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Properties of synaptic release dictates the core of information transfer in neural

circuits. Despite decades of technical and theoretical advances, distinguishing bona

fide information content from the multiple sources of synaptic variability remains a

challenging problem. Here, we employed a combination of computational approaches

with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging

at single synapses. We describe and calibrate the use of the fluorescent glutamate

sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors,

therefore providing several distinct advantages over slower methods relying on NMDA

receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an

array of statistical methods, we further developed, and validated on surrogate data, an

expectation-maximization algorithm that, by biophysically constraining release variability,

extracts the quantal parameters n (maximum number of released vesicles) and p (unitary

probability of release) from single-synapse iGluSnFR-mediated transients. Together,

we present a generalizable mathematical formalism which, when applied to optical

recordings, paves the way to an increasingly precise investigation of information transfer

at central synapses.

Keywords: optical physiology, synaptic vesicle release, neural coding, synaptic transmission, computational

neuroscience, variational inference

1. INTRODUCTION

Our understanding of the factors that contribute to the stochastic and variable process of synaptic
transmission has improved steadily over the last few decades (Branco and Staras, 2009; Ribrault
et al., 2011; Llera-Montero et al., 2019). It is now generally agreed that, at most glutamatergic
synapses, quantal release does not saturate postsynaptic receptors (Liu et al., 1999, 2003; Umemiya
et al., 1999; McAllister and Stevens, 2000; Nimchinsky et al., 2004) and that variability in trial-to-
trial neurotransmission arises primarily from differences in the profile of glutamate released into
the synaptic cleft (Ribrault et al., 2011). Several presynaptic mechanisms have been proposed to
account for such amplitude fluctuations – uneven packaging of glutamate into synaptic vesicles,
differences in release location within a synaptic terminal, diffusion process in the synaptic cleft
and mode of exocytosis (Choi et al., 2003; Franks et al., 2003; Wu et al., 2007; Richards, 2009).
As an additional factor, multiquantal release has been observed at many central synapses (Auger
et al., 1998; Wadiche and Jahr, 2001; Oertner et al., 2002; Conti and Lisman, 2003; Christie and
Jahr, 2006; Higley et al., 2009; Rudolph et al., 2015), where two or more vesicles are released quasi
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simultaneously at single synapses in response to the same
electrical stimulus. Since each of these sources of variability
impact the transmission of information differently, it is therefore
important to parse out the relative proportion of different sources
of variability at central synapses.

Several experimental methodologies have been developed
to monitor transmission at single synapses (Malinow and
Tsien, 1990; Dobrunz and Stevens, 1997, 1999; Oertner et al.,
2002; Rudolph et al., 2015). Here we describe an optical-
based technique and provide a number of validation and
calibration experiments for the intensity-based optical glutamate
sensor, iGluSnFR (Marvin et al., 2013), for optical quantal
analysis at central synapses. We further provide a detailed
theoretical and quantitative analysis for estimating fundamental
features of quantal glutamate release. Leveraging experimental
and statistical techniques, combined with a theoretically sound
model, we present a formalism that is well poised to parse
out the structure of variability and information content at
central synapses.

2. RESULTS

To study quantal features of glutamate release at central synapses,
we turned to a genetically encoded intensity-based glutamate
sensing florescent reporter (iGluSnFR). The versatility and
usefulness of iGluSnFR – a diffuse, plasma membrane-bound
optical reporter of glutamate release – has been demonstrated
in both microscopic and macroscopic brain compartments
(Borghuis et al., 2013; Marvin et al., 2013; Park et al., 2014;
Parsons et al., 2016; Xie et al., 2016), although it has relatively
seldom been used to study features of glutamate release at single
spines (Soares et al., 2017; Jensen et al., 2019). To this end,
we introduced iGluSnFR along with the morphological marker
mCherry to CA1 neurons in hippocampal organotypic slices
using biolistic transfection several days prior the experiments
(Figure 1A; Soares et al., 2014, 2017). A detailed description of
these procedures is available in Soares et al. (2014). This overall
approach was favored since it allows for sparse transfection
thereby allowing us to resolve optical signals from single spines
with high contrast. Transfected neurons were imaged by two-
photon microscopy using an excitation wavelength of 950
nm (Figure 1B) which we found to allow detection of both
the iGluSnFR and mCherry fluorescent signal simultaneously.
Dendritic spines in the apical dendritic arbor of transfected CA1
neurons were targeted for optical quantal analysis experiments.
These contacts are likely the postsynaptic targets of Schaffer’s
collateral axons.

