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Abstract 

Alcohol use disorder (AUD) is likely associated with complex transcriptional alterations 
in addiction-relevant brain regions. We characterize AUD-associated differences in cell 
type-specific gene expression and chromatin accessibility in the caudate nucleus by 
conducting a single-nucleus RNA-seq assay and a single-nucleus RNA-seq + ATAC-
seq (multiome) assay on caudate tissue from 143 human postmortem brains (74 with 
AUD). We identified 17 cell types. AUD was associated with a higher proportion of 
microglia in an activated state and more astrocytes in a reactive state. There was 
widespread evidence for differentially expressed genes across cell types with the most 
identified in oligodendrocytes and astrocytes, including genes involved in immune 
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response and synaptic regulation, many of which appeared to be regulated in part by 
JUND and OLIG2. Microglia-astrocyte communication via interleukin-1 beta, and 
microglia-astrocyte-oligodendrocyte interaction via transforming growth factor beta 1 
were increased in individuals with AUD. Expression quantitative trait loci analysis 
revealed potential driver genes of AUD, including ADAL, that may protect against AUD 
in medium spiny neurons and interneurons. This work provides a thorough profile of the 
effects of AUD in the human brain and identifies several promising genes for further 
study. 

 

Introduction 

Excessive alcohol use creates many serious physical, emotional, and social problems 
and is responsible for about 3 million deaths worldwide each year.1 Many alcohol-
attributable deaths in the United States result from alcohol use disorder (AUD) 
(nccd.cdc.gov/DPH_ARDI). AUD is a serious and common psychiatric disorder that is 
characterized by excessive alcohol consumption and consequent physiological features, 
alongside psychological and interpersonal problems stemming from preoccupation with 
and a loss of control over drinking.2 In addition to excessive alcohol consumption, the 
risk of developing alcohol use disorder (AUD) depends on both genetic and 
environmental factors. While recent large-scale genome-wide association studies 
(GWAS) have identified hundreds of variants associated with alcohol consumption3,4 

and AUD5-7, it is not yet clear how these variants contribute to AUD.  

Beyond these predisposing differences in the static genome, AUD is likely associated 
with dynamic alterations in gene expression and chromatin conformation, plausibly in 
brain regions associated with onset and maintenance of motivated and rewarding 
behaviors, stress responsivity and cognitive control. The consumption of alcohol, or 
chronic exposure to ethanol modifies gene expression. An early study using microarray 
analysis to study the effects of chronic ethanol consumption in the nucleus accumbens 
of rats found significant changes in expression in many genes8. Subsequent bulk RNA-
sequencing (RNA-seq) studies have uncovered differentially expressed genes in 
several brain regions, including the hippocampus,9 prefrontal cortex10,11, and the 
striatum12.  

However, the individual brain regions represent a diversity of cell types that may bear 
unique transcriptional signatures. These cell-specific patterns cannot be identified in 
bulk RNA sequencing data, even with computational deconvolution techniques. Single-
cell/single-nucleus RNA sequencing has enabled measurement of the distribution and 
characterization of different cell types in a tissue sample and of gene expression in each 
of these individual cells. An early single-nucleus RNA sequencing (snRNA-seq) study 
examined gene expression in nuclei from the prefrontal cortex of individuals with and 
without AUD.13 Despite a small sample size (7 individuals), they identified seven major 
cortical cell types, and found differences in expression associated with AUD within six 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.606355doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606355
http://creativecommons.org/licenses/by-nc-nd/4.0/


cell types, notably in astrocytes, oligodendrocytes and microglia, including in 
neuroinflammation-related genes.  

Changes in gene expression may have manifold etiologies. One likely epigenetic 
precursor is the extent of accessible chromatin that exerts a cis-regulatory effect on 
gene expression. For example, a recent study, using an assay for transposase-
accessible chromatin with sequencing (ATAC-seq14), identified differences in chromatin 
accessibility associated with chronic and acute alcohol exposure in the rat amygdala15. 
However, AUD-associated linkages between open chromatin regions and gene 
expression may be regionally and cell-type specific. The advent of single nucleus 
multiome experiments, that is, co-assaying both chromatin accessibility and gene 
expression within the same cell, provides remarkable opportunities to draw causal 
inferences regarding mechanisms underlying AUD-associated gene expression. 

Along with the putamen, the caudate nucleus comprises the dorsal striatum (and more 
broadly, the basal ganglia), a key component of the executive control loop that is 
recruited in the onset and maintenance of AUD.16 The caudate has been implicated in 
cue-elicited activation, dopamine increase, and in subjective reports of craving.17,18 In 
animal models, chronic ethanol exposure alters neural circuits in the basal ganglia19,20 

with a recent study reporting differences in gene expression in the dorsal striatum of 
alcohol-preferring rats21.  A transcription-wide association study found that, among 13 
human brain tissues, the caudate was the region with the most genes whose predicted 
expression was associated with problematic alcohol use, a trait that combines AUD with 
problematic alcohol drinking5. However, the caudate harbors multiple cell-types22 and 
cell-type-specific characterization of the AUD-associated transcriptome in the human 
caudate is lacking.  

To meet this gap in knowledge, we sought to provide a comprehensive view of AUD-
related gene expression and chromatin accessibility differences in specific cell types 
within in the human caudate nucleus and infer mechanisms underlying these changes. 
Here, we performed a high-throughput snRNA-seq experiment on human postmortem 
samples from the caudate nucleus of 143 donors, 74 with and 69 without AUD. We 
obtained transcriptomic data from over 1.1 million cells. To compare the transcriptome 
with the open chromatin status of the same cells, we also performed a sn-multiome 
experiment on samples from these same brains. This dual-experiment approach 
allowed us to both robustly identify rare cell types and measure small differences in 
gene expression while also providing a measure of both gene expression and chromatin 
accessibility in the same nuclei. We identified AUD-associated differences in gene 
expression and chromatin accessibility in different cell types, the biological pathways 
underlying these differences, and AUD-associated differences in transcription factor 
activity and cell-cell communication in major glial cell types (Fig. 1). This study provides 
a comprehensive profile of AUD-related differences in the caudate nucleus and 
identifies potential mechanisms of AUD and novel directions for further exploration. 
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Results 

Characterization of 17 Major Cell Types in the Caudate Nucleus  

Samples from the caudate nucleus of post-mortem brains from the New South Wales 
Brain Tissue Resource Centre at the University of Sydney were sequenced in the sn-
Multiome assay using a 10X Chromium system, in which transcription levels and 
chromatin accessibility were measured in the same nuclei, and most also sequenced in 
the 10X HT snRNA-seq assay. After demultiplexing and data processing, samples with 
< 200 cell barcodes were removed, leaving 163 samples – 82 with and 81 without AUD; 
128 male and 34 female. Low quality nuclei were identified – based on number of 
genes, number of molecules, and percentage of mitochondrial DNA (see ‘Initial Quality 
Control’ in Online Methods) – and removed from all further analyses, leaving gene 
expression levels for 1,307,323 nuclei and chromatin accessibility (ATAC-seq) for 
267,100 of these nuclei (Demographics are in Supplementary Tables 1-2, and detailed 
experimental procedures are in Online Methods). Graph-based clustering of the snRNA-
seq data of the 163 samples identified 17 distinct cell clusters (Fig. 2A, B). Three 
subtypes of medium spiny neurons (MSNs, the GABAergic projection neurons of the 
striatum) were identified: D1-type MSNs, D2-type MSNs, and a third subtype marked by 
both DRD1 and DRD2 expression (D1/D2 neurons). Four populations of GABAergic 
interneurons were identified, including parvalbumin-expressing fast-spiking (FS), 
neuropeptide Y/somatostatin/nitric oxide synthase-expressing low threshold-spiking 
(LTS), calretinin-expressing (CR), and cholecystokinin-expressing (CCK). A small 
cluster of cholinergic neurons was also identified (Ach). In addition to neurons, several 
glial cell populations were observed, including oligodendrocytes (the most prevalent cell 
type; 28.2% of the nuclei), oligodendrocyte progenitor cells (OPCs), astrocytes, 
ependymal cells, and microglia. Other cell types identified include non-microglial 
macrophages, endothelial cells, and vascular smooth muscle cells.  

