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Vulnerability assessment 
of agricultural production 
systems to drought stresses using 
robustness measures
Marangely Gonzalez Cruz, E. Annette Hernandez* & Venkatesh Uddameri

Intensification of droughts in agricultural areas threaten global food security. The impacts of drought 
stresses vary widely across a region, not only due to climate variability but also due to heterogeneous 
soil and groundwater buffering capacities which protect against droughts. An innovative drought 
vulnerability index was developed by reconciling the negative effects of drought stresses against 
the robustness offered by hydrologic buffers. Indicators for climate stresses, soil and groundwater 
buffering capacities were defined using physical principles and integrated using a multi-criteria 
decision making (MCDM) framework. The framework was applied to delineate drought vulnerability 
of agricultural production systems and evaluate current cropping choices across the High Plains 
region of the US that is underlain by the Ogallala Aquifer. Current crop growth choices appeared to 
be compatible with the intrinsic drought vulnerabilities with cotton and sorghum grown in higher 
vulnerability areas and corn and soybean produced in areas with lower vulnerability. Nearly 50% of the 
aquifer region fell in the transition zone exhibiting medium to high vulnerabilities warranting the need 
for better water management to adapt to a changing climate.

Sustaining and improving agricultural production is critical to continue meeting the ever-increasing food, fiber 
and fuel demands of the planet. Climate change is now recognized as a major threat to hydrological and agri-
cultural production systems (APS) around the world1–5. While the impacts of climate change are multifaceted, 
the increased frequency and intensity of droughts that are being projected in many parts of the world, represent 
a major threat to APS, especially in arid and semi-arid regions6–9. Moisture deficits caused by droughts and cli-
mate induced shifts in rainfall patterns critically affect the amount of water that is available to plants, especially 
during critical growth stages10,11. In addition, increases to atmospheric temperature and solar radiation further 
aggravate crop water needs and affect the performance of APS.

Plants have certain intrinsic coping mechanisms both at the cellular and organism levels to handle water 
and heat stresses caused by droughts12. However, plant growth, in general, is highly sensitive to water deficits, 
primarily due to cell elongation13. Prolonged droughts usually affect plants in many different ways including 
but not limited to reduced leaf area, stunted canopy and root development, as well as diminishing the amount 
and quality of fiber14. Droughts are noted to reduce both the harvested area and yields. Studies have shown that 
droughts have reduced cereal yield by roughly 10%, globally15. Recent droughts have led to economic losses in 
the agricultural sector that are estimated to be in the billions of dollars16,17. Understanding the vulnerability of 
APSs to droughts is important to sustain and improve global food production.

The vulnerability of APS to climate stresses is defined as their inability to withstand droughts, in this study. 
This definition of vulnerability is related to the robustness of the system. Robustness is commonly defined 
in engineering literature as the ability of the system to maintain its performance when subjected to external 
disturbances18. An APS is said to be robust if the crop yields are not significantly affected by droughts; otherwise, 
it exhibits vulnerability. Vulnerability has been used as being opposite to robustness in water related studies 
ranging from climate to agriculture19–21. Therefore, robustness measures provide an excellent platform to study 
the vulnerability of APS to droughts.

The primary factors that build robustness in APS are water that is stored in the root zone of the soil at the 
initiation of the drought and external water supplies from storage that can be used for irrigation. While both 
surface and groundwater resources are used for irrigation, this study focuses on groundwater alone. Groundwater 
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is heavily relied upon to meet agricultural water demands across the world and is often the only source of water in 
many arid and semi-arid regions of the world22–24. While droughts do impact aquifer water levels25 groundwater 
is often viewed as a buffer resource as the intrinsic response of aquifers to droughts is slower26 and therefore is 
relied heavily to meet increased water demands. Therefore, groundwater extraction is known to increase sub-
stantially during periods of droughts27,28.

Both soil moisture storage and groundwater reserves can be heterogeneous within a region. Therefore, dif-
ferent APSs, within the same region, exhibit varying levels of robustness to withstand a drought of a given 
intensity. Clearly, the severity and magnitude of droughts also vary across a given area of interest. Therefore, 
the vulnerability of an APS can be viewed as a net effect of drought stresses and hydrologic buffering capacity 
which is influenced by soil characteristics and groundwater availability within a region. The study uses physical 
principles to identify droughts (stresses) as well as soil and groundwater (robustness) indicators which are then 
integrated using a multi-criteria decision making (MCDM) framework to properly assess the competing goals 
of climate stresses and hydrologic buffers using the developed vulnerability index (VI).

The developed methodology is presented in detail and illustrated by applying it to map drought vulnerability 
of the Ogallala Aquifer. Ogallala Aquifer is the largest aquifer in the United States that not only sustains the rural 
economy over eight states but also provides food, fiber and fuel supplies across the world29. Therefore, the study 
not only develops a new theoretical framework for assessing robustness of APSs, but also illustrates its utility by 
applying it to a major, groundwater-dependent, food producing area in the world.

Methodology
Robustness‑based Vulnerability Index.  A conceptual model of the APS system of systems is depicted 
in Fig. 1. The climate system induces water stresses through droughts. The water available in the root zone at 
the initiation of the drought provides the first line of defense against the induced climate stress. If the moisture 
is above the permanent wilting point (PWP), plants can readily access this water to meet the increased water 
demands brought forth by droughts. However, the buffering capacity of the soil is finite, and the available mois-
ture in the root zone can be depleted due to evapotranspiration (ET). In such instances, additional water from an 
external source (e.g., groundwater) must be added to ensure sufficient water is available for plants to meet their 
water demands. It is assumed that a farmer will meet this irrigation requirement using groundwater supplies 
available at the farm in this study as it often represents the most reliable source of water.

