and rabbit mAbs against

Rap1 and Epac1 were from Abcam. Murine mAb against

activated LFA-1 (mAb24) was kindly provided by Dr. Nancy

Hogg of Cancer Research UK.

TLR Agonist treatments
TLR agonists were used at the following concentration unless

otherwise specified: LPS, 2 ng/ml, Poly (I:C), 20 mg/ml, MALP-2,

200 ng/ml, CpG OND, 2 mg/ml, Pam3CSK4, 50 ng/ml, poly U,

1 mg/ml, flagellin, 200 ng/ml, muramyl-Ala-D-Glu-amide,

100 ng/ml, lipid A, 200 ng/ml. Human primary monocytes or

neutrophils were collected and diluted at 106106 cells per ml for

the each respective TLRs agonist stimulation at 37uC in 5% CO2

incubator for the indicated duration. In every experiment (unless

specifically indicated otherwise), cells were washed 3X with 5

volumes of RPMI (with 5% FBS) before assays.

Immunoblotting
Treated human monocytes or neutrophils lysed with RIPA

buffer (50 mM HEPES 7.0, 150 mM NaCl, 0.5% Triton X-100,

10% glycerol and protein inhibitor cocktail) at RT for 10 min,

lysates was cleared by at 13,000 rpm spin for 10 min, supernatant

was collected, mixed with 4 X LAD buffer containing 2 mM DTT

(Invitrogen) and boiled for 5 min before SDS/PAGE (4/20%) and

transfer to PVDF or nitrocellulose membranes (Invitrogen) and

immunoblotted with various antibodies followed with HRP

conjugated anti-mouse or anti-rabbit second antibody (Thermo

Scientific). Stained protein bands were developed with Supersignal

west Femto maximum sensitivity substrates (Thermo Scientific)

Flow Cytometry
Cell surface expression of various receptors and intracellular

signaling molecules and F-actin were tested by staining with

fluorescent reagents, and analyzed by flow cytometry as described

extensively before [72]. Monocytes stimulated for 30 min with

100 nM PMA, ionomycin (0.5 mg/ml) or both were used as

positive controls for measuring intracellular kinases and other

signaling molecules. Data were analyzed with program FlowJo

software, version 9.2.

Endocytosis assay
FACS based quantitative analysis of receptor density and

receptor internalization and microscopic visualization of agonist

driven endocytosis have been described [73]. In some experiments

cell surface bound antibody was stripped by treatment for 2 min

with 0.5% acetic acid in 500 mM NaCl.
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Intracellular (Ca++) flux
For intracellular Ca2+ flux in 26106 monocytes were loaded

with Fura-2 AM in for 45 min at 37uC HBSS with Ca2+ and Mg2+

and containing 1% (w/v) dextrose and 0.5% (w/v) of highly

purified BSA. Cells were washed and resuspended at 16106/ml

prior to sequential agonist stimulation in a continuously stirred

cuvette at 37uC in a fluorimeter (Photon Technology Inc., South

Brunswick, NJ as described. Where indicated, cells were treated

with LPS before agonist treatment. Data were recorded every

200 ms as the relative ratio of fluorescence emitted at 510 nm

after sequential excitation at 340 and 380 nm. The integrity of

assay was assessed by comparing the signaling response to

ionomycin treatment before and after each run and the metabolic

integrity of neutrophils was evaluated by comparing the Ca2+ flux

in response to ATP before and after each run [73].

cAMP assay
Intracellular cAMP levels were assayed using direct cAMP

Enzyme Immunoassay kit (Assay Designs) following manufactur-

er’s instructions. The optical density was read at 405 nm in

FlexStation II microplate scanner and the results were analyzed

using Softmax Pro5 (Molecular Devices,Sunnyvale, CA).

Chemotaxis Assays
End-point chemotaxis was determined using the Trans-well

system with membranes of 6.5 mm diameter and 5.0 m pore size in

RPMI containing 10 mM HEPES and 1% FBS as described [73].

Cells were incubated for 1.5–2 h for neutrophils and 2–2.5 hrs for

monocytes. The ratios of migrated cells were determined from the

number of cells in the lower and upper chambers counted in a cell

sorter after addition of a known number of fluorescent reference

particles (Spherotech, Inc. Libertyville, IL) [72].

Immunofluorescence Microscopy
Cells plated on cover slips after respective treatments were fixed,

permeablized and stained with fluorescent antibodies. Cells were

processed for microscopy as described previously [72]. To 215 -

visualize intracellular lipid and protein mediators of chemotactic

signaling phalloidin-stained cells were reacted with antibodies

against the respective targets [72] in PBS containing saponin

(0.5 mg/ml). Cells were counterstained with dye-conjugated

secondary antibodies as indicated. Cells were visualized by

confocal microscopy as described [74] using a Leica TCS-NT/

SP5 confocal microscope (Leica, Exton, PA USA) equipped with

100X oil immersion objective NA 1.32. Images were processed

using the Leica TCS-NT/SP2 software (version 2.1347) Image-J

(version 1.42l), and Adobe Photoshop CS4.

Supporting Information

Figure S1 Chemotaxis inhibition occurred early after TLR2/4/

6 agonist treatment and was generally irreversible. Monocytes in

triplicate were treated at 37uC with LPS (2 ng/ml) or MALP-2

(200 ng/ml) for 3, 10, 20, 60 and 180 min, washed twice and

allowed to migrate towards 20 nM CCL2 or CXCL12 in a

Transwell chamber. Alternatively, cells were treated with the TLR

agonists for 20 min and then washed and rested for 3, 10, 20, 60

or 120 min (A3–A120) before chemotaxis in Transwell chambers.