Glutamatergic neurons were also found; but because the caudate is known not to 
contain cell bodies of excitatory neurons, their presence might be due to inclusion of 
parts of another region. Therefore, twenty samples that contained >10% of 
glutamatergic neurons were removed from all subsequent analyses (Supplementary 
Tables 1, 2), leaving 143 samples (74 with AUD, 69 without; 115 male, 28 female) with 
gene expression data for 1,121,762 nuclei, 250,537 of which also had ATAC data. 
There was no significant difference in relative abundance of cell types between samples 
from individuals with AUD and those without (Extended Data Figure 1).  

Graph-based subclustering was performed for several cell types separately, using cells 
from the 143 samples. There were four subclusters of microglia, which roughly 
correspond to different states of microglial activation (Fig. 2C, Extended Data Fig. 2, 
Supplementary Tables 3-4). Subcluster 1 ("Resting Microglia") uniquely expressed 
genes specific to quiescent microglia, such as P2RY12 and CX3CR1, and was enriched 
for pathways relating to microglia migration. Subclusters 2 and 3 were both enriched for 
immune response-related genes, with subcluster 2 (“Inflammatory Microglia”) highly 
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expressing genes involved in inflammation, such as TLR2. Subcluster 3 (CD83+ 
Microglia) was enriched for genes governing microglia activation, such as CD8323. 
Subcluster 4 (“Phagocytosing Microglia”) was marked by high expression of genes 
involved in endocytosis and phagocytosis. There was a significant increase in the mean 
proportion of “Inflammatory Microglia” (subcluster 2) in individuals with AUD: 31%, as 
opposed to 23% in control samples (padj = 0.027). Individuals with over 50% of 
microglia cells in the inflammatory state predominantly had AUD (70%, compared to 
52%) (Fig. 2D). There was a significant increase with age in the mean proportion of 
microglia in the inflammatory state in individuals with AUD (p = 0.029). 

A larger astrocyte subcluster (“Synaptic Astrocytes”) was marked by higher expression 
of excitatory amino acid transporters 1 and 2 (both glutamate transporters), glutamate 
receptor 2 (an AMPA receptor subunit), and glutamate synthase, suggesting that these 
astrocytes may play a role in maintaining glutamatergic synapses (Fig. 2E, 
Supplementary Tables 5-6). The other subcluster (“Structural Astrocytes”) was marked 
by higher expression of cytoskeleton-related protein-coding genes GFAP and DCLK1, 
extracellular matrix protein tenascin C, as well as CD44, coding for a protein involved in 
cell adhesion and migration, and might be more involved in structural support or tissue 
repair. 

Finally, there were two subclusters of both D1 and D2-type neurons, representing matrix 
and striosome compartments,24 based on expression of genes specific to either the 
matrix or striosome regions of the striatum25 (Extended Data Fig. 2-3). 80% of D1 
neurons and 83% of D2 neurons were within the matrix compartment, which makes up 
approximately 85% of the striatum.24 There was not a significant difference in subcluster 
proportion by AUD status in either astrocytes or D1 and D2-type neurons. 

 

AUD-Associated Differences in Gene Expression 

We performed differential gene expression analyses in thirteen major cell types in which 
there were greater than 50 cells of a given cell type in more than 10 individuals with and 
10 without AUD. We utilized a pseudobulk approach using the 143 samples, summing 
counts across cells within each sample for each cell type, with sex, age, and ethnic 
origin as covariates. Samples were removed on a cell type-specific basis if the sample 
contained less than 50 cells of that cell type (See Supplementary Table 7 for a summary 
of the number of pseudobulk samples created for each cell type).  

Eight cell types each contained over 700 differentially expressed genes (DEGs) 
(adjusted p value (padj) < 0.2) (Fig. 3A, Supplementary Table 7). Most DEGs had small 
effect sizes (e.g., in astrocytes, the average absolute log2 fold change was 0.17). In 
each of these cell types, more genes had higher expression in individuals with AUD 
than had lower. Many of the DEGs were differentially expressed in multiple cell types. 
Notably, astrocytes and oligodendrocytes had 833 DEGs in common, and D1 and D2 
neurons had 538 DEGs in common (Extended Data Fig. 4). The differences in gene 
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expression were weakly correlated (Pearson correlation) within different neuronal cell 
type and within different non-neuronal cell types (ranges = 0.1-0.83 for neuronal cell 
types and 0.05-0.27 for non-neuronal cell types) (Fig. 3B, Supplementary Table 8). 
AUD-related expression differences within D1 and D2 neurons were more highly 
correlated (r = 0.83). However, D1/D2 neurons were much less correlated with either D1 
or D2 neurons (r = 0.41 and 0.39 respectively). 

Gene set enrichment analysis using pathways from the Reactome database26 showed 
that genes that differ in expression with respect to AUD were enriched in hundreds of 
pathways in many cell types (Fig. 3C, Supplementary Table 9). Successive hierarchical 
and manual grouping of pathways revealed that many immune response pathways – 
such as the adaptive immune system, innate immune system, and cytokine signaling in 
immune system – were enriched in cells from individuals with AUD in multiple cell types. 
In individuals with AUD, DEGs in oligodendrocytes were enriched for several pathways 
associated with synaptic regulation and depolarization, such as “Neurotransmitter 
Receptors and Postsynaptic Signal Transmission” and “Voltage Gated Potassium 
Channels”. D1/D2 and FS neurons had decreases in gene expression within pathways 
reacting to translation and metabolism.  

 

AUD-Associated Differences in Chromatin Accessibility 

For cells in which both gene expression and chromatin accessibility information was 
available, the chromatin accessibility (combined reads for each cell type, see Extended 
Data Fig. 5 for cell type distribution for snATAC-seq cells) of several cell type-specific 
genes were plotted for the region surrounding the transcription start sites (TSS) 
(Extended Data Fig. 6). The chromatin accessibility signal for each cell type, which 
included cells from individuals with and without AUD, showed a strong signal near the 
TSS of its respective marker genes. The open chromatin regions (peaks) in each cell 
type showed varying degrees of similarity. Thirty-six percent of all open chromatin 
regions were shared among neuronal and non-neuronal cell types, while 34% of all 
peaks were unique to neurons and 30% unique to non-neurons (Fig. 4A). D1 neurons 
and D2 neurons had very similar open chromatin regions (Jaccard index = 0.8) while 
having less similarity with D1/D2 neurons (Jaccard index = 0.47). Astrocytes, 
oligodendrocytes, and OPCs had moderately similar open chromatin regions, with 
Jaccard indices of approximately 0.4 between these cell types (Fig 4B, Supplementary 
Table 10).  

To determine the AUD-associated differences in chromatin accessibility for each cell 
type, we calculated the differentially accessible chromatin regions (DARs) – i.e., open 
chromatin regions that differed in accessibility between individuals with AUD and those 
without, again using a pseudobulk approach with the same 143 samples and the same 
covariates. Samples were removed on a cell type-specific basis if the sample contained 
less than 50 cells of that cell type (See Supplementary Table 12 for a summary of the 
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number of pseudobulk samples created for each cell type). We identified DARs for eight 
cell types (Supplementary Table 12); of those cell types, only oligodendrocytes, 
astrocytes, D1 neurons, and D2 neurons had over 50 DARs (padj < 0.2) (Fig. 4C). Just 
as with the DEGs, most of the differences were in the positive direction – chromatin 
becoming more open on average in samples from AUD individuals. However, most of 
these chromatin accessibility differences were relatively small – only in 
oligodendrocytes did any DARs surpass an absolute log2 fold change of 0.5.   

We compared the magnitude and direction of chromatin accessibility differences to the 
gene expression differences in genes that had at least 1 DAR in the promoter. The 
AUD-associated DARs and DEGs were in the same direction for most genes in the four 
largest cell clusters (Fig. 4D-G). (88%, 90%, 73%, and 77% in oligodendrocytes, 
astrocytes, D1 neurons, and D2 neurons, respectively). Genes containing positive 
DARs were enriched among DEGs (with a positive enrichment score) in all four cell 
types (oligodendrocytes, astrocytes, D1 neurons, and D2 neurons; padj < 1e-8). The 
genes containing negative DARs were also enriched (with a negative enrichment score) 
among DEGs in astrocytes, oligodendrocytes, and D1 neurons. These results together 
imply that AUD-associated differences in chromatin accessibility are largely associated 
with a corresponding change in cis-gene expression. 

