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Olive oil polyphenol extract (OOPE) has been reported to have antibacterial activity; 
however, its effect on Listeria monocytogenes is less studied so far. This study, thus, 
aimed to reveal its antimicrobial activity and action approach against L. monocytogenes 
via evaluating the minimum inhibitory concentration (MIC) as well as the changes of 
intracellular adenosine 5′-triphosphate (ATP) concentration, cell membrane potential, 
bacterial protein, DNA, and cell morphology. The results showed that OOPE could inhibit 
the growth of L. monocytogenes with a measured MIC of 1.25 mg/ml. L. monocytogenes 
cells treated by OOPE showed significant reduction in intracellular ATP concentrations, 
bacterial protein, or DNA (p < 0.05), in comparison with those without any treatment. In 
addition, OOPE was observed to depolarize strain cells and alter cell morphology, resulting 
in damaged cell membrane and, thereby, leakage of cell fluid. These findings demonstrated 
that OOPE had inhibition on L. monocytogenes via its action on cells, suggesting its 
potential as a natural preservative.

Keywords: Listeria monocytogenes, olive oil polyphenol extract, antimicrobial activity, action approach,  
cellular morphology

INTRODUCTION

Listeria monocytogenes is a Gram-positive bacterium, and as one of the major food-borne 
pathogens, it is involved in some outbreaks of severe food-borne infections (Odedina et  al., 
2015). The survival and growth of L. monocytogenes are easy in the conditions of high salt 
concentration, low pH, and low temperature, which increase its potential as a contaminant of 
food products (Allen et  al., 2016). Fresh vegetables and fruits, dairy products, ready-to-eat 
foods, and food-contact surfaces are susceptible to contamination from L. monocytogenes 
(Hamidi-Oskouei et  al., 2015). Currently, a variety of technologies and safety systems are 
implemented to control pathogens. However, the contamination of L. monocytogenes is still 
considered as a major food safety problem (Long et  al., 2011).

Compared with synthetic preservatives, natural extracts have attracted great interest due to 
their ability to inhibit the growth of food-borne pathogens and not trigger negative safety 
worries (Rendueles et  al., 2011). Some plant extracts had been well documented to be  used 
as potential natural antimicrobial agents or preservatives against L. monocytogenes, such as 
fruit and vegetable extracts from mint and pomegranate, spice extracts from cinnamon and 
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clove, and phenolic extracts from legumes processing by-products 
(Aureli et  al., 1992; Araya-Cloutier et  al., 2018; Xylia et  al., 
2018). Consumers are more willing to accept natural extracts 
as preservatives than synthetic preservatives due to the nature 
and relative safety of natural products (Fei et al., 2018). Therefore, 
people would like to learn more information about using plant 
extracts as potential preservatives for controlling L. monocytogenes.

Polyphenols have demonstrated a series of biological effects 
including antibacterial, antioxidants, anti-inflammatory, 
antiviral, and antiallergic action (Daglia, 2012; Borges et  al., 
2013). Olive oil polyphenol extract (OOPE) is a natural 
substance obtained from olive oil and contains abundant 
polyphenolic compounds (Bubonja-Sonje et  al., 2011). Tafesh 
et  al. (2011) reported that polyphenolic compounds separated 
from olive mill wastewater have good antibacterial activity 
against Gram-positive and negative bacteria. The study reported 
by Thielmann et  al. (2017) proved that the extracts of olive 
leaves and fruits of Olea europaea Linné from Mediterranean 
countries also have higher effective antimicrobial activity in 
food matrices. In previous studies, the antibacterial effect of 
OOPE and its action approach against Cronobacter sakazakii 
and Bacillus cereus have already been reported by our team 
(Fei et al., 2018, 2019). Based on this evidence, it is reasonable 
to assume that OOPE can be used to inhibit L. monocytogenes 
as a potential natural bacteriostatic substance.