2.1. iGluSnFR-Mediated Monitoring of
Endogenous Glutamate Release
Pyramidal neurons were identified by their localization in the
slice and morphology. Namely imaging targeted to the CA1
region and we sought the clear presence of basal and apical
spinous dendritic arborisation. The morphological identification
was typically carried out by solely monitoring mCherry
fluorescence. However, the baseline iGluSnFR fluorescence was

typically fairly high, homogenously distributed across neuronal
compartments and spines were readily observable, thereby
readily allowing for broad cell-type identification. A typical
experiment began by randomly surveying the apical arbor of
an iGluSnFR-expressing cell for dendritic spines that exhibit a
time-locked fluorescent responses to electrical stimuli delivered
via a glass pipette positioned in stratum radiatum. In a few
experiments, Alexa 594 was included in the internal solution
of the stimulating electrode for direct visualization (Figure 1B),
however, in the majority of experiments this dye was omitted
and the stimulating electrode was maneuvered in the slice
under visual guidance solely using differential interference
contrast microscopy.

The optical detection of synaptic events that are eminently
short-lived, spatially distributed and scarce is inherently
challenging and deserves attention. In principle, imaging in
frame scanning mode would be ideal to monitor synaptic
fluorescent events from large dendritic regions, but it is
hindered by limited signal to noise ratio and temporal resolution
(Figure 1C). We thus carried out line scan experiments wherein
multiple neighboring spines were monitored simultaneously
(Figure 1D). This approach offered the ability to survey multiple
spines at once with a scanning frequency (>500 Hz) sufficient
to visually identify rapid glutamate transients. To circumvent
the relative paucity of synaptic events due to the probabilistic
nature of release, paired-pulse electrical stimulation (50-100
ms inter-stimulus interval) were delivered to increase the
likelihood of release during this initial probing phase. Lastly,
realistic range of stimulus intensities was determined by parallel
and historical whole-cell electrophysiological recordings by the
same experimenter. Once a responsive spine was identified,
a short line scan was redrawn through the spine and its
parent dendritic compartment to capture the spatial profile of
glutamate release. The electrical stimulation was then gradually
reduced to the minimal intensity that still evoked time-locked
responsiveness. This last step was taken in order to reduce the
potential of signal contamination by glutamate spillover from
neighboring synapses. The identified spines routinely stayed
responsive to electrical stimulation for long durations (> 1 hour),
opening the door to the repetitive low frequency sampling
methodology required for building a dataset sufficient for optical
quantal analysis.

2.2. Extraction of Regions of Interest
Spatial discrimination of iGluSnFR signals emanating from either
spine or dendritic compartments was achieved by analyzing
the intensity profile across the line scan, which was drawn
orthogonal to the parent dendrite. The trough between spine
and dendrite peaks was used to split the signal of the line scan
into the two compartments (Figure 1E) to isolate spine- and
dendrite-specific iGluSnFR transients (Figure 1D, right). Larger
amplitude iGluSnFR transients were generally observed in the
spine compartment, indicating that the density of glutamate
release was mostly concentrated at the spine. When present,
the dendritic fluorescence transients were of smaller amplitudes
and co-varied with that recorded from the spine compartment,
suggesting that dendritic signals were likely the result of

Frontiers in Synaptic Neuroscience | www.frontiersin.org 2 August 2019 | Volume 11 | Article 22

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Soares et al. Parsing Out the Sources of Variability in a Central Synapse

FIGURE 1 | Optical detection of glutamate release at single synapse using an genetically encoded glutamate sensor. (A) Biolistic transfection of CA1 hippocampal

neurons with the intensity based glutamate sensor, iGluSnFR. (B) Experimental setup. A glass electrode filled with a fluorescent dye (Alexa 594) was positioned in the

stratum radiatum adjacent to an iGluSnFR-expressing cell and was used to deliver electrical stimuli to the slice to evoke endogenous glutamate release. Neurons were

typically transfected with both iGluSnFR and mCherry and expressed variable amount of the fluorescent proteins. (C) A comparison of iGluSnFR transients recorded

at the same spine using either a frame-scan (spatial resolution > time resolution) or a line-scan (time resolution > spatial resolution) configuration. The fastest frame

scan sampling rate of our optical system is 65 ms per frame, whereas rates of ≈ 1.4 ms perline were typically obtained in line-scan mode. (D) A line scan experiment

is shown where multiple adjacent spines are surveyed simultaneously for evoked iGluSnFR transients. Shown at right is the time series resulting from a continuous line

scan before and after an electrical stimulation. Spines 3 and 4 showed responsiveness to the electrical stimulus in this trial. (E) Isolation of spine and dendrite specific

signals from a line scan is achieved by averaging pixels in their respective compartments, which was inferred by the presence of a dip in the mCherry signal. (F) The

amplitude of spine iGluSnFR signals [same spine as in (D)] plotted against the corresponding amplitude of dendritic signals. A linear regression results in a significant

positive correlation (slope 0.21, adjusted R-squared = 0.496). (G) Clearly distinguishable spine successes and failures demonstrate the probabilistic nature of

vesicular release at these synapses.

spillover from the parent spine rather than from release from
a distinct, neighboring synapse (Figure 1F). As such, we used
only the spine compartment signal for all subsequent analyses.
Finally, and consistent with the probabilistic release of glutamate
vesicles at these synapses, release failures were readily observed
(Figure 1G). These results demonstrate that iGluSnFR is a useful
optical reporter for single-spine quantal analysis.