 

Identifying Driver Genes for AUD by Integrating Differential Expression, GWAS, 
and Cell Type-Specific eQTLs 

To identify the genetic component of differential gene regulation, we performed an 
integrative analysis using eQTL identification for each cell type and publicly available 
data. Several GWAS have identified loci associated with AUD-related traits: 496 
independent loci statistically associated with number of drinks per week,3 and 90 
independent loci associated with problematic alcohol use5, including 5 loci associated 
with both traits. These loci overlapped with the genomic locations of 3,406 and 749 
genes, respectively, of which 147 were associated with both traits, making 4008 unique 
genes (Supplementary Table 13). Of these 4008 genes, 518 were differentially 
expressed (padj < 0.2) in astrocytes in our snRNA-seq data, 861 in oligodendrocytes, 
318 in D1 neurons, and 329 in D2 neurons.  

Of these GWAS-associated genes that were differentially expressed, those whose 
expression is also associated with a nearby genetic variant are even more likely to be 
potential driver genes for AUD (Fig 5A). We genotyped the 143 individuals using our 
snATAC-seq data, and tested variants overlapping cell type-specific open chromatin 
regions for an association with expression of nearby differentially expressed, for all cell 
types with at least one DEG (see Online Methods). In nine of the eleven cell types 
tested, we found at least one eQTL associated with a differentially expressed GWAS 
gene. Six cell types contained over 10 genes with an eQTL (Fig. 5B), and some genes 
contained eQTLs in multiple cell types. For example, PPP2R3C, within a locus 
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associated with PAU, was associated with an eQTL with a negative effect size at variant 
rs1056879 in oligodendrocytes, D1/D2 MSNs, and FS interneurons (Extended Data Fig. 
7). PPP2R3C was expressed at lower levels in both cell types from individuals with 
AUD. Combined, these findings suggest that AUD is associated with downregulation of 
this gene’s expression. ADAL, in a locus positively associated with alcohol drinks/week, 
was differentially expressed in D1, D2, D1/D2 and FS neurons, with a cis-eQTL at 
rs3742971 negatively associated with ADAL expression in all four of these cell types 
(Extended Data Fig. 7). 

Genetic variants may be associated with a phenotypic trait (GWAS) and/or affect gene 
expression (eQTL). When the GWAS direction of effect of a variant is in the same 
direction as its association with expression of the gene is it proximally related to, we can 
infer that gene expression is positively associated with the trait, while opposite signs 
imply a negative association of expression with the trait. We further identified the genes 
in which this inferred effect correlated with differential expression findings by comparing 
the log fold change from our differential expression analysis to the GWAS effect size 
multiplied by the sign of the eQTL effect sizes for the same gene. We identified multiple 
genes in several cell types that did have expression changes in the same direction as 
the GWAS-eQTL effect, including PPP2R3C in oligodendrocytes and D1/D2 MSNs (Fig 
5C-D), and ADAL in all MSNs (Fig. 5D-F). The expression of these genes was either 
positively associated with AUD (genes in the first quadrant) or negatively associated 
(i.e., the gene is protective for AUD, genes in the third quadrant). 

 

Cell Type-specific Gene-Regulatory Mechanisms in AUD  

To determine which transcription factors (TFs) and their target genes (TGs) become 
more or less active in AUD, we used LINGER, 27 a recently developed tool for gene 
regulatory network inference from paired single-cell expression and chromatin 
accessibility data (see Online Methods). After constructing the regulatory networks 
using pseudobulk data pooled across all cell types (using the same pseudobulk 
samples tested in the differential accessibility analysis, above), we extracted key TF-TG 
subnetworks (modules) from the network. 

We detected 10 regulatory modules, each including several TFs and TGs from the 
pooled cell population trans-regulatory network (Fig. 6A). We detected differential 
expression in AUD individuals of module 2 genes in astrocytes, module 7 in D1/D2 
MSNs (also marginally significant in oligodendrocytes, p = 0.054), and module 1 in 
microglia (p < 0.05).  Several regulatory modules were significantly enriched for genes 
from the two GWAS studies utilized in our prior analysis. Modules 1, 2, 3, and 10 were 
enriched for genes associated with problematic alcohol use,5 and modules 3 and 8 were 
enriched for genes associated with drinks per week.3 Notably, genes in module 2 in 
astrocytes and in module 1 in microglia both had lower expression in individuals with 
AUD and were associated with problematic alcohol use. Module 1 contained only one 
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transcription factor, ZBTB16, which is a negative regulator of inflammation,28 including 
in microglia.29,30 Module 1 contained 6 target genes that were enriched for 
neurodegeneration in the Human Phenotype Ontology (HP:0002180, padj = 0.017), 
including KLB, a gene associated with alcohol consumption.31  

Module 2 (showing lower expression in AUD in astrocytes) contained 24 TFs and 451 
TGs. To determine which of these genes were more likely to be regulated together, we 
performed weighted gene co-expression network analysis (WGCNA32) of astrocyte 
single-nucleus data, which revealed ten groups of co-expressed genes (Supplementary 
Table 15). Co-expression group 3 (Co.E3) was enriched for differentially expressed 
AUD genes, particularly those with lower expression in AUD samples. There were 75 
genes in Co.E3 overlapping with regulatory module 2 (Fig 6B), suggesting that these 
genes not only show similar expression patterns but also have similar patterns of 
regulation. Functional enrichment analysis identified several enriched pathways, 
including pathways from GO Cellular Component relating to glutamatergic synapses, 
and Nervous System Development and Negative Regulation of Wnt Signaling Pathways 
from GO Biological Process (Fig. 6C). 

Next, we used the expression and accessibility of all target genes, based on the 
constructed trans-regulatory network, to identify key regulatory TFs in each cell type 
underlying the epigenetic and transcriptomic differences between control and AUD 
(called ‘drivers’ in the LINGER method, see Online Methods). Using the differences in 
chromatin accessibility and gene expression of target genes between individuals with 
and without AUD, we identified several key TFs associated with AUD in multiple cell 
types (Extended Data Fig. 8). In astrocytes, six TFs were identified as regulating AUD-
related differences in both expression and chromatin accessibility, including the gene 
JUND (JunD proto-oncogene), identified as having increased regulatory activity in AUD 
in astrocytes. 

Using chromVAR,33 we identified 142 transcription factor motifs with significantly higher 
enrichment in AUD individuals (p < 0.05). Based on structure and binding pattern, 15 of 
the top 20 motifs (by p-value) with significantly higher activity in cells from individuals 
with AUD were related to the bZIP family (Supplementary Table 16, p <= 0.005). The 
bZIP family of transcription factors contain a leucine zipper sequence and homo- and 
hetero-dimerize before binding to their DNA sequence.34 One bZIP TF motif that had 
significantly higher motif enrichment in astrocytes from individuals with AUD is 
recognized by JUND (p = 0.01).  We observed that astrocytes with high JUND motif 
activity were largely in regions with high complement component 3 (C3) expression, a 
marker of reactive astrogliosis.35 There was higher expression of C3 in individuals with 
AUD (1.65 fold, padj = 0.0007) (Fig. 6E). 

We saw a modest decrease in expression of myelin basic protein (MBP), a major 
component of myelin, in oligodendrocytes from individuals with AUD (padj = 0.11). This 
decrease was especially pronounced in a small subset of oligodendrocyte cells: graph-
based subclustering of oligodendrocytes cells revealed three major subclusters (Fig. 
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6G), one of which had significantly lower MBP expression than the other two (Fig. 6H). 
This cluster was also marked by high expression of OLIG2 (Fig. 6H). As with the 
astrocytes, we used chromVAR to identify differences in motif activity and found 616 
motifs with activity significantly associated with AUD (p < 0.05), including OLIG2 (p = 
0.028, Supplementary Table 17) (Fig. 6I). This gene was also implicated in the gene 
regulatory network constructed with LINGER as having increased regulatory activity in 
AUD, based on the chromatin accessibility of its target genes.  