The purposes of this study were to evaluate the antibacterial 
activity of OOPE against L. monocytogenes and to elucidate 
the possible action approach through investigating the changes 
in intracellular adenosine 5′-triphosphate (ATP) concentration, 
cell membrane potential, bacterial protein, cell DNA, and cell 
morphology after treatment with OOPE.

MATERIALS AND METHODS

Olive Oil Polyphenol Extract Materials
OOPE was provided by Shanghai Kai Da Biotechnology  
Co. Ltd. (Shanghai, China). The chemical compositions of 
OOPE include moisture (<7%), total polyphenols (≥30%), 
hydroxytyrosol (≥6%), tyrosol (≥0.8%), phenolic acids (≥1.5%), 
and ethanol (<0.1%).

Bacterial Strain and Culture Condition
A total of eight L. monocytogenes strains were used in this 
study; among them, L. monocytogenes CMCC 54004 was obtained 
from the National Center for Medical Culture Collections 
(CMCC) of China, and the other seven strains were isolated 
from food samples. All isolates were used to assess the minimum 
inhibitory concentration (MIC), whereas L. monocytogenes 
CMCC 54004 was used to analyze the action approach of 
OOPE against L. monocytogenes. The strains were stored in 
Luria-Bertani (LB) broth with 20% glycerol (v/v) at −80°C. 
After being cultured in LB broth medium at 37°C with shaking 
at 150  rpm for 24  h, the strains were streaked onto tryptic 
soy agar (TSA) plates and continued to be  incubated at 37°C 
for 24  h. A typical colony was selected and inoculated into 

LB broth at 37°C for 24  h to obtain the pure cultures of  
L. monocytogenes (Dias et  al., 2018).

Determination of Minimum Inhibitory 
Concentrations
The MICs of OOPE against eight L. monocytogenes were 
determined using the agar dilution method according to previous 
report (Fei et  al., 2018). L. monocytogenes cells were treated 
by different concentrations of OOPE (10, 5, 2.5, 1.25, 0.625, 
0.3125, 0.156, and 0.078  mg/ml), respectively, and 0.1  mg/ml 
ampicillin was used as the positive control. Two microliters 
of tested bacteria cultures was dripped onto the TSA plate, 
dried, and incubated at 37°C for 24 h. The MIC was considered 
as the lowest concentration of OOPE, at which the visible 
growth of L. monocytogenes was inhibited completely.

Reduction of L. monocytogenes CMCC 
54004 by Olive Oil Polyphenol Extract in 
Normal Saline and Luria-Bertani
L. monocytogenes CMCC 54004 was cultured in LB broth at 
37°C for 24  h, and then the density of strains was adjusted 
to about 108  CFU/ml with sterile normal saline (NS) and 
diluted to about 106  CFU/ml in LB as working cultures, 
respectively, according to the method reported by Bharitkar 
et  al. (2014) with minor modifications. OOPE was dissolved 
in the working cultures (NS and LB) to obtain final concentrations 
of 0 MIC, 1 MIC, and 2 MIC. Bacteria were further cultured, 
and bacterial suspensions were collected from NS and LB after 
0.5, 1, 3, 5, and 7 h, respectively. The diluted mixtures (0.1 ml) 
were incubated on TSA at 37°C for 24  h, and the survival 
population of L. monocytogenes CMCC 54004 was calculated.

Measurement of Intracellular Adenosine 
5′-Triphosphate Concentrations
Based on the method described by Chen et  al. (2017), the 
changes in intracellular ATP concentrations of L. monocytogenes 
CMCC 54004 after treatments with OOPE was measured. The 
final L. monocytogenes CMCC 54004 cell concentration was 
diluted to be 108 CFU/ml with NS. The ATP assay kit (Beyotime 
Bioengineering Institute, Shanghai, China) was used to determine 
intracellular ATP concentration, and all processes were operated 
on an ice box. Two milliliters of cell suspensions containing 
different concentrations of OOPE (0 MIC, 1/4 MIC, 1/2 MIC, 
1 MIC, and 2 MIC) was incubated at 37°C for 30  min and 
then mixed with lysis solution. The supernatant was obtained 
after centrifugation at 11,269  ×  g for 5  min and stored in an 
ice box to prevent the loss of ATP. Both ATP test solution 
and supernatant were added to a colorless transparent 96-well 
plate (Corning Institute, USA) to determine intracellular ATP 
concentration with an Infinite 200 PRO multifunctional 
microplate reader (Tecan, Grodlg, Austria).