2.3. Glutamate vs. Post-synaptic Calcium
Sensors for Opto-Quantal Analysis
The difficulty in unambiguously and routinely study
neurotransmitter release from a single synapse due to the
lack of spatial resolution afforded by electrophysiological
recordings has been a longstanding shortcoming. By providing
spatial information, optically-based approaches for quantal
analysis offers promise of a solution to this problem, yet are
limited by temporal resolution generally poorer than that
afforded by cellular electrophysiology. By using two-photon
uncaging of MNI-glutamate to precisely control the amount
and timing of glutamate released onto single spines, we next

sought to examine the kinetic performances of iGluSnFR by a
side-by-side comparison with other commonly used reporters
of glutamate release for quantal analysis. Specifically, we sought
to compare with electrophysiological monitoring of synaptic
AMPAR activation and optical recordings of quantal analysis
using NMDAR-mediated calcium influx by calcium indicators.
Since optical recordings of calcium influx using the GCaMP
family of genetically encoded calcium-indicators are becoming
increasingly popular, we turned our attention to GCaMP6f, a fast
variant of the GCaMP family.

We obtained whole-cell recordings from CA1 neurons
transfected with either iGluSnFR of GCaMP6f (Figure 2A)
and voltage-clamped the cell at -70 mV. While continuously
imaging the spine of interest (at ≈ 715 Hz), a second
laser line tuned to 720 nm delivered a 1 ms light pulse
to the tip of the spine in the presence of MNI-Glutamate
(2.5mM), to induce uncaging-evoked optical transients recorded
simultaneously with EPSCs (Figures 2B,C). In response to
repetitive presentation of nominally constant concentration of
glutamate by 2P uncaging at single synapses (Figure 2D), we
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FIGURE 2 | Features of iGluSnFR-mediated responses. (A) Whole-cell

recording of an iGluSnFR-expressing CA1 neuron. (B) Optically-evoked

iGluSnFR transients were generated at a single spines by two-photon

uncaging of MNI-glutamate. A continuous line scan was imaged at 950 nm

while a second laser line tuned at 720 nm was used to deliver the uncaging

events (1 ms; red arrow). (C) Spine iGluSnFR fluorescence transients from 10

consecutive uncaging stimuli (single trials) are displayed in the top panel along

with the corresponding uncaging evoked EPSCs recorded at the soma

(below). (D) A kinetic comparison of iGluSnFR and GCaMP6f. (E) Coefficient of

variation (CV) of response peak amplitudes to a constant glutamate uncaging

stimulus. The uEPSCs and iGluSnFR signals were recorded simultaneously in

one set of experiments and the GCaMP6f signals were recorded using the

exact same stimulus and experimental conditions in interleaved experiments.

In response to an identical 1 ms light pulse used to uncage MNI-glutamate at a

single spines, the decay (F) and rise (G) kinetics of iGluSnFR transients were

much faster than calcium transients recorded from GCaMP6f-transfected

neurons, but still slower than corresponding uncaging-evoked excitatory

postsynaptic currents. *indicates p < 0.05. (H) The rapid kinetics of iGluSnFR

enables peak-detection at stimulation frequencies that are suitable for studying

synaptic facilitation and depression. (I) NBQX, an antagonist of AMPA-type

glutamate receptors, has no effect on the amplitude or kinetics of evoked

iGluSnFR transients (n = 50 stimuli in each condition; p > 0.05 in all

(Continued)

FIGURE 2 | cases, paired students t-test). Time to peak (after stimulus) was

used to quantify rise times in this scenario rather than the 20–80% rise time

method used previously on uncaging-evoked iGluSnFR transients (G) since a

subset of evoked transients with small amplitudes were significantly impacted

by optical noise leading to misleading measurements using the 20–80% rise

time method.

compared the performance of 3 distinct reporters of glutamate
transients at single synapses: (i) iGluSnFR transients; (ii)
GCaMP6f transients (i.e., NMDAR-dependent calcium influx)
and, (iii) AMPAR activation (uncaging-evoked EPSCs; uEPSCs).
We found that the trial-to-trial variability of the iGluSnFR
responses was remarkably low, even lower than that of uEPSCs
(Figure 2E). In keeping with the more complex and convolved
nature of NMDAR- and calcium-mediated optical detection
of glutamate release, GCaMP6f-mediated signal displayed the
largest variability of the 3 approaches (Figure 2E). iGluSnFR
transients also displayed much faster decay kinetics (Figure 2F)
and rise time (Figure 2G) compared to GCaMP6f, and were
remarkably close but still slower than the kinetics of uEPSCs
(p < 0.001 for both comparisons, unpaired student’s t-test).
The kinetic properties of iGluSnFR in response to glutamate
uncaging therefore favorably compares to those of the calcium-
sensitive organic dyes Alexa 4FF (Lee et al., 2016) and Oregon
Green BAPTA-1 (unpublished observations) that are significantly
slower. The fast kinetics of iGluSnFR enable discrimination
of successive stimulus peaks at higher stimulus frequencies
(50-100 ms inter-stimulus interval; Figure 2H) without the
need of signal deconvolution. Moreover, neither the amplitude
nor the kinetics of the iGluSnFR responses were affected by
the competitive AMPA receptor antagonist NBQX (n = 4,
Figure 2I), which may offer some flexibility to avoid specific
experimental complications, such as minimizing excitability
for experiments in highly recurrent networks or minimizing
plasticity induction by repetitive and prolonged stimulation
paradigms. Altogether, the iGluSnFRmethod for quantal analysis
offers more experimental flexibility and faster kinetics than
that afforded by NMDAR-mediated calcium influx detected
by GCaMP6f.