To capture the net competing effects of climate stress and hydrologic buffering capacity, Vulnerability Index 
(VI) is defined here as the ratio of the Drought (climate) stress to the weighted sum of the buffering capacity 
offered by soil and groundwater sources:

where VI is the vulnerability index, RI is the robustness index, DSI is the drought stress index, SBI is the soil 
buffer index and GBI is the groundwater buffer index. DSI captures the water deficit caused by the drought stress 
while SBI and GBI capture the effects of soil and groundwater buffering capacities, respectively, at a location of 
interest. It is also important to note that both SBI and GBI are to be evaluated at a specified point of time (e.g., 
a drought event of interest) to ensure their consistency.

The variables α and β vary between 0 and 1 and weigh the relative contributions of soil and groundwater 
buffering indices such that α + β = 1. If the numerator and denominator terms of Eq. (1) are measured on the same 
scale, then values of VI greater than unity indicate a vulnerability to drought stresses and those below unity the 
robustness of the APS. For regional-scale comparisons, DSI, SBI, GBI can all be normalized to vary between 0 
and 1 to facilitate consistent spatial comparisons. The reciprocal of VI is termed the robustness index, RI.

Robustness is defined here as the ability of the APS to withstand external drought stresses. This definition 
of robustness has also been used to describe the resilience of a system30. Robustness is preferred over resilience 
in this study because it has been defined more consistently in the literature and has a clearer linkage to sensitiv-
ity, or the response of a system to external stresses31. The buffering capacity to withstand external stresses (i.e., 
robustness) can be viewed as one of the many dimensions of resilience32. The vulnerability index (VI) represents 
conditions at a given point in time and corresponds to static vulnerability33. The computation of VI requires 
specification of indices for Drought stresses and hydrologic buffers which are discussed next.

Drought Stress Index (DSI).  The numerator of the proposed vulnerability index (VI) captures the 
Drought stresses of the aquifer. Meteorological droughts are commonly understood to be moisture anomalies of 
below average precipitation and/or above normal temperatures over a sufficiently long period of time34–36. Many 
indicators have been proposed in the literature to characterize droughts, and a single indicator is often insuf-
ficient to fully capture the complex nature of the drought phenomena37. Furthermore, as droughts manifest at 
multiple time scales, it is also important to use drought indicators computed over different moisture accumula-
tion periods. For example, 3-month and 6-month accumulations of Standardized Precipitation Index (SPI)38 and 
the Standardized Precipitation Evapotranspiration Index (SPEI)39 are commonly used to calculate intra-season 
and full season agricultural droughts40,41.

The severity of the drought (DS) and the duration of the drought (DD) are two fundamental characteristics 
of droughts42 as they capture the intensity of a drought event. The inter-drought duration (IDD) can be defined 
as the time between two drought events, i.e., time between the cessation of a drought and initiation of the next. 
The duration and severity of droughts are not constant at a given site. Therefore, representative metrics are nec-
essary to capture the long-term behavior and make consistent spatial comparisons. The first statistical moment 
or expected value (a probability weighted mean) is a widely used metric in decision analytic theory to compare 
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the outcomes arising from random variables43. It has been used to summarize climate related information in 
agricultural decision making44 and as such adopted here, as well.

The expected values of the drought characteristics can be computed using Eq. (2):

where E(ci) is the expected value of the ith drought characteristic (i = DS, DD, IDD) and subscripts j,k are indices 
for the drought indicator (j = SPI, SPEI) and the accumulation period of the drought characteristic (k = 3 Months 
and 6 Months), respectively.

While variations between different meteorological drought indicators are to be expected due to differences 
in their mathematical constructs, correlations between them are also very likely as these indicators often share 
similar datasets and are all trying to characterize moisture deficits in the atmosphere. As such, the Drought stress 
index, DSI, at location, l, is calculated as the weighted product of the expected values of drought characteristics 
for adopted indicators (Eq. 3).

where wi,j,k is the weight of the ith characteristic (i = DS,DD,IDD) of the jth indicator (j = SPI, SPEI) and kth 
accumulation period (k = 3-month, 6-month) computed at location, l. The weights of severity and duration need 
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Figure 1.   Conceptual model of the agricultural production system (APS) and hydrologic buffers.
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to be positive (higher values imply higher climate stresses) while that of the inter-drought duration needs to be 
negative because closely spaced droughts are difficult to cope with and therefore add greater stress to the APS. 
The use of the product weighted aggregation (Eq. 3) is also beneficial in that it does not require the attributes to 
be normalized prior to their weighted multiplication.

Soil Buffering Index (SBI).  The soil buffering index represents the relative buffering capacity of the soil 
against climate-induced stresses across a domain of interest. The soil buffering index is developed here using the 
ideas of stocks and flows as they are basic building blocks for studying system dynamics45. The ability of the soil 
to thwart climate stresses clearly depends upon how much water is potentially available in the root zone (a stock 
indicator) and, also, how the soil moisture likely responds to climate stresses (rate or flow indicator).

The amount of water that can be held in the root zone represents a useful measure to compare the buffering 
capacity between two different soils assuming all other factors being the same46. The plant available water (PAW) 
in the root zone is the amount of water that is held between field capacity (gravity drainage threshold) and per-
manent wilting point (root uptake threshold) and is, therefore, calculated as PAW = (field capacity) − (permanent 
wilting point). PAW is taken here to represent the stock component of the soil buffering capacity. PAW measures 
the intrinsic ability the soil to hold water and higher the PAW the greater is the potential likelihood of the soil to 
withstand the drought, (all other things being equal). PAW values are often reported in units of length (e.g., mm) 
in soil science literature, it is important that such dimensional PAW values be divided by the depth of the root 
zone to make a consistent comparison across different locations as root depths often vary widely within a region.