Measurement of Membrane Potential
The measurement of membrane potential was performed  
as previously described by Bharitkar et  al. (2014). 
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Bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3); 
Beijing Solarbio Science and Technology Co. Ltd., Beijing, China] 
was used as a membrane potential-sensitive fluorescent probe. 
Bacterial suspension and DiBAC4(3) fluorescent probe were 
added in a black and opaque 96-well plate (Corning Institute, 
USA) to balance at 37°C for 30  min. OOPE was then added 
in the 96-well plate to adjust the concentration to 0 MIC, 
1 MIC, and 2 MIC, respectively. The fluorescence intensity of 
each well was recorded with a multifunctional microplate reader 
(Infinite 200 PRO, Tecan, Grodlg, Austria) under the condition 
of the excitation wavelength of 492 nm and emission wavelength 
of 515  nm at 37°C. The value of relative fluorescence units 
(RFUs) was recorded as the result of membrane potential.

Sodium Dodecyl Sulfate-Polyacrylamide 
Gel Electrophoresis
The effect of OOPE on the bacterial protein was analyzed 
using the sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) method as described by Chen 
et  al. (2017). Approximately 107  CFU/ml of L. monocytogenes 
CMCC 54004 cells was treated with OOPE at 0 MIC and  
1 MIC in NS at 37°C. The bacterial suspensions were withdrawn 
every 3  h (3, 6, 9, and 12  h), washed three times using NS, 
and mixed with SDS-PAGE loading buffer (pH 6.8; 1.0  M 
tris-HCl, 10% glycerol, 2% SDS, 10% β-mercaptoethanol, and 
0.1% bromophenol blue). After heating in boiling water bath 
for 10  min, proteins were separated by SDS-PAGE using a 
concentrated gel (5%) and a separated gel (15%). Finally, gels 
were stained with Coomassie Brilliant Blue R250 (Sigma, USA). 
The image was taken with the HP scanner (HP 1000, USA).

Transmission Electron Microscopy
The cellular morphology of L. monocytogenes CMCC 54004 
cells after treatments with 0 MIC, 1 MIC, and 2 MIC of 
OOPE was observed using the H-7650 transmission electron 
microscope (TEM) (Hitachi, Tokyo, Japan) as described by Li 
et  al. (2016). After treatments with different MICs of OOPE 
for 4  h, L. monocytogenes CMCC 54004 cells were centrifuged 
at 5,008  ×  g for 5  min and prefixed with 2.5% glutaraldehyde 
at 4°C for 2  h. The pellets were rinsed with 0.1  M sodium 
phosphate buffer (pH 7.2) three times and postfixed with 1% 
osmium tetraoxide for 120  min and then rinsed three times 
again. The samples were dehydrated with different concentrations 
of ethanol (50, 70, 90, and 100%) for 10  min and infiltrated 
with the mixture of 100% acetone and Epon resin overnight 
at room temperature. The infiltrated samples were embedded 
in Epon Lx-112 (Ladd Research, Williston, VT) and polymerized 
at 70°C for 12  h. Next, the samples were cut into sections of 
50–60  nm, stained with uranyl acetate and lead citrate, and 
then observed under TEM.

Agarose Gel Electrophoresis for DNA 
Fragmentation
The effect of OOPE on the L. monocytogenes CMCC 54004 
DNA was measured using agarose gel electrophoresis  
(AGE) according to previous report (Liu et  al., 2011). 