2.4. Biophysics of Glutamate Release
Variability
The goal of quantal analysis is to infer release properties
of glutamate release from a distribution of recorded release
magnitudes. Quantal analysis of synaptic release has been
performed for decades and the formalism has evolved and
adapted as new and improved recording technologies were
developed. For didactic purposes, we revisited here some of
the basic assumptions commonly held for performing quantal
analysis of glutamate release events at single synapses.

We started by exploring the most appropriate continuous
distribution to describe the inherent variability expected of a
glutamate quantum. Our aim was to derive from the biophysical
features of synaptic vesicles a mathematical description of the
expected distribution of glutamate release amplitudes, along
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FIGURE 3 | Modeling Synaptic Glutamate Transients Following Vesicle Release. (A) A schematic description of the measurements and calculation used to infer

synaptic vesicle volumes. This analysis was based on the assumptions that: (i) the distribution of synaptic vesicle diameters is uniform and; (ii) the shape of a synaptic

vesicle is roughly spherical. (B) A simulated distribution of inner synaptic vesicle diameters using electron microscopy measurements described in Qu et al. (2009)

[outer vesicle diameter = 38.7 nm; CV = 0.13; n = 10,000 vesicles, (Qu et al., 2009)]. The inner diameter of synaptic vesicles was calculated by subtracting the

thickness of the vesicular membrane (2 × 6 nm). (C) A simulated distribution of inner volume of synaptic vesicle volumes derived from the simulated distribution of

diameters presented in panel B, assuming that each vesicle volume can be approximated by the volume of a sphere. Assuming equal vesicular glutamate

concentration, it is expected that the distribution of total vesicular glutamate content mirrors the distribution of vesicle volume. (D) Fitting of various continuous

distributions to the modeled volume distribution, ordered in the legend based on the Bayesian Information Criteria (BIC). (E,F) Theoretical relationship between the

parameters of a gamma distribution and the properties of the vesicle dimensions. Shape (black line) and scale parameter values (blue line) are shown against the

mean vesicle diameter for CVd = 0.13. (E) Electron microscopy observations of mean vesicle diameters are shown with red dots and vertical dashed line. Shape and

scale parameter values as a function of CVd for mean vesicle diameter of 38.7 nm. (F) Electron microscopy observations of CVd = 0.13 is shown with red dots and

vertical dashed line.

with their expected variability. Based on previous theoretical
studies, we expect that the variability of inner vesicular volumes
(Figure 3A) will be a potent determinant of the variability
in the amount of glutamate molecules per quantum (Bekkers
et al., 1990). What variability of glutamate release do we
expect from fluctuations in vesicle diameters only? In order
to find this, we first constrain the concentration of glutamate
within synaptic vesicles to be constant across the many synaptic
vesicles of a given neuron. In addition, we assume faithful
release of a single vesicle (in this case release probability
p = 1) and that the relative location and loading of vesicles
does not introduce a significant amount of variability in the
activation of post-synaptic receptors. We will revisit each of
these assumptions sequentially as we assemble the mathematical
synapse model.

Electron microscopy studies have shown that the variability
in vesicle diameters at hippocampal synapses is normally
distributed. Using the measurements obtained from one such
study (mean vesicle diameter 38.7 nm, CVd = 0.13 Qu
et al., 2009) we generated a simulated distribution of 10,000
inner vesicle diameters (Figure 3B) and a corresponding
distribution of the inner vesicle volumes (Figure 3C), assuming
the shape of synaptic vesicles is approximated by a sphere.
Inner vesicle diameters and volumes were calculated by first
subtracting the thickness of the plasma membrane (12 nm
Qu et al., 2009). This volume distribution can be readily
calculated by a change in variable of the diameter distribution

(Bekkers et al., 1990; Barri et al., 2016). In line with the
cubic relationship between volume and diameter, the resulting
distribution (Figure 3C) is non-Gaussian as it displays an
important rightward skew.