The propagation of meteorological drought through the soil profile is often referred to as the agricultural 
drought47. The soil moisture is the key variable used to define agricultural droughts48. Agricultural droughts can 
be viewed as deviations from long-term soil moisture averages for a given period of time. These soil moisture 
departures can be standardized to facilitate comparisons in space and time49.

Soils typically act as low pass filters and often react more slowly than meteorological droughts50. Therefore, soil 
moisture can both absorb the effects of meteorological droughts and continue to persist in a drier than normal 
state even after the cessation of a meteorological droughts. The fraction of time when there is no agricultural 
drought given meteorological droughts is referred to as “Drought Absorption Capacity” (DAC). The drought 
absorption capacity is a measure of the buffering capacity of the soil against meteorological droughts. DAC is 
particularly relevant when meteorological initially sets in but the soil has sufficient moisture to continue provid-
ing water to plants despite the initiation of meteorological drought.

The fraction of time when there is agricultural drought but there is no meteorological drought is called “Agri-
cultural Drought Persistence” (ADP). ADP is particularly relevant at the cessation of meteorological droughts. 
The conditions in the atmosphere have changed due to precipitation and/or lowering of temperatures. However, 
these conditions are not sufficient to bring soils back from their dried state and the soil is unable to meet the 
plant water demands as it normally would. Thus, agricultural droughts continue to persist despite a respite in 
meteorological droughts, thus leaving the APS vulnerable to water stresses.

DAC and ADP represent the two rate indicators to capture the response of agricultural droughts in compari-
son to meteorological droughts and represent the long-term temporal behavior of the soil buffering capacity.

Soils that have higher values of DAC and lower values of ADP have greater soil buffering capacity. DAC and 
ADP values can be computed by first converting meteorological and agricultural drought time-series into binary 
(drought, no-drought) time series using suitable cut-offs and then developing contingency tables between them41. 
Again, correlations between PAW, DAC and ADP are to be expected as they all are based on soil characteristics. 
Therefore, the soil buffering index (SBI) at location, i, can be represented using Eq. (4):

where the subscript, i-j,k corresponds to drought state comparison between ith agricultural drought indicator 
and jth meteorological drought indicator for the kth accumulation period. The weights of PAW and DAC are 
positive as higher values correspond to better buffering capacity of the soil while the weight of the ADP is nega-
tive because higher values indicate lower buffering capacity at the location.

Groundwater Buffer Index (GBI).  The system dynamics concepts of stocks and flows were again used to 
define indicators of hydrologic buffers. The aquifer transmissivity, T is the product of saturated thickness (the 
amount of water in the aquifer) and the hydraulic conductivity (K) the rate of movement of this water to a well 
under unit gradient (Eq. 5). Transmissivity provides a physically-based estimate of water available to a farmer 
from a well51.

Higher values of transmissivity indicate higher potential for water to flow towards a well and therefore higher 
buffering capacity (all other things being equal).

The extraction of groundwater causes a drop in the water level at the aquifer. Vertical drop of the water 
increases the energy requirements for irrigation. Furthermore, groundwater policies may also dictate that the 
farmer withdraws water without impacting the neighbor’s ability to do so52. The storage coefficient (or specific 
yield in an unconfined aquifer) is a measure of the volume of water that is released per unit surface area per unit 
drop in head51. The storage coefficient (specific yield) can be used to evaluate the drop in the groundwater level 
per unit of water that is extracted. In agricultural literature, irrigation (IRRAMT) is often measured in units 
of length by dividing the volume of water (V) applied over the area of the field (A). Therefore, the drop in the 
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groundwater level per unit amount of irrigation water, IRRAMT, (measured in inches or mm) can be expressed 
using Eq. (6):

where DH is the drop in the groundwater level, S is the storage coefficient (taken to be equal to specific yield in 
unconfined aquifers). Smaller values of storage coefficient cause larger drops in groundwater level for a given 
amount of irrigation (see Eq. 6). Higher values of groundwater level drops per unit irrigation amount not only 
increase the energy (costs) of pumping water for irrigation but also has the potential to affect the ability of the 
farmer to irrigate. Significant vertical drops of water level restrict a farmer from being able to supply additional 
water for irrigation, thereby limiting the groundwater buffering capacity.

As both T and S are functions of aquifer hydrogeological conditions and are often simultaneously estimated 
using aquifer pumping tests, a weighted multiplicative model is prescribed to quantify the intrinsic groundwater 
buffering capacity and is expressed as:

The GBI term defined in Eq. (7) reduces to hydraulic diffusivity (which is defined as the ratio of transmissivity 
to storage coefficient) if both the weights are assumed to be equal to unity. Hydraulic diffusivity is a measure of 
how fast a pressure pulse propagates through the system51. Therefore, Eq. (7) defines the ability of the underly-
ing aquifer to supply groundwater considering both storage and flow and is used as a physically-based measure 
of its buffering capacity.

Determination of weights.  The multi-criteria decision making (MCDM) approach adopted in Eqs. (1)–
(7) require specification of weights for different attributes53. A variety of different approaches have been suggested 
in the literature to obtain weights53. While any weighting method can be used with the proposed methodology, 
it is important to remember that the choice of the weighting method will have an impact on the outcomes. To 
avoid subjectivity, it is recommended that weights be derived objectively from the data. The entropy method54 is 
one such objective method that uses the probability distribution of the attribute to obtain weights. This method 
is based on the idea that normalized attributes that have sharply peaked distributions contain more information 
(less uncertainty) than broadly peaked distributions and as such are assigned higher weights.

To obtain weights using the entropy method, the raw (dimensional) ratings for various attributes are normal-
ized between 0 and 1 such that 0 represents the least preferred and 1 corresponds to the most preferred alterna-
tive. In regional-scale studies normalization can be carried out using the minimum and maximum values for 
each index that is observed within the domain of interest.