Approximately 108  CFU/ml of L. monocytogenes cells were 
treated by 0 MIC, 1 MIC, and 2 MIC of OOPE in NS at 
37°C. The bacterial suspensions were treated for 2, 4, and 
10  h, respectively. The genomic DNA was extracted using a 
bacterial genomic DNA extraction kit (Tiangen Biotech Co., 
Ltd., Beijing, China). The DNA samples were electrophoresed 
using 1.5% agarose gel at 100  V for 30  min. Finally, the gels 
were stained with 10  mg/ml of ethidium bromide for 15  min 
and visualized using a gel imaging system (Bio-Rad, USA).

Statistical Analysis
Experiments were repeated in triplicate, and data were analyzed 
using the SPSS 19.0 software (SPSS, Chicago, IL). All data are 
expressed as the mean values ± standard deviation (SD). The 
statistical differences at 5% significance level among means 
were determined by one-way analysis of variance (ANOVA).

RESULTS

Minimum Inhibitory Concentrations of 
Olive Oil Polyphenol Extract Against  
L. monocytogenes Strains
The results showed that OOPE had inhibitory ability against 
the growth of eight L. monocytogenes. Bacterial colony did 
not grow when the concentrations of OOPE were higher than 
or equal to 1.25  mg/ml; therefore, the MIC of OOPE against 
eight L. monocytogenes was 1.25  mg/ml.

Reduction of L. monocytogenes CMCC 
54004 by Olive Oil Polyphenol Extract in 
Normal Saline and Luria-Bertani
The survival counts of L. monocytogenes CMCC 54004  in NS 
and LB after treatments with 1 MIC and 2 MIC of OOPE 
are shown in Figure 1. The results showed that the growth 
of L. monocytogenes treated by 1 MIC of OOPE were completely 
inhibited in NS after 7  h (Figure 1A). Meanwhile,  
L. monocytogenes could be completely inhibited after a treatment 
with 2 MIC of OOPE in LB after 7  h (Figure 1B).

Determination of Intracellular Adenosine 
5′-Triphosphate Concentrations
As shown in Figure 2, the intracellular ATP concentration of 
L. monocytogenes CMCC 54004 was significantly reduced after 
treatments with different concentrations of OOPE for 30  min 
(p  <  0.05), compared to the control group. Leakage of ATP 
in the cells of L. monocytogenes with the treatment of 2 MIC 
OOPE was detected to have lower ATP concentration than 
those of the control and 1 MIC OOPE. In addition, as the 
concentration of OOPE treatment increases, the intracellular 
ATP concentration in L. monocytogenes cell decreases.

Changes in Membrane Potential
As shown in Figure 3, compared with the control group, the 
fluorescence intensities of L. monocytogenes CMCC 54004 cells 
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treated by 1 MIC and 2 MIC of OOPE were significantly 
increased (p  <  0.05). It indicated that OOPE can cause the 
depolarization of L. monocytogenes cells. In addition, there is 
no difference in fluorescence intensity between the cell treatments 
with 1 MIC and 2 MIC of OOPE (p  >  0.05).

Sodium Dodecyl Sulfate-Polyacrylamide 
Gel Electrophoresis Analysis of  
Bacterial Proteins
The SDS-PAGE image illustrated the effect of OOPE treatment 
on bacterial proteins of L. monocytogenes CMCC 54004 
(Figure 4). The result showed that compared with the control 
group, the bacterial protein bands of L. monocytogenes CMCC 
54004 treated by 1 MIC of OOPE begin to weaken after 
3  h. As OOPE treatment time increases, the bacterial protein 
bands become weaker. In addition, most of the bacterial 

protein bands of L. monocytogenes disappeared after treatment 
with OOPE for 6  h.

Transmission Electron Microscope 
Observation of Cell Morphology
The cell morphology of L. monocytogenes CMCC 54004 cells 
treated by different levels of OOPE (0 MIC, 1 MIC, and  
2 MIC) was observed (shown in Figure 5). The untreated 
strains showed regular cell morphology, with a normal short 
rod shape, intact cell structure, and a smooth and compact 
surface (Figure  5A). After treatment with 1 MIC of OOPE 
for 4  h, the cells showed morphological damage such as 
detachment of the cytoplasmic membrane from the cell wall, 
leakage of intracellular components, and deformation of cell 
(Figure 5B). Meanwhile, the cells treated by 2 MIC of OOPE 
displayed more severe cell collapse and leakage (Figure 5C).