To compare the possible distributions of volumes emanating
from a range of experimentally derived vesicular diameter, we
explored a set of continuous distributions (normal, gamma,
Weibull, lognormal) that could accurately describe the skewed
distribution of inner vesicle volumes simulated. Using the
Bayesian Information Criteria (BIC) as a scoring metric, we
ranked the distributions with the degree with which they fit the
simulated distribution (Figure 3D). We found that the gamma
distribution provided the best approximation of the empirical
distribution of vesicle volumes, followed by the Weibull,
lognormal, and finally the normal distribution. By assuming
equal loading of vesicular glutamate concentration into vesicle,
we would therefore expect that the distribution of glutamate
content per vesicle would be dictated by that of vesicle volumes
(that is, a gamma distribution). These findings are intriguing
when we consider that many previous studies of quantal analysis
have reported using a Gaussian mixture model of release events
(Larkman et al., 1997; Hardingham et al., 2010; Malagon et al.,
2016; Jensen et al., 2019), although some have used skewed
distributions (Lavoie et al., 2011; Barri et al., 2016) and at least
one study a gamma distribution (Bhumbra and Beato, 2013).

The gamma distribution is described by two parameters: a
shape parameter γ and a scale parameter λ and it is expressed in
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terms of the gamma function Ŵ(·). When used to approximate
the distribution of vesicle volumes, v arising from normally
distributed diameters, we write

p(v) ≈ g(v|γv, λv) =
vγv−1e−v/λv

λ
γv
v Ŵ(γv)

(1)

where λv and γv are the parameters for the volume distribution.
These paremeter values can be found by matching the first two
moments of simulated (Figure 3) and theoretical (Equation 1)
distributions. Equation 1 has a right-skew controlled by the
parameter γv. Conveniently, its mean (E[v] = γvλv), its variance
(Var[v] = γvλ

2
v), its skewness (skewness = 2/

√
γv) and its

coefficient of variation (CVv = 1/
√

γv) are simple expressions of
these parameters. Also of considerable practicality, the addition
of two independent gamma-distributed variables results in a
random variable that is itself gamma-distributed with shape
parameter equal to the sum of the shape parameters. As pointed
out by Bhumbra and Beato (2013), these properties allow for a
clearer treatment glutatmate release variability without explicitly
compromising the validity of the gamma-release model.

To relate the parameters of the gamma distribution with
vesicle dimensions, we calculated the expected range of γv and
λv as a function of the mean vesicle diameter (µd, Figure 3E) and
diameter coefficient of variation (CVd; Figure 3F) for simulated
vesicle volume distributions. The shape parameter is unaffected
by changes in mean diameter, but the scale parameter increases
nonlinearly with increasing diameters. In addition, the shape
parameter decreases and the scale parameter increases when
the CV of vesicle diameter increases. It is therefore possible to
interpret an increase of the scale parameter as an increase in the
mean vesicle diameter, but only if the shape parameter shows no
concomitant changes.

What are the theoretical predictions of vesicle volume
variability for optical measurements of cleft glutamate? Using
the mean diameter µd and the variability of diameters CVd

from electron microscopy recordings, we predict λv = 0.15 and
γv = 6.8. Importantly, these parameters give rise to a variability
of volumes CVv of 0.38. In theory, unequal loading of vesicular
glutamate content, neurotransmitter diffusion and observational
noise should increase the coefficient of variation once we
consider the glutamate reported on the post-synaptic membrane
instead of vesicle volumes. Since these factors are likely to be
captured by another skewed distribution (Franks et al., 2003;
Bhumbra and Beato, 2013; Bird et al., 2016), it is appropriate
to use a gamma distribution to capture the total variability
of univesicular releases. To consider a possible discrepancy
between the variability of univesicular releases and that of vesicle
volumes, we use γ and λ to parameterize the distribution of
univesicular releases, not to be confused with the parameters
of the theoretical volume distribution γv and λv. In fact, since
additional sources of variability can only increase the CV, our γv
should be considered an upper bound on γ . To summarize, we
derived biophysical constraints for the parameters of a gamma-
distributed set of univesicular glutamate release events (UVR)
using an experimentally-derived distribution of inner vesicular

volumes and the assumption of equal glutamate loading across
vesicles of different sizes.

2.5. Observational Error and iGluSnFR
Transduction
In principle, the experimental readout expected from the non-
uniform distribution of cleft glutamate will arise in part from
the cubic transform outlined above but it can be corrupted
by loading, diffusion and by non-optimality of the iGluSnFR
signal transform. In order to begin addressing the issue of
iGluSnFR transform, we sought to experimentally interrogate
as directly as possible the relationship between the quantity of
glutamate release at single spines and the amplitude of iGluSnFR-
mediated transients. By varying the amount of glutamate released
onto dendritic spines through step-wise increments in uncaging
laser power during simultaneous optical and electrophysiological
recordings (Figure 4A), we found that the relationship between
uncaging laser power and iGluSnFR amplitude was linear
(Figure 4B) within the expected physiological range of glutamate
release, as determined by the average amplitude of uEPSCs
(Béïque et al., 2006; Soares et al., 2014, 2017; Lee et al.,
2016). Furthermore, we found an inverse relationship between
the uncaging stimulus intensity and the CV of IGluSnFR
responses (Figure 4B). Taken together, iGluSnFR can linearly
report changes in glutamate concentration at dendritic spines
with high precision.