The probabilities of each alternative for each attribute is computed using Eq. (8):

The entropy of the ith alternative (Ei) can then be computed using Eq. (9):

Finally, the weights can be computed using Eq. (10):

where wi is the entropy-based weight of the ith attribute. Note that the robustness evaluation framework requires 
weights to be computed separately for the drought stress index (Eq. 3), soil buffer index (Eq. 4) and the ground-
water buffer index (Eq. 7). In addition, a separate set of weights (a and b) are needed to compute the vulnerability 
index (Eq. 1). Equations (1)–(10) provide the complete set of equations required to quantify the relative vulner-
ability of various APSs within a region to drought stresses.

Model assumptions and limitations.  The developed model (Eqs. 1–10) evaluates the relative impacts 
of climate stresses (caused by droughts) against the robustness (to droughts) provided by hydrologic buffers at 
a location. The model development sought to balance the physical basis for quantifying the effects of stresses 
and buffers against practical considerations of accomplishing such a comparison with available data. As such, 
the ratio presented in Eq.  (1) is not dimensionally consistent. However, it can still be applied at a single site 
either using subjective weights or assigning equal weights following the Laplace principle of insufficient reason. 
Qualitatively, smaller values of VI indicate lesser vulnerability and larger values greater vulnerability to droughts.

The primary benefit of the proposed approach lies in making comparative (regional scale) assessments of 
relative drought stresses and buffering capacities across multiple APS. Normalization of drought stresses, soil 
buffering and groundwater buffering indices allows for computation of objective weights. Such normalization is 
specific to the area being considered and values must only be interpreted in a relative mode and not in an absolute 
sense. The relative mode comparison is common to all vulnerability indicators that utilize MCDM approaches55.

(6)�H =
V

SA
=

IRRAMT

S

(7)GBIl = (T)wT ,l (S)−wS,l

(8)pi,j =
Xn,i,j

∑J
j=1 Xn,i,j

wherei = 1, . . . , I(attributes) and j = 1, . . . , J(alternatives)

(9)Ei =
−
∑J

j=1 pi,jlog(pi,j)

log(J)
∀i = 1, . . . , I

(10)wi =
(1− Ei)

∑I
k=1 (1− Ek)



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21648  | https://doi.org/10.1038/s41598-021-98829-5

www.nature.com/scientificreports/

The model is developed using established principles and concepts drawn from climate science, soil physics and 
groundwater hydrology. However, the underlying basis of the model is still empirical in nature as it uses multi-
criteria decision making (MCDM) approach to tie these concepts together to create a unified index. Therefore, 
a rigorous validation of the model (i.e., comparison of computed index with observed values) is not possible, 
as is often the case with MCDM methods. Therefore, the model should only be used in a relative mode (i.e., 
comparing values at different instances of time at a single APS or for comparing multiple APSs within a region 
at a single time). The model provides a single indicator to assess the relative changes of the competing effects of 
climate stresses and hydrologic buffering in time or space. Generally speaking, the validity of the index hinges on 
the reliability of the data and methods used to obtain drought indicators and using field observed and validated 
datasets for required soil and aquifer characteristics.

While outside the scope of this study, a formal evaluation of how uncertainties in input parameters propagate 
and affect the developed approach can be used to obtain uncertainty bounds of the vulnerability index56. The 
addition of such uncertainty bounds will further improve the value of the proposed index and overcome some 
of the limitations associated with lack of formal verification of the proposed index.

The model development here uses concepts from stochastic theory (expected values, probabilities, entropy). 
However, the approach is deterministic—random behavior is captured using long-term probabilities or expected 
values that are then treated deterministically. The reasonableness of such an approach hinges on availability 
of long-term datasets (at least 30 years or more) to ensure representativeness of the values being computed38. 
Finally, it is important to remember that the proposed approach considers static vulnerability (i.e., vulnerability 
at a given point in time at a given location).

The vulnerability index must be developed using verified, long-term data and standard methods for assess-
ing droughts to ensure its applicability and utility. The assumptions discussed above must be borne in mind to 
properly interpret the results obtained from the model.

Illustrative case study.  The High Plains Aquifer (HPA) also referred to as the Ogallala Aquifer (OA) is the 
largest aquifer in the United States and spans over 450,000 sq. kilometers across eight states (see Fig. 2a). The 
region is predominantly semi-arid (Fig. 2b) with limited surface water resources and there is a heavy reliance on 
groundwater from the aquifer57,58. Over 35% of the area is used for agriculture (Fig. 2c) and the region is a major 
producer of cotton, corn, sorghum, soybeans and wheat59 (Fig. 2d).

Overexploitation of groundwater has led to severe declines in the water table in many parts of the aquifer57. 
Recharge to the aquifer is limited due to deep water tables and limited rainfall58. The climate in the region is 
highly erratic and punctuated with frequent droughts, which have resulted in multi-billion dollar losses in recent 
times16. Predictions from global climate models (GCMs) indicate an increased dryness over much of the region6. 
Given the variability in soil, climate and groundwater availability, the vulnerability of the region to droughts and 
the robustness offered by soil and groundwater sources can vary widely across the aquifer.

Understanding the aquifer-wide vulnerability (or lack of robustness) is important for evaluating the viability of 
current agricultural practices and to develop policies and guidelines for future management of the aquifer in light 
of climate change. Sustaining Ogallala Aquifer is not only necessary for the vitality of this predominantly rural 
region, but agricultural production from this area is important for food, fiber and fuel security across the globe29. 
Extending the useful life of the Ogallala Aquifer is one of the greatest water resources management challenges 
faced by the United States60. The vulnerability mapping based on an assessment of drought stresses and hydrologic 
buffers is a fundamental step towards climate informed, resource appraised, land and water resources manage-
ment. The Ogallala Aquifer provides an ideal test bed for illustrating the methodology developed in this study.