Several genes implicated in the gene regulatory analysis were also identified in our 
integrative GWAS-eQTL-differential expression analyses, as described above, including 
three target genes in astrocytes from regulatory module 2 – BTBD3, LRRC4C, and 
PTBP2. (Extended Data Fig 9). As these three genes are (1) differentially expressed in 
AUD, (2) part of a differentially expressed regulatory module identified in gene 
regulatory network analysis, (3) cis to a variant associated with gene expression, and 
(4) associated with drinks per week, they have strong evidence linking them as potential 
driver genes of alcohol consumption and/or AUD in the caudate. 

 

Activated Microglia Induce Reactive Astrocytes and Oligodendrocytes 

We used MultiNicheNet36, an R package for differential cell-cell communication analysis 
using single-cell data with multi-sample, multi-condition designs, to identify changes in 
cell-cell signaling between microglia, astrocytes, and oligodendrocyte cells and the 
downstream targets of these signaling events. The package uses pseudobulk 
differential expression (using the same pseudobulk samples tested in the differential 
expression analysis, above) of downstream target genes to infer changes in activity in 
upstream ligand-receptor signaling pathways between cell types. We identified three 
ligand-receptor pairs from microglia to astrocytes with high downstream gene activity: 
IL1B-IL1R1, OSM-OSMR, and TNF-TNFRSF1A (Fig. 6J see Supplementary Table 18 
for all ligand-receptor pairs). These three pairs have been shown to work synergistically 
to induce pro-inflammatory cytokines in astrocytes37. Predicted downstream target 
genes of IL1B-IL1R1 in astrocytes included C3, the widely used marker of reactive 
astrocytes, as well as bZIP family TFs FOSL1, XBP1, and CEBPD. We identified a 
single ligand-receptor pair from both astrocytes and microglia to oligodendrocytes with a 
high ligand activity: TGFB1-ITGB8 (Extended Data Fig. 10). 

 

Discussion  

In this study, we present the first comprehensive profile at the single nuclei level of 
differences between individuals with and without AUD in gene expression, chromatin 
accessibility, and cell state in the caudate nucleus, and investigated potential regulatory 
mechanisms underlying these differences. We identified 17 distinct cell types in the 
caudate. Because of our large sample size, our comprehensive profiling enabled a more 
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granular and complete picture of the cell type landscape of the caudate, including rare 
interneuron and non-neuronal populations not identified in contemporary single-cell 
studies, such as a recent single-cell atlas of the brain38. These include a population of 
cholecystokinin/vasoactive intestinal polypeptide-expressing neurons detected in small 
numbers in animal models but previously not detected in the human striatum,22 a 
population of calretinin-expressing neurons, knowledge of which has been extremely 
limited,22 and a small cluster of vascular smooth muscle cells, a cell type which has 
recently been linked to neurovascular coupling39; a recent study has linked 
neurovascular coupling with chronic alcohol exposure in mice40. 

We identified thousands of genes differentially expressed in a range of cell types and 
characterized the accompanying differences in chromatin accessibility. The AUD-
associated chromatin differences were correlated with expression differences, as 
expected. In every cell type, genes making up immune pathways – such as 
cytokine/interferon response, innate immune system, and complement cascades – were 
overrepresented among genes differentially expressed in the caudate from individuals 
with AUD. This extends previous findings that chronic alcohol exposure is associated 
with neurodegeneration and an increased neuroimmune response in both neurons and 
glial cells41.   

An increased proportion of microglia showed an inflammatory gene expression profile in 
those with AUD. Chronic alcohol exposure has been shown to cause microglial 
activation in mice, leading to neuroinflammation.42 Indeed, gene regulatory network 
analysis revealed that ZBTB16 is a key regulator whose expression is decreased in 
AUD. ZBTB16 is known to counteract microglial M1 activation,29 and its knockout in 
mice caused increased microglia and autism-like and schizophrenia-like behaviors.30 
Thus, the increased inflammatory response in microglia in AUD could be due in part to 
decreased ZBTB16 activity. There is also evidence that the release of cytotoxic 
molecules associated with microglial activation may cause neuronal damage and 
contribute to neurodegenerative diseases.43 Together, this suggests that the chronic 
inflammatory response in microglia could be in part driving AUD symptoms and 
changes in other cell types.  

In astrocytes from individuals with AUD there was significantly higher expression of 
astrocyte reactivity marker C3. This extends to the caudate the previous evidence that 
inflammation evoked by ethanol exposure is accompanied by reactive astrogliosis.8,44 

Furthermore, the cells with increased C3 expression also had significantly higher 
predicted activity of bZIP transcription factors such as JUND, suggesting that changes 
in these transcription factors may be regulating astrocytes as they undergo reactive 
astrogliosis. Gene regulatory network analysis identified a group of genes with similar 
patterns of trans-regulation that had decreased expression in AUD. These genes were 
overrepresented with gene sets related to glutamatergic synapses, consistent with 
previous work linking the disruption of glutamate homeostasis in astrocytes to AUD.44 
Other enriched pathways in these co-expressed and regulatory genes in astrocytes 
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include nervous system development and negative regulation of Wnt signaling. A recent 
study has also implicated the disruption of Wnt signaling in the striatum of rats as an 
effect of high cocaine self-administration45. Together this suggests that decreased 
regulation of Wnt signaling, especially in astrocytes, may play an important role in 
addiction. 

In oligodendrocytes, we observed differences in expression and chromatin accessibility 
in thousands of genes, and enrichment in biological pathways relating to 
neurotransmitter uptake and depolarization. We also observed that the gene encoding 
myelin basic protein had slightly, but significantly, lower expression in individuals with 
AUD. There is evidence that action potential propagation through axons can be 
regulated by oligodendrocyte depolarization.46 In pathological conditions such as 
excitotoxicity, excessive neurotransmitter release from neurons can lead to an 
excessive intracellular Ca2+ flux into oligodendrocytes, damaging myelinating 
processes.47 Lower MBP expression was limited to cells marked by higher expression of 
OLIG2 (Fig 6G-H). OLIG2, a master regulator in mature and developing 
oligodendrocytes, has been shown to have higher activity after brain injury,48 and has 
been extensively linked to myelination: one study found that replacing Olig2 with its 
dominant-active form in rodents led to decreased expression of MBP,49 and another 
study showed that deletion of the Olig2 gene accelerated remyelinating processes.50 
This suggests that our observed increase in OLIG2 activity in AUD individuals may be in 
part lead to dysregulation of myelination in oligodendrocytes. 

Cell-cell communication analysis revealed that signaling involving proinflammatory 
molecules IL-β, TNF, and oncostatin M from microglial cells to astrocytes is higher in 
individuals with AUD, concordant with the hypothesis that activated microglia induce 
neurotoxic reactive astrocytes35. These three molecules have been shown to work 
synergistically in several cell types, including in astrocytes, to induce pro-inflammatory 
and neurotoxic molecules, such as nitric oxide51 and prostaglandin E(2).37 Although 
reactive astrocytes can induce death of neurons and oligodendrocytes, we did not 
observe a significant difference in relative proportions of neuronal cell types and 
oligodendrocytes between individuals with and without AUD. We found increased 
signaling via TFGB1-ITGB8 from both microglia and astrocytes to oligodendrocytes. 
TGF-β1 signaling is known to increase after injury, and studies have shown that ethanol 
exposure induces TGF-β1 signaling in rats.52,53 Previous work has shown that TGF-β1 
expression increases in astrocytes and microglia in animal models of cerebral 
ischemia,54 and another study has shown that TGF-β1 signaling plays a role in 
myelination in oligodendrocytes.55 

We DEGs and DARs were highly correlated between D1- and D2-type medium spiny 
neurons, which are components of the direct and indirect pathways, respectively, of the 
basal ganglia. Similar biological pathways were enriched in individuals with AUD, such 
as pathways relating to RNA processing (‘RNA Metabolism’, ’Processing of Capped 
Intron-Containing pre-mRNA') and immune response (‘Innate Immune System’, 
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complement-related pathways). Recent studies have also found dysregulation of 
neuroimmune genes in neurons in several brain regions in mice56. We observed a small 
cluster of medium spiny neurons expressing both D1 and D2 dopamine receptor genes. 
This MSN type, variously described as eccentric MSNs, D1H, and D1/D2 hybrid 
MSNs,25,57 has been observed in mice,57,58 primates,25 and humans,59 but its association 
with AUD has thus far been unknown. The pattern of gene expression changes in these 
neurons was less correlated with the other MSN types and different biological pathways 
were enriched: ‘HDMs Demethylate Histones’ was the most highly enriched pathway in 
AUD individuals, while many metabolic and translational control pathways were 
negatively enriched, i.e., having lower than expected expression in AUD individuals. 
These differences from the classical D1 and D2 neuron types suggest that these 
neurons may play a distinct role in the caudate. Indeed, these neurons have been 
shown to be morphologically distinct from D1 and D2-type MSNs, with a smaller cell 
body, less expansive dendrite structure, and fewer spines, and were differently affected 
by treatment with a denervating agent, implying a complementary functional role,25 
which may explain the distinct pattern of differences we observed in this neuronal 
subtype.   