A

B

FIGURE 1 | Reduction of L. monocytogenes CMCC 54004 with treatments with different concentrations OOPE in NS (A) and LB (B). Error bars denote SD. 
Different letters denote significant differences between treatments within the same incubation time points (p < 0.05).
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DNA Cleavage Analysis
As shown in Figure 6, compared with the control group, the 
DNA bands of L. monocytogenes CMCC 54004 after exposure 
to OOPE were faint and became much fainter as the concentration 
of OOPE increased. Furthermore, after treatment with 2 MIC 
of OOPE for 4 h, the DNA bands of L. monocytogenes disappeared.

DISCUSSION

Phenolic products consisting of polyphenol, flavonoids, and 
tannic acid have been reported to have satisfactory antibacterial 

activity against food-borne pathogens (Borges et al., 2013). Some 
studies have evaluated the antibacterial effects of ferulic acids, 
phenyllactic acid, and sugarcane bagasse extract (mainly containing 
phenolic substances) against L. monocytogenes strains, with MIC 
of 1.25 mg/ml (Zhao et al., 2015; Ning et al., 2017). In addition, 
the MICs of gallic acid, sugar beet molasses polyphenols, and 
cardoon polyphenols against L. monocytogenes strains were 
reported to be  1.60, 5, and 2.5–10  mg/ml, respectively (Borges 
et  al., 2013; Chen et  al., 2017; Dias et  al., 2018). In this study, 
the MIC of OOPE against eight L. monocytogenes strains was 
1.25  mg/ml, which suggested that the bacteriostatic activity of 
OOPE was worth affirming compared to the above natural extracts.

FIGURE 2 | Differences in intracellular ATP concentrations of L. monocytogenes 
CMCC 54004 following treatments with OOPE at 0 MIC, 1/8 MIC, 1/4 MIC, 1/2 
MIC, 1 MIC, and 2 MIC. Values represent the means of independent triplicate 
measurements. Error bars denote SD. Different letters denote significant 
differences between treatments within the same incubation time points (p < 0.05).

FIGURE 3 | Differences in membrane potentials of L. monocytogenes 
CMCC 54004 following treatments with OOPE at 0 MIC, 1 MIC, and 2 MIC. 
Values represent the means of independent triplicate measurements. Error 
bars denote SD. Different letters denote significant differences between 
treatments within the same incubation time points (p < 0.05).

FIGURE 4 | SDS-PAGE analysis of L. monocytogenes CMCC 54004 proteins treated with OOPE at 0 MIC and 1 MIC. Lane M: marker. Lanes 1, 3, 5, and 7: 
treated with 0 MIC of OOPE for 3, 6, 9, and 12 h, respectively. Lanes 2, 4, 6, and 8: treated with 1 MIC of OOPE for 3, 6, 9, and 12 h, respectively.
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In this study, the intracellular ATP concentration was 
significantly reduced after treatments with OOPE, which  
was consistent with the antibacterial action of OOPE  
against C. sakazakii and B. cereus (Fei et  al., 2018, 2019). 
Similarly, Bendali et  al. (2008) found that the antibacterial 
effect of the phenolic compounds of mangosteen against  
L. monocytogenes is related to the decrease in intracellular 
ATP level and suggested that the loss of ATP was allowed 
to be  released during formation of pore complexes in  
the cells. In addition, Khan et  al. (2017) reported that the 
loss of inorganic phosphate and K+ in cells caused the 
reduction of intracellular ATP because the cells will consume 
available ATP in order to reaccumulate these ions. Shi et  al. 
(2016) considered that the increased cell membrane 
permeability after treatments with natural product resulted 
in the release of ATP.