Data compilation.  Data necessary for computing the vulnerability index were compiled from a variety of 
sources (see Table S1 in the Supplementary Materials for additional details). Both SPI and SPEI computed at 
three and six month accumulations were chosen as meteorological indicators as they have been shown to capture 
intra- and full-season droughts within the region6,40. While SPI and SPEI exhibit strong correlation, they also 
exhibit differences in duration and severity characteristics and as such retained here. Furthermore, comparison 
of SPI and SPEI helps evaluate whether droughts are precipitation-controlled or temperature-controlled61. The 
climate indicators were computed using gridded data from Climate Research Unit (CRU version 4.03). The CRU 
data has been used in previous drought studies in the region6,40 and preliminary comparisons at select locations 
within the study area further affirmed its accuracy and reasonableness for quantifying droughts. The potential 
evapotranspiration (PET) data from CRU is based on the modified Penman-Montieth equation and therefore 
accounts for both solar radiation and wind effects62. All computations were carried out for hydrologic years 
1949–2018 on a 0.5° × 0.5° grid which resulted in 187 locations across the study area (Fig. 2a).

Climate states were classified as “droughts” when SPI or SPEI values were less than or equal to -1 or as “no-
droughts,” otherwise42. The theory of runs was used to ascertain different climate events63. The first and the 
last climate event in the record were discarded to remove partial sampling effects. The drought duration (DD), 
drought severity (DS) and the inter-drought duration (IDD) were computed separately at each site for each indi-
cator at 3- and 6-month accumulations. Probability distributions were fit separately for each DD, DS and IDD 
datasets. Based on Akaike Information Criterion (AIC), the exponential distribution was noted to provide best 
fits for DD and IDD datasets and the lognormal distribution was noted to be best for DS at a majority (~ 83%) of 
locations along with Weibull (~ 9%) and Gamma (~ 8%) at some locations. These distributions were then used 
to compute the expected values for the three drought characteristics for each indicator.

The plant available water (PAW) in the root zone was computed using high resolution gridded SSURGO 
soil data64 as PAW = (field capacity) − (permanent wilting point). The normalized PAW (NPAW) was obtained 
by dividing the available water in the root zone (in mm) by the root zone depth64 (converted to mm). The 
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standardized soil moisture index (SSMI) was computed in a manner analogous to SPI. The soil moisture data 
for hydrologic years 1949–2018 were obtained from the gridded soil moisture data provided by the climate 

Figure 2.   High Plains Aquifer (HPA)—(a) Location and Grid Points used for Analysis; (b) Climate Zones 
within the Study Area and Representative Grid Locations; (c) General Land Use Land Cover (LULC) ( Source: 
NLCD, 2016 ); (d) Locations within the Aquifer where Major Crops are Produced (Source: USDA-NASS 
Cropscape, 2019).
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prediction center65. The monthly soil moisture estimates are provided on a 0.5° × 0.5° grid and are consistent with 
the spatial resolution of the CRU data used to compute climate indices. The soil moisture predictions used for 
SSMI computations were based on the outputs from a leaky single bucket soil water balance model66. The root 
zone depth varied across the study area; however, the leaky bucket model assumed a typical depth of 160 cm. 
The model has been calibrated to watersheds in Oklahoma and as such representative of conditions within the 
study area. Despite its simplicity, the model is shown to predict long-term trends and variations reasonably 
well at many locations, including the study area of interest here65. This soil moisture data has also been used in 
previous studies67, to construct a standardized soil moisture index similar to the one in this study. SSMI values 
were calculated at 187 locations at 3- and 6-month accumulations and converted to binary time-series using a 
cut-off value of -1 for consistency with meteorological indicators. Pairwise SSMI and SPI/SPEI data were used 
to construct contingency tables and compute drought absorption capacity (DAC) and agricultural drought 
persistence (ADP) metrics at each location.

All groundwater data were obtained from the United States Geological Survey (USGS)57,68–70 (see Table S1 in 
the supplementary information for additional details). The depth to groundwater in the year 2013 and the changes 
to water table between 2013 and 2015 were used to construct the depth to water table for the year 2015 (the most 
recent data that were available when the study was performed). The saturated thickness, depth to groundwater 
were both available for the year 2009 and were used to delineate the bottom of the aquifer. The aquifer bottom 
in conjunction with the depth to groundwater in the year 2015 along with land surface elevation were used 
to obtain saturated thickness in the year 2015. Inverse distance weighting (IDW) was used to create surfaces 
from groundwater level data and saturated thickness information. Negligible errors (maximum error < 1 × 10–9) 
were noted between the saturated thickness surface for the year 2009 constructed in this study and the spatial 
data provided by the USGS indicating the suitability of the adopted method to create requisite water level and 
saturated thickness surfaces. The transmissivity across the aquifer was computed by multiplying the estimated 
saturated thickness for the year 2015 with the corresponding horizontal hydraulic conductivity. The drop in the 
groundwater level per 1 inch (2.54 cm) of irrigation amount was computed from specific yield data.

Map algebra routines were used to create requisite maps and intersection operations were used to extract 
data at the 187 grid locations depicted in Fig. 2a using ArcGIS (ESRI Inc., Redlands, CA). All data were com-
piled into a database for further analysis. Customized scripts were developed in R Statistical and Programming 
environment71 to compute weights using the entropy method and the final set of weights are depicted in Fig. 3.

The MCDM package72 was used to perform weighted multiplicative MCDM separately on climate, soil and 
groundwater data and the results from these individual MCDM applications were aggregated to obtain the final 
vulnerability index as per Eq. (1).