Data are plotted as histograms with error bars (n = 3).

(TIF)

Figure S2 Cytokine and chemokine secretion profiles of

monocytes treated with selected TLR ligands. Fresh monocytes

were treated with TLR 2 (Pam3CSK4) or TLR4 (LPS) ligands for

the indicated times and cell supernatants were analyzed for

cytokine production using Luminex cytokine profiling assay. A)

Normalized values (in pg/ml) of different cyto/chemokines are

tabulated for each treatment. B) Average cyto/chemokine values

from two experiments for a limited set of TLR ligand treatments

are plotted as histograms.

(TIF)

Figure S3 Short term LPS LPS treatment did not enhance the

magnitude of internalization of agonist occupied CCR2 and

CXCR4, but rather induced a modest inhibition of receptor

clearance at the higher agonist inputs. LPS (2 ng/ml for 15 min at

37uC) treated or untreated monocytes (107 cells/ml) were

stimulated with increasing amounts of CCL2 or CXCL12 for

15 min (left), or were stimulated with 100 nM of CCL2 or

CXCL12 for various times (right). Cell surface receptor densities

were evaluated by FACS analysis and data are presented as

percent of MFV values before agonist binding. Data from four

different donors were fit to polynomial regression curves with error

bars. EC50 and t1/2 values for the respective CKR/CK

combinations are denoted by the interpolations on the abscissa.

(TIF)

Figure S4 A) Selected antibodies against quiescent or activated

heterodimers inhibit relative chemotaxis of monocytes towards

CCL2, CXCL12 or fMLF. after preincubation with the indicated

antibodies. Fresh monocytes (107/ml) in RPMI (5% FCS) medium

pre-treated for 15 min with the indicated antibodies or IgG

control prior to chemotaxis assay in Transwell chambers against

the indicated agonists. Fraction of migrated cells for each

condition is pltted in the histogram (with error bars, n = 4). B)

Time course of ß-2 integrin activation by TLR agonists. Fresh

monocytes (107/ml) in RPMI (5% FCS) were treated with the

indicated TLR or NOD2 ligands and 100 ml samples were

collected after 0,15, 30, 60, 100, 180 min or overnight (16 hrs)

treatment and stained with APC conjugated MEM148 mAb

targeted against the ß-2 integrin activation epitope at 4uC for

30 min, and analyzed by flow cytometry. MFVs relative to

untreated cells are plotted as histograms (with error bars) (n = 3).

C) Time course of monocyte adhesion after LPS stimulation,

HUVEC (ATCC, PCS-100-030, second passage) cells were

incubated in sterile Greiner black transparent 96-well plates at

density of 30000 cells/well one day before the assay. Monocytes

treated with DMSO or LPS (2 ng/ml) for 3, 10, 60 or 120 min

were washed 3 X and resuspended at 56106 cells/ml in RPMI

without serum and containing 2.5 mM calcein AM at 37uC for

30 min. Cells were washed thrice and resuspended in RPMI at

2.56106 cells/ml and 100 ml of calcein-labeled cells were layered

on HUVEC cells in 96-well plates and incubated for 30 min..

Non-adherent cells were removed by 5 X washes and calcein

fluorescence was measured by Flexstation at Ex494/Em517. Cell

adhesion (%) was determined from the fraction of bound to total

fluorescence. Alternatively, monocytes were rested for 3 (A3), 10

(A10) or 120 min (A120) in normal medium after 30 min pre-

treatment DMSO (clear bars) or LPS (2 ng/ml) (black bars),

before loading and HUVEC adhesion. Histograms are represen-

tative of two experiments.

(TIF)

Figure S5 A) LPS pretreatment abolished polarized Rap1

accumulation in monocytes following chemokine stimulation.

Monocytes (106) on cover slips were treated with or without LPS

(2 ng/ml) for 15 min at 37uC and then stimulated with 20 nM

CCL2 or CXCL12 for 2 min. Cells were fixed, permeabilized and

incubated with rabbit anti-Rap1 antibody followed by Alexa488-

anti-Rabbit IgG. Individual channels corresponding to phalloidin
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and Rap1 and composite 2-color images are shown along with

DIC images. Data are representative of 3 experiments with human

monocytes from 3 different donors. B) Epac-1 activation by

8CPT-2Me-cAMP induced cell-spreading resembling that induced

by LPS treatment. Monocytes (0.56106) were treated with DMSO

or LPS (2 ng/ml) at 37 degrees for 15 min or 8CPT-2Me-cAMP

(400 mM) for 40 min in 100 ml of RPMI containing 1% FBS. Cells

were fixed and stained with Alexa-568 conjugated phalloidin and

examined by fluorescent microscopy. Photomicrograph is repre-

sentative of three independent experiments using cells from three

donors. C) LPS treatment induced rapid PIP3 accumulation,

which decayed just as quickly. Monocytes (,106 cells), treated

with or without LPS (2 ng/ml) for 1, 2, 3, 4, 5 or 30 min were

collected, fixed, and permeabilized with 0.2% saponin for 10 min

at 4uC, incubated with mouse anti-PIP3 IgM (Echelon) followed by

staining with Alexa-488 anti-mouse IgM for 30 min and analyzed

by flow cytometry. Histogram (with error bars) shows PIP3 MFVs

averaged from three experiments (n = 3).

(TIF)
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