Resting membrane potential, as an important predictor  
of cell survival, was associated with cell antibiotic uptake 
and bactericidal action (Bot and Prodan, 2009). Our results 
showed that OOPE caused the immediate depolarization of 
L. monocytogenes cell membranes, which was considered as 
one of the important bacteriostatic pathways. Similarly, cell 
membrane depolarization was found in C. sakazakii and 
Escherichia coli cells after exposure to lipoic acid and carvacrol 

and was considered to be associated with less negative charges 
inside the cells (Silverman et  al., 2003; Shi et  al., 2016;  
Khan et  al., 2017).

Differences in bacterial protein contents between untreated 
cells and ones treated with natural-occurring substance can 
be  used to reveal the possible antibacterial action (Wang 
et  al., 2015). Current studies suggested that after treatments 
with OOPE, the protein levels of L. monocytogenes cell were 
significantly reduced or almost disappeared. A similar action 
approach has been found by Chen et al. (2017), who illuminated 
that the bacterial protein bands of food-borne pathogens, 
including Staphylococcus aureus, L. monocytogenes, E. coli, and 
Salmonella typhimurium, became slighter and even disappeared 
after treatments with beet molasses polyphenols. Furthermore, 
the decrease in bacterial protein was considered to be related 
to reduction in protein synthesis and protein loss due to the 
increase in membrane permeability (Zeng et  al., 2010;  
Fei et  al., 2018).

TEM observation could help visually reveal the changes 
in cell morphology and cytoplasm of tested cells (Xing et al., 
2009). After treatments with OOPE, the cell morphology 
of L. monocytogenes was severely destroyed and was 
accompanied by a large leakage of cell fluid, leading to cell 
death. Similar results have been reported by Barbosa et  al. 
(2015), who found cell lysis, damage of cell wall, and leakage 
of cell contents occurred in L. monocytogenes treated by 
oregano essential oil containing thymol and carvacrol. In 
addition, the study of Borges et  al. (2013) indicated one of 
the important reasons why ferulic and gallic acids can inhibit 
the growth of food-borne pathogenic bacteria was the 
irreversible changes in membrane change and leakage of 
intracellular components.

DNA, as the main genetic material, is considered the 
cornerstone of life’s activities and is closely related to  
the bacterial growth, development, and inheritance (Cui  
et  al., 2018). Combining the results of DNA fragmentation 
in this study, it can be  supposed that OOPE may inhibit 
DNA synthesis or promote the cleavage of DNA of  
L. monocytogenes. Similarly, clove oil-containing phenols can 
inhibit the growth of L. monocytogenes, and DNA fragmentation 
appeared in treated cells (Cui et  al., 2018). Besides,  
Wang et  al. (2017) suggested that the phenolic components 

FIGURE 6 | DNA cleavage activity of L. monocytogenes CMCC 54004 
strains treated with OOPE at 0 MIC, 1 MIC, and 2 MIC. Lane M: marker. 
Lane 1: control group. Lanes 2–4: treated with 1 MIC of OOPE for 2, 4, and 
10 h, respectively. Lanes 5–7: treated with 2 MIC of OOPE for 2, 4, and 10 h, 
respectively.

A B C

FIGURE 5 | TEM images of L. monocytogenes CMCC 54004 cells (40,000×) (A) untreated for 4 h, (B) treated with 1 MIC of OOPE for 4 h, and (C) treated with 2 
MIC of OOPE for 4 h.
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not only reduced the amount of DNA in cells by increasing  
cell membrane permeability and destroying the cell  
morphology but also bound to the minor groove of genomic 
DNA, resulting in changes in the secondary structure and 
morphology of DNA.

In conclusion, the present study indicated that OOPE has 
significant antibacterial activity against L. monocytogenes, and 
its antibacterial action was related to lower intracellular ATP, 
cell depolarization, decrease in bacterial protein and DNA, 
and cell fluid leakage due to destruction of cell morphology. 
These findings demonstrated that OOPE has potential as a 
food preservative to reduce the risk of contamination of  
L. monocytogenes. However, OOPE safety and specific 
application in food preservation need to be  researched in 
the future.
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