Results and discussion
Drought stresses.  A representative set of SPI and SPEI drought indicators at six different locations depicted 
in Fig. 2b can be found in Supplementary Information (Figs. S1 and S2). The expected values of drought dura-
tion (DD) and severity (DS) for SPI and SPEI are shown in Figs. 4 and 5. Droughts were generally temperature-
controlled in the southern portions of the study area and precipitation-controlled in the northern portions. 
Deficit in precipitation was the primary factor affecting short-term droughts and the differences between the two 
indicators (SPI-3 and SPEI-3) were not significant. At 6-month accumulation, SPI droughts showed greater fluc-
tuations and occurred sooner than those predicted by SPEI. On the other hand, SPEI droughts were prolonged 
highlighting the important role of PET (radiation and wind effects) in defining meteorological droughts73. There-
fore, the combined use of these indicators allowed to capture both early initiation and prolonged persistence of 
meteorological droughts. The results presented in Figs. 4 and 5 indicate that short-term (3-month) droughts 
could extend over a significant portion of the growing season. Similarly, the long-term (6-month) droughts of 
both SPI and SPEI could on average extend well over the entire growing season. Long-term droughts, while not 
initiated as often, tend to be highly persistent in the study area.

The expected values of Inter-drought duration (IDD), shown in Fig. 6, are generally lower in the northern por-
tions and somewhat higher in the southern portions for the 3-month accumulation. The differences between SPI 
and SPEI for 3-month accumulations was low as droughts at this time scale are largely precipitation controlled. 
The IDD for SPI-3 and SPEI-3 are higher in the central portions of the study where the drought duration is also 
relatively higher. These regions tend to have more stable climate states while the northern and southern por-
tions exhibit greater transitions between drought and non-drought states. On the other hand, the variability of 
IDD for long-term (6-month) droughts is very high and exhibits high spatial variability. No discernable spatial 
trends can be noted for long-term droughts. The IDD for SPI-6 is generally shorter indicating greater variability 
of precipitation induced droughts, while SPEI-6 exhibits more stable climate patterns with prolonged periods 
of both drought and non-drought states indicating that precipitation is not strongly correlated to temperature 
and warmer than normal temperatures may persist over a longer period even when the region experiences some 
amount of precipitation.

Soil buffering characteristics.  The variability of Normalized Plant Available Water (NPAW) is shown in 
Fig. 7. The NPAW denotes the potential of the soil to hold moisture in the root zone. The soil buffering capac-
ity is lower in the northern portions (Sandhill region of Nebraska) and in the extreme southern portions. Both 
these areas have sandy soils with high drainage potential. While the PAW values are low, these areas are not being 
used for agriculture (see Fig. 2c,d). Soil water retention is generally high in most parts of the study area with the 
northeast portions exhibiting the best retention characteristics.

Illustrative examples of SSMI computed for six different stations in various climate zones (see Fig. 2b for the 
locations of these stations) within the study area can be found in Supplementary Information (Figs. S3 and S4) 
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along with the expected values of agricultural drought duration, severity and inter-drought duration (Fig. S5). 
A comparison of SSMI time-series and expected values of drought characteristics with those of meteorological 
droughts indicate that the initiation of agriculture droughts lag those captured by SPI and tend to be more similar 
to SPEI at higher accumulation periods.

The DAC and ADP values across the aquifer for SPI and SPEI are depicted in Figs. 8 and 9. Coincidence 
measures the fraction of time an APS experiences both meteorological and agricultural droughts. The coinci-
dence between meteorological and agricultural droughts increase with increasing accumulation periods. In 
particular, SPEI-6 has a very high coincidence with agricultural droughts in the region and this result is to be 
expected because for a prolonged drought, the moisture reserves of the soil are completely depleted offering no 
buffering capacity.

Regardless of the indicator, the DAC and ADP exhibit higher values and greater spatial variability for short-
term droughts than longer-term droughts. This result is again to be expected as the antecedent moisture condi-
tions have a greater impact on conditioning soil moisture dynamics at shorter timescales. The result also indicates 
that while some shorter time-scale droughts may be overcome by precipitation events, other rainfall events may 
be of higher intensities and closely spaced and not contribute much to soil moisture via infiltration.

Infiltration is also limited by the fact that most of the region is covered by soils having a relatively high per-
centage of fines which often have sufficient storage capacities but are harder to fill by high intensity storms. In 
addition, rainfall events, especially during the summer tend to be of relatively short-duration and any infiltrated 
water is quickly lost from the soil root zone due to evapotranspiration contributing to higher ADP values. In a 
similar vein, the presence of fines (or smaller size pores) help retain water that is infiltrated during the cooler 
seasons (winter and spring) when the effects of evapotranspiration are relatively low. The range of values for DAC 
and ADP tend to be similar over the study area but the spatial differences between the two are better evident 
in regions with sandy soils (northern portions of the study area) and for higher drought accumulation levels.

Figure 3.   Estimated weights for various attributes used for computing (a) Climate Stress Index; (b) Soil Buffer 
Index; (c) Groundwater Buffer index and (d) Overall Vulnerability Index.
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Groundwater buffering characteristics.  The Groundwater characteristics of the study area are sche-
matically depicted in Fig. 10. The depth to water table (DWT, see Fig. 10a) varies considerably across the region 
but exhibits the greatest depths in the central portions, especially in Texas, Oklahoma and Kansas where the 
groundwater has been used extensively for irrigation since the 1950s74. The saturated thickness of the aquifer is 
higher in the northern portions of the aquifer (Sandhill region of Nebraska shown by shades of blue in Fig. 10b) 
and the aquifer is practically depleted in the very southern portions where not only has the groundwater been 
over utilized but the thickness of the aquifer (intrinsic storage volume) is also relatively smaller. The hydraulic 

Figure 4.   Expected values of absolute drought severity and drought duration for SPI at 3-month and 6-month 
accumulations.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21648  | https://doi.org/10.1038/s41598-021-98829-5

www.nature.com/scientificreports/

conductivity varies in an undulating manner and is locally conditioned by geological features such as the pres-
ence of paleochannels75 when explain the localized higher values (depicted by darker purple in Fig. 10c). The 
specific yield of the aquifer (shown in Fig. 10d) exhibits variability due to local scale aquifer heterogeneity but 
generally has a value between 0.12 and 0.18 over most of the study area.