Using GWAS data and eQTL identification, we found several genes in multiple cell 
types with strong evidence of being linked to AUD. For example, the variant rs1412825, 
located within a locus positively associated with drinks per week,3 was negatively 
associated with expression of the gene PPP2R3C in both oligodendrocytes and D1/D2 
MSNs. This, combined with our finding that PPP2R3C had significantly lower 
expression in oligodendrocytes and D1/D2 MSNs in AUD individuals, suggests that 
PPP2R3C could be protective for AUD. Interestingly, expression of PPP2R3C was 
recently shown to be significantly associated with problematic alcohol use in the nucleus 
accumbens – another part of the striatum – using a transcriptome-wide association 
analysis.60 We observed a single variant, rs3742971, within a locus positively 
associated with problematic alcohol use,5 that was negatively associated with 
expression of the gene ADAL in four neuronal cell types (D1 MSNs, D2 MSNs, D1/D2 
MSNs, and FS interneurons). ADAL had lower expression in individuals with AUD in 
these cells. In mice, elevated Adal levels contribute to low alcohol preference.61 This 
suggests that ADAL may be an important factor in the development of AUD.  

Combining the above integrative analysis (differential expression + eQTL + GWAS) with 
gene regulatory network inference, we identified three genes in astrocytes with strong 
evidence of being key drivers of AUD. One of these, BTBD3, has been shown to 
regulate compulsive-like behavior in mice,62 further evidence of this gene’s potential 
importance in addiction.  

There are several limitations to our study. Examining the caudate from individuals with 
and without AUD allowed us to identify differences in gene expression, chromatin 
accessibility, and pathways related to them. However, the nature of AUD does not allow 
us to differentiate between pre-existing genetic differences and those due to the chronic 
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alcohol consumption that is the hallmark of AUD. Another limitation is that those who 
drink heavily are more likely to smoke. A recent study found that 63.3% of drinkers at 
risk of alcohol dependence were smokers compared with 18.2% among drinkers not at 
risk, and 19.2% among non-drinkers.63 Thus, some differences might be attributed in 
part to smoking. Finally, our results – being adjusted for ancestry status – do not 
capture the transcriptional and epigenetic diversity across ancestry group or measure 
the AUD-associated differences within specific ancestry groups. Indeed, a recent study 
found over 1,000 genes in the caudate nucleus whose expression is significantly 
associated with ancestry and 531 ancestry-dependent cis-eQTLs.64 

In conclusion, we provide a detailed picture of the vast transcriptional and epigenetic 
differences between individuals with AUD and those without in many different cell types 
in the caudate nucleus and illuminate biological mechanisms underlying these 
differences and identify potential driver genes causing these differences in several brain 
cell types. Our work adds novel insights into the etiology associated with AUD, and 
points to key pathways and regulatory genes that are involved.  
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Figure 2: Cell Type Landscape of the Caudate Nucleus. a, UMAP visualization of 1,307,323 nuclei profiled in 10x multiome and 10x HT assays, visualization 
based on snRNA-seq profile. Cells are labeled by cell type and cell type proportion among all snRNA-seq cells. Cell types: Astrocytes (Astro), oligodendrocytes 
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Figure 3: Characterization of AUD-associated Changes in Gene Expression in the Caudate Nucleus. a, Barplot showing number of genes differentially 
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Figure 4: Characterization of AUD-associated Changes in Chromatin Accessibility in the Caudate Nucleus. a, Venn diagram of overlap between the union of chromatin accessibility peaks 
from all neuronal cell types and the union of peaks from all non-neuronal cell types. b, Heatmap of Jaccard similarity between cell types of the set of chromatin accessibility peaks, hierarchically 
clustered by Jaccard similarity. c, Barplot showing number of differentially accessible regions identified in oligodendrocytes, astrocytes, D1, and D2-type MSNs; red and blue indicate positively and 
negatively differentially accessible regions, respectively, and lighter and darker coloring indicate regions in promoter and enhancer regions of genes, respectively. Promoter regions defined as 1kb 
surrounding the transcription start side of each gene.d, Above: Scatterplot of log(2) fold changes of ATAC peak fold changes and gene expression fold changes for genes with at least one 
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Figure 5: Integration of eQTL Analysis with GWAS Data and Differential Expression. a, Overview of DEG-GWAS-eQTL integration. Genes that are 
1) Differentially expressed, 2) Contain a GWAS loci associated with an alcohol-related trait from public GWAS datasets, and 3) Contain an eQTL are more likely to 
be important driver genes in AUD. b, Upset plot showing number of differentially expressed genes (FDR < 0.2) containing a cis-eQTL (FDR < 0.2) and a GWAS loci 
for combinations of cell types. Colors indicate with which phenotypic trait the GWAS loci overlapping the gene is associated. PAU = Problematic alcohol use. c, 
For astrocytes, differential expression log fold change (AUD vs Control) plotted against GWAS effect size (using the variant within the loci with the smallest p-value),
multiplied by the eQTL effect size, for each gene with a significant eQTL (FDR < 0.2). Shape indicates with which phenotypic trait the GWAS loci overlapping the 
gene is associated. PAU = Problematic alcohol use. d, e, f, as (c), for oligodendrocytes (d), D1 neurons (e), and D2 neurons (f).
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Figure 6: Cell Type-specific Gene Regulatory Networks Associated with AUD. a, Dotplot of the change in average expression between AUD and control 
samples of genes within 10 regulatory modules, as determined by gene regulatory network analysis in LINGER (see Methods). Size of dot represents p-value and 
color represents t-value of the difference in average gene expression. Left two columns display enrichment of module genes in the set of genes siginficantly 
associated with problematic alcohol use (left column, see Zhou, et al.) and drinks per week (right, see Saunders, et al.). b, Above: For astrocytes, heatmap showing 
Jaccard index between genes belong to the 10 regulatory modules, and 10 co-expression modules, as calculated by WGCNA (see methods). Below: For astrocytes, 
p-value of a t test, testing the difference of average expression of genes in each co-expression module, between AUD and control individuals. DEG_1>0 indicates 
higher expression in AUD indivuduals, and DEG_0>1 indicates higher expression in control individuals. Numbers in parentheses indicate number of genes 
belonging to each module, and bolded number indicate number of genes overlapping between the regulatory module and co-expression module. c, Functional 
enrichment results (GO:Cellular Component and GO: Biological Process databases) for the 75 genes overlapping regulatory module 2 and Co-expression 
module 3. Numbers marked by * indicates adjusted p-value of enrichment. d, UMAP of astrocyte cells split into cells from control and AUD indivuals, colored by 
JUND motif enrichment (red, as calculated by chromVAR, see Methods) and by log-normalized C3 expression (green). Yellow indicates high expression of C3 and 
high JUND motif enrichment. e, Boxplot of the log of chromvar motif activity score for the JUND motif for AUD and Control samples in astrocytes. f, Boxplot of the 
log of C3 gene expression for AUD and Control samples in oligodendrocytes. g, UMAP of oligodendrocyte cells, clustered and annotated into three subclusters 
using graph-based clustering. h, Dotplot of MBP and OLIG2 expression for each of the three oligodendrocyte subclusters. Size of dot indicates percentage of cells 
expressing the gene, and color of dot indicates average expression of the gene. i, Boxplot of the log of chromvar motif activity score for the OLIG2 motif for AUD 
and control individuals in oligodendrocytes. j, Circos plot showing the top five ligand-receptor interactions (determined by scaled ligand activity score from 
MultiNicheNet) between astrocytes, oligodendrocytes, and microglia. 
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Extended Data Figure 1: Proportion of Each Cell Type for Each Sample, Grouped by AUD Classification.
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Extended Data Figure 2: D1 Medium Spiny Neurons Subtypes. a, UMAP of D1 MSN cells, colored by 
compartment (either matrix or striosome). b, UMAP of D1 MSN cells, colored by expression of marker genes 
used to assign compartment. c, Dotpot of expression and prevalance of representative marker genes for matrix 
and striosome compartments.
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Extended Data Figure 3. D2 Medium Spiny Neurons Subtypes. a, UMAP of D2 MSN cells, colored by 
compartment (either matrix or striosome). b, UMAP of D2 MSN cells, colored by expression of marker genes 
used to assign compartment. c, Dotpot of expression and prevalance of representative marker genes for matrix 
and striosome compartments.
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Extended Data Figure 4: Number of Differentially Expressed Genes in Multiple Cell Types. Upset plot 
shows the number of genes with expression significantly associated with AUD (padj < 0.2) in different 
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Extended Data Figure 5: snATAC-seq Cell Landscape. UMAP plotting each cell for which snATAC-seq data 
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cell’s snRNA-seq data (see Fig. 2).
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significant.
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Online Methods 