We then estimated a convolved metric of observational
error CVopt to be 0.15, by measuring the variability of the
iGluSnFR transients upon presentation of nominally fixed
amounts of glutamate concentrations by repetitive uncaging
at a fixed laser intensity (around 30 mW; Figure 2E); while
uEPSC amplitudes were within an expected physiological range
(Figure 4E). At most, adding this measurement noise brings
the combination of diameter and optical variability to the

upper bound
√

CV2
v + CV2

opt = 0.40. The formalism outlined

above therefore predicts the distribution of optical signals when
glutamate is released from a presynaptic terminal. We next
considered the variability imposed by the stochastic nature of
vesicle releases.

2.6. Release Failures
Large amount of variability is attributed to the stochastic
failure of vesicle release (Calvin and Stevens, 1968) upon
action potential arrival. To formally include this process in our
predicted distribution of optical signals, we considered a mixture
model wherein we stochastically sampled from one of many
independent sub-distributions, which are called components.
Since in certain conditions, multiple vesicle release (MVR) occur
at central synapses (Wadiche and Jahr, 2001; Oertner et al., 2002;
Conti and Lisman, 2003; Christie and Jahr, 2006), we consider
a MVR model for which univesicular release (UVR) is a special
case. When n vesicles are docked and ready to be released and
when each of these vesicles are released independently with
probability p, the number of vesicles released will follow the
binomial distribution. It is important here to clarify that the
parameter p is not to be confused with the synapse’s overall
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FIGURE 4 | Linearity and variability of optical reporter. (A) iGluSnFR transients generated at a single spine by two-photon glutamate uncaging at different uncaging

laser powers (mW = milliwatts of power after the objective). (B) A positive linear relationship between uncaging laser power and the amplitude of iGluSnFR transients

at a single spines (Adjusted r2 = 0.997) indicates that the transduction is linear within this range. The relationship between the CV of single-trial iGluSnFR amplitudes

and uncaging laser power is included as a second axis.

release probability (Pr) – the probability that any of the n
docked vesicles will release. It is also important to note that the
formalism does not specify whether or howmultivesicular release
is distributed in nanodomains. Irrespective of their sub-micron
localization, we will expect that at times all vesicles have failed to
release, in which case we will sample from the failure distribution.
Assuming a Gaussian measurement noise – here called optical
– for the failure distribution, we obtain the gamma-Gaussian
mixture for observations of fluorescence amplitude F

p(F) = (1− p)nG(F|0, σ 2
opt) +

n
∑

k= 1

(

n

k

)

pk(1− p)n−kg(F|kγ , λ)

(2)
where σ 2

opt is the variance of the optical noise (derived in

Section 2.5) and G(F|µ, σ 2) is a Gaussian distribution of mean
µ and variance σ 2. In Equation 2, k ranges from 1 to n and
refers to the possible number of vesicles released. The binomial
coefficient pk(1− p)n−k establishes the probability of observing k
vesicles, while each time that k vesicles are released, we sample
from a gamma distribution g(F|kγ , λ) with a shape parameter
corresponding to k times the univesicular shape parameter γ .

We make three observation on this gamma-Gaussian mixture
model of glutamate release at single synaptic contacts. Firstly, we
distinguish the vesicular release probability p from the probability
of any vesicle being released Pr = 1 − (1 − p)n. Secondly, the
mean and the variance of this distribution now depend on the
maximum number of vesicles released n, namely µ = npγ λ and
σ 2 = σ 2

opt(1−p)n + λ2γ np
(

1+ γ (1− p)
)

. Lastly, it can be useful
to analyze themeasured variability,CV , in terms of the variability
of univesicular releases CVUVR = 1/

√
γ , the variability due to

observational error σopt and the variability of a binomial process
CV2

bin
= (1 − p)/np. In this way we can parse the variability in

three terms (see Methods for derivation)

CV2 =
σ 2
opt(1− p)n

(npγ λ)2
+ 1

np
CV2

UVR + CV2
bin. (3)

This expression allows us to parse out the variability in terms of
distinct sources.

Overall, for the experiments described in Figure 1, the
gamma-Gaussian mixture should capture the variability of
glutamate-dependent optical events originating from: Optical
(various optical measurement noise), Binomial (the stochastic
behavior of releasing n vesicles independently), and Unitary
(release variability of associated with each vesicle release).
The latter comprises variability from vesicle sizes, loading and
diffusion. It has a total of five parameters: σ 2

opt the variance of the

optical noise, n the number of vesicles, p the probability of each
vesicle being released, λ the scale and γ the shape parameters of
the gamma distribution.

2.7. Inferring Release Parameters From
Quantal Peaks
An intuitive approach to discriminate release events from failures
lies in classifying a trial as a failure of release if the observed
peak fluorescence is less than twice the standard deviation
of the optical noise, and success otherwise (Figure 5A). From
the distribution of success amplitudes, one then extracts the
mean and coefficient of variation, called potency and CVsuc,
respectively. It is not immediately clear, however, how false
positives and false negatives arising from a thresholded detection
method influences the estimates of potency and CVsuc. In this
section, we use computer simulations to determine the bias
introduced by optical noise on these measures.