Vulnerability indices.  The relative climate stresses as well as soil and groundwater buffering capacities 
are depicted in Fig. 11. The relative indices that were normalized on a 0–1 scale were further divided into 5 

Figure 5.   Expected values of the absolute drought severity and drought duration for SPEI at 3-month and 
6-month accumulations.
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categories using 20th, 40th, 60th and 80th percentiles of the computed values at the 187 grid points. The use of 
percentiles as thresholds allows for a consistent comparison76 and properly depicting the relative variability of 
these indices across the study area.

The Drought stress index (DSI) values depicted in Fig. 11a indicate the western portions which are more 
arid are subject to greater stresses than the eastern portions of the study area. Furthermore, the stresses are 
higher in the northern portions and the southern portions of the study area. The analysis of drought indicator 

Figure 6.   Expected value of inter-drought duration (IDD) of SPI and SPEI at 3- and 6-month accumulations.
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characteristics (Figs. 4, 5 and 6) indicates that the stresses in the south are temperature-controlled while those 
in the north are precipitation-controlled.

The soil buffering capacity (Fig. 11b) exhibits a banded structure and there is relatively low buffering capacity 
in portions of southern, middle and northern portions. The low buffering capacity correlates well with the pres-
ence of sand content in the soils. Higher sand contents not only reduce the moisture holding capacity but also 
lose water via a deep percolation process. While this percolation is useful to recharge the underlying aquifers, 
they do not directly add to the short-term buffering capacity of the soils. The increased sand content also affects 
rooting depths of many plants. Such soils are generally conducive to the production of peanuts if other condi-
tions necessary for crop growth are satisfied.

The groundwater buffer index (GBI) also exhibits a general north–south and west–east gradients across the 
study area (see Fig. 11c). Areas with relatively higher saturated thicknesses (Fig. 10b) are noted to exhibit higher 
buffering capacity but GBI is also conditioned by the depth to water table (Fig. 10a) an indicator of groundwater 
extraction. GBI also correlates with the temperature gradients across the region (see, Fig. 2b) with greater vul-
nerability in the western arid regions compared to the eastern sub-humid regions.

A net assessment of the soil and groundwater buffering capacities can be obtained by visually comparing buff-
ering indices presented in Fig. 11b,c and contingency tables presented in Supplementary Information (Table S2). 
Four different spatial patterns can be seen in these comparisons: (1) The buffering capacities for both soil and 

Figure 7.   Normalized plant available water in the root zone.
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groundwater are very low or low (~ 9% of the study area) as can be seen predominantly in the southern portions 
of the aquifer; (2) The buffering capacities of both soil and groundwater are relatively high (high or very high), 
as seen in the northeastern portions of the aquifer and accounts for ~ 15% of the study area; (3) Groundwater 
buffering capacity is relatively high (high or very high) but not those of the soils (low or very low) in some 
northern portions and cover ~ 13.4% of the total area; (4) Soil buffering capacity is high or very high but that of 
the groundwater is relatively low (~ 10% of total area). In other areas there is no single dominant buffering factor. 
Clearly, the worst case is when both the soil and groundwater buffering is low. As discussed earlier, the root zone 

Figure 8.   Comparison of meteorological (SPI) and agricultural (SSMI) drought indicators.
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has a much smaller storage capacity, so areas with higher groundwater buffering capacities but with lower soil 
capacities may require greater amounts of irrigation but are able to supply water more continuously to the crop 
compared to the situation where the buffering capacity of the soil is higher but that of the groundwater is low.

The overall vulnerability index comparing the drought stresses against buffering capacity is depicted in 
Fig. 12. Generally, the vulnerability to droughts is higher along the western and southern of the aquifer where 
both climate stresses are high and buffering capacity is low. In a similar vein, the northeastern sections have lower 
relative vulnerability due to lower climate stresses. A little over 20% of the study area has a vulnerability index 

Figure 9.   Comparison of meteorological (SPEI) and agricultural (SSMI) drought indicators.
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greater than 1 which suggests that the relatively buffering capacity is lower than the relative drought stress. These 
areas (shown in dark red in Fig. 11) are areas of highest vulnerability. A comparison of Figs. 11 and 12 indicates 
that the vulnerability in the northern regions are largely controlled by drought (climate) stresses while those in 
the southern portions are a combination of climate stresses and limited hydrologic buffering capacity. In most 
of these areas, irrigation may no longer be possible, and the systems have either already transitioned to, or are 
rapidly transitioning towards dryland farming or other land use types.

Figure 10.   Groundwater characteristics in the study area (Data Compiled from US Geological Survey57,68–70).
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Approximately 40% of the area exhibits medium to high vulnerability where the factor of safety provided by 
soil and groundwater sources is less than 2 but greater than 1 (VI is > 0.5 but < 0.1). While irrigated agriculture 
may currently be feasible in these areas, it may not be sustainable in the long run. Deficit irrigation practices 
and adaptation to drought tolerant varieties will help prolong the useful life of the aquifer in these regions. In a 
similar token, the need for water conservation practices is the highest in these regions. Judicious crop choices 
and rotation of high-water use intensity (high economic value) crops with low water use intensity (low economic 
value) crops may be another important strategy to pursue in these areas.