Sample Collection 

The caudate from post-mortem brains of 200 donors were initially included in this study. 
Tissue was obtained from the New South Wales Brain Tissue Resource Centre 
(NSWBTRC), University of Sydney, Australia (https://sydney.edu.au/nsw-brain-tissue-
resource-centre).65  

 

Genotype data processing and imputation 

NSWBTRC samples were genotyped by using UK Biobank Axiom® Array 
(ThermoFisher Scientific, Waltham, MA, U.S.A.). Before imputation, palindromic SNPs 
and SNPs with genotyping rate <95%, minor allele frequency (MAF) <1%, or Hardy-
Weinberg equilibrium P-value < 1E-4 were excluded. Genotype data was imputed by 
using the TOPMed Imputation Server.66 Eagle v267 was used to phase the genotypes 
and Minimac4 v1.2.466 was used for imputation. Data from the Trans-Omics for 
Precision Medicine (TOPMed r3)68 was used as the reference genomes. 

 

Single-cell multiome assay 

Nuclei Isolation for Single-cell Multiome  

200 post-mortem caudate brain samples were utilized in the assay. The 200 specimens 
were divided into 25 pools, with 8 in each pool. The donors in each pool were both 
condition (control or AUD) and sex balanced. For each pool, around 20 mg tissue from 
each donor specimen was collected and combined into a sterilized 2 ml Dounce 
homogenizer. 2 ml chilled NP40 lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 
mM MgCl2, 0.1% Nonidet P40 Substitute, 1mM DTT, 1 U/µl RNase inhibitor) was added 
to the Dounce homogenizer before the tissues were thawed. The tissues were 
homogenized 15x using pestle A, and 10x using pestle B, and were transferred into a 
centrifuge tube to incubate for 2 minutes on ice. After that, 2 ml wash buffer containing 
PBS, 1% BSA and 1 U/µl RNase inhibitor was added and mixed well. The lysed tissue 
was centrifuged at 500 rcf for 5 minutes at 4°C, then washed twice more with wash 
buffer and filtered through 70 µm and then 40 µm cell strainer separately. The pellet 
was resuspended in 2 ml wash buffer and mixed with 3.6 ml Sucrose Cushion Buffer I 
(nuclei PURE prep isolation kit, Sigma) containing 1 U/µl RNase inhibitor. 2 ml Sucrose 
Cushion Buffer I with 1 U/µl RNase inhibitor was added into one 15 ml Beckman Coulter 
centrifuge tube.  After that, the 5.6 ml nuclei suspensions were gently added to the top 
of Sucrose Cushion Buffer I without mixing, and followed by centrifuging at 13,000 x 
rpm (30,000 rcf) (Beckman Coulter ultracentrifuge) with rotor SW40Ti for 45 minutes at 
4°C. The purified nuclei pellet was washed by centrifuging at 300 rcf for 5 min at 4°C 
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with wash buffer, and the washed nuclei pellets was resuspended in wash buffer to 
target ~ 1000 nuclei/μl.   

10X Single-cell Multiome Library Preparation and Sequencing  

Paired ATAC and gene expression libraries were generated following the Chromium 
Next GEM Single Cell Multiome ATAC + Gene Expression User Guide 
CG000338_RevB (10X Genomics, Inc). In brief, the isolated nuclei from a pool of 
samples were first incubated in a transposition mix. The single nuclei master mixture 
containing tagmented single nuclei suspension was loaded into two well of a Next GEM 
Chip J, along with the single cell multiome gel beads and partition oil. The chip was then 
loaded to the Chromium X Controller for GEM generation and barcoding. Barcoded 
transposed DNA and cDNA were amplified after GEMs being released. At each step, 
the quality of cDNA, ATAC library and cDNA library was examined by Bioanalyzer 2000. 
The final single indexed ATAC libraries and the dual indexed gene expression libraries 
were sequenced on an Illumina Novaseq 6000, with index reads of 10 bp + 24 bp, and 
100 bp paired-end reads. 

Cell Ranger ARC Analysis  

Cell Ranger ARC (cellranger-arc-2.0.0, http://support.10xgenomics.com/) was utilized to 
process the raw sequence data derived from the single-cell multiome libraries. Both the 
ATAC and gene expression FASTQ files were processed with the cellranger-arc count 
algorithm. The reference refdata-cellranger-arc-GRCh38-2020-A-2.0.0 (10x Genomics) 
was used. The filtered gene-cell barcode matrices and fragment files were used for 
further analysis. 

 

Single-nuclei RNA-seq assay 

Nuclei Isolation for Single-nuclei RNA-seq  

170 post-mortem caudate brain samples (same individuals as in Multiome assay) were 
grouped into 17 pools, with 10 in each pool. The donors in each pool were both 
condition (control or AUD) and sex balanced. The nuclei isolation for each pool is similar 
to the procedure described for the aforementioned single cell multiome assay. Zero 
point two (or One fifth) unit per microliter of RNase inhibitor was used in the buffers. 

10X HT Single-nuclei RNA-seq Library Preparation and Sequencing  

The Chromium Next GEM single cell 3’ HT reagent kits v3.1 (user guide CG000416, 
10X Genomics, Inc.) was used for the single-nuclei RNA-seq assay. The single nuclei 
suspension from a pool of 10 donor tissue samples were loaded into two wells of a 
Chromium Next GEM chip M to target 60,000 cell recovery per well. The chip was run 
on a Chromium X (10x Genomics). Single cell gel beads in emulsion containing 
barcoded oligonucleotides and reverse transcriptase reagents were generated. cDNA 
was synthesized and amplified following cell capture and cell lysis, The quality and 
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quantity of cDNA and resulting libraries were examined by Bioanalyzer. The final 
libraries were sequenced on an Illumina NovaSeq 6000. 100-bp reads including cell 
barcode and UMI sequences and 100-bp RNA reads were generated. 

Cell ranger Count Analysis  

Cell Ranger Count (cellranger-count-7.0.1, http://support.10xgenomics.com/) was 
utilized to process the raw sequence data derived from the single-cell multiome 
libraries. Both the ATAC and gene expression FASTQ files were processed with the 
cellranger-arc count algorithm. The reference refdata-cellranger-arc-GRCh38-2020-A-
2.0.0 (10x Genomics) was used. The filtered gene-cell barcode matrices and fragment 
files were used for further analysis. 

 

Demultiplexing 

Cells from each of the 42 sequencing pools (25 from the single-cell multiome assay and 
17 from the single-nuclei RNA-seq assay) were demultiplexed back into their samples of 
origin using the tool Demuxlet69 with default parameters, which uses genotype variant 
information for each sample to predict the sample of origin for each cell barcode, as well 
as identify doublet cells, artifactual libraries generated when two cells are captured in 
the same droplet during library preparation. Between 55% and 75% of cells from each 
pool were identified as singlets and assigned to a sample. The remaining cells 
(identified as doublets or ambiguous) were removed from further analysis.  

After demultiplexing, seven donors with less than 200 cell barcodes assigned were 
removed from all further analyses; all of the remaining 163 donors had over 1,000 
barcodes. These 163 donors were used for all following analyses until the filtering step 
detailed in ‘Sample Filtering’, below. 