To quantify the bias arising from classification errors, we
generated surrogate amplitudes and calculated the potency
and CVsuc using a threshold corresponding to two standard
deviations of the optical noise (Figures 5A,B). We compared
these estimates to potency and CVsuc calculated without
classification errors. We found that for γ = 2 and λ = 0.15,
classification errors leads to an over-estimation of the potency
for all release probabilities (Figure 5C). This overestimate was
restricted to the lower range of shape-parameter (Figure 5D)
and scale parameter values (Figure 5E). These biases are overall
relatively small, but the effects of optical noise are more dramatic
on the calculation of CVsuc. Given γ = 2 and λ = 0.15,
we found that CVsuc is drastically underestimated for all p
(Figure 5F). This underestimate arises in a range of shape and
scale parameters with low values (Figures 5G,H). In the case of
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FIGURE 5 | Dependence of success distribution on synaptic release properties. (A) Peak amplitude probability in the univesicular release model. All peak amplitudes

occurring below the detection threshold (vertical dotted line) are classified as failures. The underlying distribution of successes (dashed black curve) shows a small

portion of false negatives. (B) Peak amplitude probability in the multivesicular release model with n = 2 vesicles. The distribution underlying one- and two-vesicle

released are shown as dashed black curves. In (A,B) the probability distributions are drawn as histograms with bin size of 0.01. The mean amplitude of successes

(potency) is shown as a function of the (C) the release probability for fixed shape (γ = 2) and scale (λ = 0.15) (D) as a function of the shape parameter γ for fixed

release probability (p = 0.65) and scale (λ = 0.15) and (E) as a function of the scale parameter λ for fixed release probability (p = 0.65) and shape (γ = 2). The CV of

successes is shown as a function of (F) the probability of release, (G) the shape parameter, and (H) the scale parameter. In (C–H), three curves are shown for n = 1,

2, 3 vesicles. The dashed curve (black) shows the potency under the univesicular model in the absence of optical noise and with a detection threshold at zero.

threshold classificiation of successes and failures, we conclude
that CVsuc will be heavily underestimated when the skewness is
noticeable and the quantal size (γ λ) is small.

Next we investigated the the consequence of skewed
distribution on the identification of quantal parameters n
and p. Common approaches to estimate quantal parameters
are based on the identification of quantal peaks (Larkman
et al., 1991, 1997; Hardingham et al., 2010; Malagon et al.,
2016). These approaches assume that the observation of a
peak in the release-amplitude histogram can be read off as
a quantal mode, an assumption that is often difficult to
justify (Clements, 1991; Walmsley , 1995; Ninio, 2007). Peak
identification can be even more problematic when the release
components show an important skew. Indeed, we noted that
mixtures of skewed distributions rarely show quantal peaks
(Figure 6). For instance, a gamma-Gaussian mixture with n = 2
will transition from the absence of quantal peaks (Figure 6A) to
the presence of quantal peaks (Figure 6B) only if the skewness
of the components is reduced beyond the range predicted
from biophysics (Figure 6C). These observations extend the
limitations previously raised (Clements, 1991; Walmsley , 1995;
Ninio, 2007) and show that analysis of quantal peaks is

problematic especially when the distribution of univesicular
release is skewed or only for a very narrow range of release
probability. Since we expect a significant skew from known
vesicle diameters (Figure 3), we sought a different method for
extracting release properties.

2.8. Inferring Release Properties Using
Likelihood Maximization
Maximizing the likelihood function provides an appealing
alternative to feature-based approaches such as Bayesian quantal
analysis (Bhumbra and Beato, 2013), non-stationary fluctuation
analysis (Silver, 2003; Evstratova and Tóth, 2014), or to quantal-
peaks approaches (Larkman et al., 1991). This approach does not
rely on a trial per trial classification of successes and failures.
Instead, the task is to find the set of parameters (n, p, γ , λ,
σopt) that maximizes the probability of observing all recorded
amplitudes given our gamma-Gaussian model. In the case of the
likelihood written in Equation 2, there is no guarantee that only
one such maximum exists, which means that it can be difficult to
find the global maximum. Likelihood maximization algorithms
can greatly help in solving this type of task.
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FIGURE 6 | Quantal peaks are rarely apparent in mixtures of skewed distributions. (A) Peak amplitude probability density function (green curve) of the gamma-mixture

with n = 2 vesicles, a biophysical skewness γ = 6 and release probability p = 0.6. No dip is apparent between the individual components (dashed curves). (B) Peak

amplitude distribution (green curve) of the gamma-mixture model with reduced skewness, γ = 10. A dip (indicated) can be observed between the quantal peaks

(dashed curve). (C) Phase portrait of the presence, or absence, of a dip for a model with two vesicles (n = 2). The presence of a dip is restricted to small skewness

(i.e., large γ ) and a narrow range of release probability (white region). The shaded region represents parameter value combinations not associated with a dip in the

probability density function. The parameter values used in A and B are indicated with red dots.