Sustaining agricultural activities in the Ogallala Aquifer region is important at least in the short-term as this is 
the primary economic driver, which unfortunately has not resulted in other significant economic spillover effects 
within these rural economies77. Previous econometric studies that have also sought to evaluate the economic 
impact of droughts and groundwater availability show the importance of groundwater in areas with low rainfall 
and better soils78. The present study helps provide a refined context to such empirical studies by characterizing 
the competing effects of droughts and buffering provided by soils and groundwater and also help guide future 
econometric analysis of water use and conservation practices aimed at combating droughts.

Approximately 20% of the study area is categorized as having very low or low vulnerability. The areas with 
lower vulnerability are largely clustered in the northeastern section of the aquifer. These parcels benefit by rela-
tively lower number of drought events as well as having relatively higher levels of hydrologic buffering. As such, 
they are prime locations for growing crops that have high economic value but also need higher amounts of water. 
Relatively isolated pockets of low and very low vulnerability are scattered across the study area. These pockets 
arise from localized heterogeneities in soils, microclimatic conditions and low anthropogenic groundwater use 
(e.g., ranching) in the past.

Heterogeneities in vulnerabilities of APS within a region often lead to uncertain information and affect appro-
priate and timely drought responses79. The VI map such as the one presented in Fig. 12 is helpful for farmers 
to understand that vulnerabilities to droughts exhibit heterogeneities and need to be tackled on a farm by farm 
basis. From a regional-scale water planning point of view, ‘one size fits all’ type drought contingency policies may 
create uneven impacts on farming communities. The developed methodology and its eventual outcome (i.e., the 
vulnerability map) can therefore be used to construct site-specific guidelines that balance the regional need of 
water curtailment during droughts vis-à-vis the local needs of meeting crop water demands.

Figure 11.   Drought Stress Index (DSI), Soil and Groundwater Buffering Indices (SBI and GBI) across the study 
area.
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Another very important use of the vulnerability map (Fig. 12) is evaluating the compatibility of current 
cropping choices against the vulnerability to droughts. The risks of crop failure (in the short run) and the even-
tual loss of buffering capacity due to aquifer depletion (in the long-run) arise when high water intensity crops 
continue to be grown in areas with high vulnerability. On the other hand, growing low water intensive crops in 
areas where the vulnerability is low may help sustain the aquifer in the long run but it may come at the cost of 
not realizing the full potential of available buffering capacity in the short-term. The locations of 5 major crops 
(Fig. 2d) were intersected using ArcGIS (ESRI Inc., Redlands, CA) with the vulnerability map (Fig. 12) to group 
cropping areas across vulnerability classes and are summarized in Table 1. Overall, the agricultural produc-
tion in the region appears to be reasonably well adapted to drought vulnerability. There is a higher propensity 
to grow drought tolerant crops (cotton 48%, sorghum 18% and winter wheat 18%) over high water intensive 
crops (corn 12% and soybean 4%) in areas categorized as very highly vulnerable (VI > 1). Therefore, nearly 85% 
of the area categorized as very highly vulnerability have crops that require relatively lower amounts of water. 
Similarly, areas categorized as very low or low vulnerability generally see higher acreages of soybean (32%) and 
cotton (25%). However, the potential to further harmonize cropping choices with climate risks and hydrologic 
buffering capacities exist across the aquifer. The areas categorized as medium to high vulnerability are regions 
that exhibit the highest potential to increased vulnerability in the future. The crop area categorized as exhibiting 
medium to high vulnerability have a mix of 25% high water intensive crops (corn 16% and soybean 9%) and 75% 

Figure 12.   Overall Vulnerability Index to droughts for conditions in the year 2015.
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moderate to low water intensive crops (cotton 27%, sorghum 22%, winter wheat 26%) indicating that adaption is 
also occurring in these areas. The viability of sustaining corn and soybean production in these areas will depend 
upon adoption of conservation strategies (irrigation scheduling and high efficiency water application methods) 
along with better cultivars that exhibit greater resilience to water stresses.

Summary and conclusions
A new vulnerability index (VI) is defined in this study using the concept of robustness. The proposed VI com-
pares the stresses caused by droughts against the robustness (buffering) provided by soil and groundwater sources 
using a multicriteria decision making (MCDM) framework. Physical principles are used to define drought stress 
index (DSI) as well as soil buffer index (SBI) and groundwater buffer index (GBI). In addition, an entropy-based 
scheme is utilized to objectively weigh the relative contributions of parameters used to define stresses and buff-
ers. Furthermore, DSI, SBI and GBI indices can be computed using easily available data and integrated within a 
geographic information system (GIS) to map relative vulnerabilities of land parcels within a region to droughts.

The developed approach is used to map current (year 2015 baseline) drought vulnerabilities in the area 
underlain by the Ogallala Aquifer, which is the largest aquifer in the US. The results of the study indicate that 
the vulnerabilities in the north are caused by precipitation related moisture deficits and limited moisture hold-
ing capacity of soils. While, vulnerabilities in the southern portions are brought forth by temperature driven 
moisture deficits and limited groundwater availability. While current crop growth choices are compatible with the 
intrinsic drought vulnerabilities nearly 50% of the aquifer region falls in the transition zone between low and very 
high vulnerabilities. Better management of groundwater in these areas is critical to sustain APS in the long-run.

Adaptation of APS to droughts is important as the population of the world continues to rise and changes 
in climate are likely to result in high intensity and more prolonged droughts. Understanding the robustness 
of the farm systems is fundamental to assess their ability to withstand droughts and foster nexus-based water 
management80 wherein cropping choices are harmonized with water availability (robustness), drought risks 
(stresses). The present study offers a methodology to elucidate robustness and provide insights on factors con-
trolling the vulnerability of these systems to droughts.
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