 

Initial Quality Control 

Unless specified differently, all following analysis was performed in R (version 4.3.1), 
predominantly utilizing the Seurat70 (v5) and Signac71 (v5) packages.  

A Seurat object was created for each replicate from the HT assay using the gene 
expression count matrix from the Cell Ranger output (34 objects total). Cells with below 
800 or above 11,250 genes, above 125,000 molecules, or above 10% mitochondrial 
RNA were removed from further analysis. These are commonly used quality control 
metrics to remove low-quality cells or multiplets. Each pool was then normalized using 
the scTransform() function in Seurat.  

A Signac object, containing both RNA and ATAC-seq data, was created for each 
replicate from the multiome assay from the hdf5 file from the Cell Ranger output (50 
objects total). Cells with below 800 or above 20,000 genes, below 800 or above 
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500,000 detected RNA molecules, or above 20% mitochondrial RNA were removed 
from further analysis. An additional round of filtering was performed using the ATAC-seq 
data. The following cells were removed from further analysis:  

Cells with less than 100 or over 100,000 features; 

Less than 100 or over 1,000,000 counts; 

TSS enrichment less than 2; 

Nucleosome signal greater than 4; 

Percentage of reads in peaks less than 15%; 

Total number of fragments in peaks less than 800 or over 100,000; 

Ratio reads in genomic blacklist regions greater than 0.05 

Between both assays, 1,307,323 cells passed all QC filters.  

 

RNA-seq Integration and Visualization 

After the above quality control, all cells from each of the 34 Seurat objects were 
integrated into the same Seurat object for visualization in the same 2D space. The 
atomic sketch integration method was used, a dictionary learning based procedure 
recently developed in Seurat for large datasets (see 
https://satijalab.org/seurat/articles/parsebio_sketch_integration). Briefly, 5,000 
representative cells were selected from each pool (based on statistical leverage). 
Integration was performed on these sketched cells using the reference-based 
RPCAIntegration method. Then, each cell from each pool was placed in this integrated 
space as well using the ProjectIntegration function.  

To visualize all cells in the same plot, we used functionality in the Seurat v5 and 
BPCells packages to convert each pool to an on-disk BPCells matrix.72 This allowed us 
to merge each object in a memory-efficient way. After merging, the function RunUMAP 
was run on the combined object for 2D visualization.   

 

Cell Type Annotation 

The 1,307,323 cells were divided into 49 clusters using the FindNeighbors and 
FindClusters functions in Seurat. Cell clusters were annotated into known striatal cell 
types based on expression levels of a combination of marker genes curated from 
established studies (Figure 2B).21,22,25,57,73   

 

ATAC-seq Integration and Visualization 
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Each of the 50 Signac objects were processed using the standard ATAC-seq procedure 
in Signac – FindTopFeatures, RunTFIDF, RunSVD – and all pools were then integrated 
using the IntegrateEmbeddings command.  

UMAP visualization was calculated with the RunUMAP command, using the 
integrated_lsi reduction determined in the previous integration step. Cell type labels 
were transferred to ATAC-seq object using the assignments for each barcode 
determined from the RNA-seq data. 

 

Sample Filtering 

Following the above analyses, 20 samples with a proportion of glutamatergic neurons 
greater than 10% were removed, because such a cell-type composition indicates 
potential contamination with non-caudate tissue, leaving 143 samples for the following 
downstream analyses. 

 

Cell Subtype/Substate Annotation and Testing 

Microglia and astrocyte clusters were further divided into four and two subclusters, 
respectively, by performing another iteration of FindNeighbors and FindClusters on 
these individual clusters, using cells from the 143 samples (see above). Subcluster-
specific genes were determined by using the "roc" test within the FindMarkers function 
in Seurat (see https://satijalab.org/seurat/reference/findmarkers). Top 50 genes (based 
on myAUC statistic) were used as input into g:Profiler for each subcluster to determine 
enriched biological pathways specific to that subcluster.  

For testing for a difference in the proportion of cell states in individuals with AUD, the 
mean proportion of cells in each cluster were calculated for each sample, and an 
ANOVA was performed to determine if the mean proportion significantly changed in 
AUD samples as compared to controls. Age, sex, and ethnic origin were used as 
covariates. For this test, we removed samples with fewer than 50 cells of the cell type 
being tested, as these samples contain very few cells of each subcluster and thus their 
mean is more unreliable. 

 

Differential Expression Analysis 

RNA Pseudobulk Samples Creation 

Due to the sparsity of single-cell data, differential expression methods designed to be 
run on the single-cell level often lack high statistical power. To account for this 
challenge, we utilized a pseudobulk approach. To create the pseudobulk data, for each 
cell type, the gene expression matrices of each cell of that cell type were combined 
(summed) by sample ID. Samples were removed on a cell type-specific basis if the 
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sample contained less than 50 cells of that cell type. See Supplementary Table 7 for a 
summary of the number of pseudobulk samples created for each cell type. Due to a low 
number of samples (less than 10 AUD and 10 control) meeting the >=50 cell criteria, 
differential gene expression analysis was not performed for cholinergic interneurons, 
vascular smooth muscle cells, CCK interneurons, and macrophages. These pseudobulk 
samples were used for the differential expression analysis, below.  

Differential Gene Expression Analysis 

Differential gene expression analysis between AUD and control samples was performed 
for each cell type, as well as the two subclusters of astrocytes and four subclusters of 
microglia, using DESeq2,74 a statistical package designed for bulk RNA-seq data, with 
the default parameters. Briefly, the tool estimates the variance of gene expression and 
then fits a negative binomial distribution to each gene, which accounts for the over-
dispersion of RNA sequencing data, which can result in more accurate p-values. Sex, 
age (as a continuous variable), and ethnic origin were included as covariates in the 
models. Genes with p values of less than 0.2 (corrected for multiple-hypothesis testing 
using the Benjamini-Hochberg method) were deemed significant.  

 

Gene Set Enrichment Analysis 

Gene set enrichment analysis was performed for each cell type that underwent 
differential expression analysis, using the fgsea R package,75 which uses a preranked 
list of genes to determine gene sets that are enriched based on the gene rankings. In 
this case, the AUD vs Control log fold changes from the differential expression analysis 
were used as the ranks, and pathways from the Reactome database were used as gene 
sets. See Supplementary Table 9 for full fgsea results for each cell type. For 
visualization, the top 30 enriched pathways (based on smallest Benjamini-Hochberg-
adjusted p values) in each cell type were selected and hierarchically clustered based on 
number of genes shared between the pathways. Clustered pathways were then 
manually labeled into 25 groups. 

 

Creation of Cell Type-specific ATAC-seq Profiles 

CoveragePlot function in Signac was used for visualization of ATAC-seq signal for 
marker genes. 

Peak calling was performed separately for cells from each of the 16 cell types 
(excluding glutamatergic neurons) using the CallPeaks function in Signac with default 
parameters. The function uses MACS276 for peak calling.  

Gene-level chromatin accessibility information calculated from GeneActivity function 
(with default parameters) in Signac, defined as total counts in gene body and promoter 
region. 
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For comparing similarity of peaks called between cell types, the Jaccard index was 
used, defined here as the number of peaks in one cell type overlapping a peak in the 
other cell type, divided by the union of the peaks in both cell types. 

All cells from the integrated ATAC-seq object, from the 143 samples determined after 
the ‘Sample Filtering’ step, above, were used for the procedures in this section. 

 

Differential Chromatin Accessibility Analysis 

ATAC Pseudobulk Samples Creation 

In the same way as the RNA-seq data, pseudobulk chromatin accessibility data was 
created for the ATAC-seq data: For each cell type, the ATAC-seq counts matrices of 
each cell of that cell type were combined (summed) by sample ID, for the 143 samples. 
Samples were removed on a cell type-specific basis if the sample contained less than 
50 cells of that cell type. See Supplementary Table 12 for a summary of the number of 
pseudobulk samples created for each cell type. Due to a low number of samples 
meeting the >=50 cell criteria, differential accessibility analysis was not performed for 
cholinergic interneurons, vSMCs, CCK interneurons, macrophages, ependymal cells, 
LTS interneurons, or endothelial cells. 

Differential Accessibility Analysis 

Differential chromatin accessibility analysis between AUD and control samples was 
performed for each cell type using DESeq2 with the default parameters. Sex, age, and 
ethnic origin were included as covariates in the models. Genes with p values of less 
than 0.2 (corrected for multiple-hypothesis testing using the Benjamini-Hochberg 
method) were deemed significant. Regions residing in promoter regions of genes was 
determined using R package ChIPSeeker.77 Namely, the function annotatePeak() was 
used, with parameters: TxDb = TxDb.Hsapiens.UCSC.hg38.knownGene, 
annoDb="org.Hs.eg.db", and tssRegion = c(-1000, 1000). 

Comparison of Differentially Accessible Genes and Differentially Expressed Genes 

To calculate the association between gene expression and chromatin accessibility 
differences for each gene, we assigned to each gene with at least 1 DAR in the 
promoter region the log2 fold change of the DAR with the highest ATAC signal, as well 
as the log2 fold change of the gene’s expression. 

For the GSEA analyses, the AUD vs Control log fold changes from the differential 
expression analysis were used as the ranks, and genes with at least 1 DAR in the 
promoter region were used as the gene sets, separated into genes with positive log2 
fold changes, and those with negative log2 fold changes. 

 

Identifying Genes Containing Significant GWAS Loci 
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The two GWAS studies (Saunders, et al.3 and Zhou et al.5) utilized in this study defined 
a locus as the region including all variants in linkage disequilibrium of r2> 0.1. For the 
present study, all 1,307 loci associated with the drinks per week (DrnkWk) phenotype 
from Saunders et al. were selected. To identify genes overlapping with these regions, 
gene annotations from UCSC Genome Browser for the hg38 genome assembly 
(implemented in the TxDb.Hsapiens.UCSC.hg38.knownGene R package78) were used. 
This identified 3,406 genes. A comparable process was used to select genes 
overlapping loci from the Zhou et al. study. All 75 loci associated with the problematic 
alcohol use phenotype were selected, which overlapped with 750 known genes from the 
UCSC annotations.  

 

Variant Calling 

Integrated snATAC-seq data were split into single bam files for each of the 143 
individuals using sinto (https://timoast.github.io/sinto/). Duplicated bam files for the same 
sample were merged together with samtools.79 For variant calling, the Sentieon 
germline variant calling pipeline80 was used, namely: 

Removal of duplicate RNA molecules; 

Recalibration of base quality score using GATK’s Base Quality Score  
 Recalibration; 

Variant calling was performed for each sample using the Sentieon’s Haplotyper 
 algorithm; 

Joint variant calling was performed using the DNAseq algorithm; 

Variants were recalibrated using GATK’s Variant Quality Score Recalibration81 
algorithm; variants not passing the recalibration test were filtered out for further 
analyses. 

 

eQTL Analysis 

Expression quantitative trait loci (eQTL) analysis was performed for all SNPs in each 
cell type within 100,000 bases of a differentially expressed gene overlapping a GWAS 
loci and within an ATAC-seq peak from that cell type. tensorQTL82 was used to perform 
the analysis using the map_cis function with default parameters. Variants with minor 
allele frequency < 0.05 were excluded from the analysis.  

 

Gene Regulatory Mechanisms Prediction 

chromVAR83 
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Prediction of motif activities for each cell was performed using the RunChromVAR 
command in Signac. Briefly, chromVAR identifies motifs associated with variability in 
chromatin accessibility between cells83). Differential testing on the chromVAR z-score 
was performed using the FindMarkers function, setting mean.fxn=rowMeans and 
fc.name="avg_diff", so that the fold-change represents the average difference in z-score 
between the groups.  

To make these differential activity motif results more robust, we utilized a pseudobulk 
approach: averaging per-cell motif scores for all cells within a sample of a given cell 
type, taking the log, and then using an ANOVA – with sex, age, and ethnic origin as 
covariates – to test for differences between AUD and control. All samples used for 
differential accessibility testing (see ‘ATAC Pseudobulk Samples Creation’) were used 
for this analysis. 

Gene Regulatory Network Inference 

To build the cell population gene regulatory network, we used LINGER, as described in 
Yuan & Duren, 2024.27 We generated pseudobulk-level expression and chromatin 
accessibility data for each donor and each cell type. Here we used the union set of 
peaks (described above) for ATAC-seq data. as well as a covariate matrix, with sex, 
age, and ethnic origin as covariates to the model. All samples used for differential 
accessibility testing (see ‘ATAC Pseudobulk Samples Creation’) were used for this 
analysis. 

Trans-regulatory module detection by matrix factorization 

To detect key TF-TG subnetworks (modules) from the cell population TF–TG trans-
regulation, we use non-negative matrix factorization (NMF). Before matrix factorization, 
We normalize the trans-regulatory potential matrix by standardizing each row (TF) and 
each column (TG) independently. The standardization each TF ensures that for each 
TF, the average regulatory potential across TGs becomes zero, and the variation in 
regulatory potential across genes has a standard deviation of one. The same 
normalization is applied to each TG so that the effect of the regulator side is also 
normalized. We take the average of these two standardized matrices and set the 
negative values to zeros and use it for downstream analysis. Next, we performed NMF 
on the preprocessed matrix to decompose it into two non-negative matrices, 𝑊 and 𝐻, 
representing module membership of TGs and TFs, respectively. 𝑊 is a 𝑚 by 𝑘 module 
weight matrix for TF, representing module weight of TF, where m is the number of TF. 𝐻 
is a 𝑘 by 𝑛 matrix, representing module weight for TGs, where n is the number of TG. 
To assign TF and TG into specific modules, we normalize the module weight matrix to 
equal sum for different modules. For each gene, we convert the normalized weight 
matrix into proportions by diving the sum of weights across modules. We sort genes 
based on their highest proportion across all modules to select the top 10% of genes and 
assign them to modules for which the gene has the largest score.  
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 This procedure was applied to TF module W matrix and the TG module 𝐻 matrix. Here, 
we identified 10 trans-regulatory modules. 

To uncover AUD-associated regulatory programs in each cell type, we performed 
differential module expression analysis. We first pre-processed the pseudo-bulk gene 
expression count matrix by: (1) normalizing for cell depth, (2) log-transforming, and (3) 
z-scoring expression across all donors. We then estimated module activity in each 
donor as the mean expression of module genes. Using a two sample t-test, we 
identified differentially active modules between control and AUD samples. 

Identification of cis and trans-driver TFs. 

We identify cis and trans driver TFs underlying epigenetic and transcriptome change 
between control and AUD using a linear regression model, 𝑌 =  𝐴𝛽 + 𝛽 + 𝜀. For 
transcriptome drivers, the regression model predicted the log transformation of the gene 
expression fold change between the control and AUD samples (Y) from cell type-
specific TF-TG trans-regulation (A). For epigenetic drivers, the model predicted 
chromatin accessibility changes (Y) from the cell type-specific TF-RE cis-regulation (A). 
Significant TFs from each model indicated TFs driving differential expression and 
chromatin states between conditions through direct epigenetic or transcriptome 
regulation. 

 

Cell-cell Communication Analysis 

To analyze cell-cell communication differences in AUD individuals, we used 
MultiNicheNet,36 an R package for differential cell-cell communication analysis using 
single-cell data with multi-sample, multi-condition designs. All samples used for 
differential expression testing (see ‘RNA Pseudobulk Samples Creation’) were used for 
this analysis. User-set parameters were set as the following:  

MultiNicheNet’s analysis uses a pseudobulk approach, and the minimum number 
 of cells per cell type per sample was set to 10, the recommended default; 

Sex, ethnic origin, and age were used as covariates in the design;  

For a differentially expressed gene to be further considered when calculating 
 ligand activity, we choose for a minimum logFC of 0.50, maximum adjusted p-
 value of 0.2, and minimum fraction of expression of 0.05;  

For the NicheNet ligand-target inference, the top 250 predicted target genes 
 were considered; 

The weights of the prioritization of expression, differential expression and  
 NicheNet activity information was set to the recommended defaults (see   
 https://github.com/saeyslab/multinichenetr); 

Sender cell types were defined as astrocytes, microglia, and oligodendrocytes; 
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Receiver cell types were defined as astrocytes, microglia, and oligodendrocytes; 

Visualization of top 5 ligand-receptor pairs in AUD individuals, based on scaled ligand 
activity score, was created using the make_circos_group_comparison function. 
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