For our problem, the Expectation-Maximization (EM)
algorithm appears a natural choice since it was developed to
improve parameter inference in mixture models (Dempster
et al., 1977). The EM algorithm has been used previously to
infer synaptic properties, but using different experimental and
computational methodologies (Barri et al., 2016). For efficient
use of this algorithm, it is critical to derive estimation formulas
specific to a given problem. Since we are not aware of any
such estimation formulas for the gamma-Gaussian mixture
(Equation 2), we next describe our adaptation of the EM
algorithm.

The likelihood maximization in the EM algorithm is
associated with the principle of gradient ascent (Xu and Jordan,
1996). Accordingly, it begins with an initial guess, and then
iteratively updates these estimates to gradually maximize the
likelihood L(F|θ , n, σ 2

opt) of observing the N observations of
fluorescence amplitude denoted by the vector F given the
parameters θ = (p, γ , λ). Using an initial guesses θ0 = (p0,
γ0, λ0), the algorithm will have found the optimal value of
each parameter θ̂ = (p̂, γ̂ , λ̂). The parameter n will be treated
as a meta-parameter to the EM algorithm, whose optimum is
obtained by finding the n̂ with its own optimal θ̂ that maximizes
the likelihood L(F|θ̂ , n, σ 2

0 ), or equivalently, minimizes the
negative log-likelihood. The variance of the optical noise, σ 2

0 , can
be estimated independently by calculating the variance of the null
distribution (see Methods).

Typically, a good initial estimate of the parameters can
greatly speed the inference process. In the present case, we
have argued that a good prior on the shape parameter can be
obtained from the biophysics of vesicle release with known,
Gaussian distributed, vesicle diameters (Qu et al., 2009). We
initialize the shape parameter to a value of γ0 = 4. To
initialize the probability of release, we observe that only optical
noise can capture fluorescence amplitudes smaller than zero.
Therefore, we compute the fraction, c, of the total number of
observations falling below zero and equate this to half the failure
probability. This suggests the initialization p0 = 1 − (2c)1/n.
There remains the initial value of the scale parameter. Given

that the mean of fluorescence amplitude of the model is npγ λ,
we use the mean of the observed fluorescence amplitudes µF to
initialize λ0 = µF/np0γ0.

The EM algorithm is iterative and variational. That is, it
first approximates the likelihood by an auxiliary function, which
we will call Q. It then iterates between a maximization of this
auxiliary function (the maximization step) and an improvement
to the approximation by generating a new auxiliary function
(the expectation step). Using b(k|n, p) to denote the binomial
distribution, the likelihood over N observations

L(F|θ) =
N
∏

i= 1

b(0|n, p)G(Fi|0, σ 2
opt) +

n
∑

k= 1

b(k|n, p)g(Fi|kγ , λ)

(4)
is replaced by

Q(θ , θ (t)) =
N
∑

i= 1

µ
(t)
i,0 log

(

b(0|n, p)G(Fi|0, σ 2
opt)

)

+
n
∑

k= 1

µ
(t)
i,k

log
(

b(k|n, p)g(Fi|kγ , λ)
)

(5)

This auxiliary function relies onN(n+1) variablesµ
(t)
i,k
. These are

the posterior probabilities of sampling from the kth component
given a guess of the parameters θ (t).

In the expectation step, we compute the posterior probabilities
for k > 0

µ
(t)
i,k

≡ p(ki = k|Fi, θ (t)) =
b(k|n, p(t))g(Fi|kγ (t), λ(t))

L(Fi|θ (t))
. (6)

The posterior probabilities for k = 0, µ
(t)
i,0 , would need to be

considered only if we were to use the EM algorithm to determine
σopt. Importantly, these posterior probabilities are computed

using the previous guess θ (t) = (γ (t), λ(t), p(t)).
In the maximization step, we compute the new

parameter set, which maximizes the auxiliary function
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θ (t+1) = argmaxθQ(θ , θ
(t)). This is done via three re-evaluation

formulas, obtained by setting the gradient of Q to zero. In what
follows, we will use H(·) to denote the Heaviside function. The
first formula gives an update of p

p(t+1) = 1

nN

N
∑

i= 1

n
∑

k= 1

kµ
(t)
i,k
. (7)

To compute the second, we first calculate the model mean

m(t) = 1

nN

N
∑

i= 1

n
∑

k= 1

µ
(t)
i,k
FiH(Fi) (8)

and then maximize the terms of Q that depend on γ (t+1)

γ (t+1) = argmax
γ

N
∑

i= 1

n
∑

k= 1

µ
(t)
i,k

log

(

g

(

Fi|kγ ,
m(t)

γ p(t+1)

))

, (9)

The third formula updates the scale factor

λ(t+1) = m(t)

γ (t+1)p(t+1)
. (10)

The expectation and maximization step are then repeated in
alternation until convergence, which is defined by a tolerance
value on the likelihood update.

We use these parameter estimates to compute the log-
likelihood using Equation 4. Repeating the EM-method for n
within a physiological range of 1-10 allows us to find the number
of vesicles n̂ which maximizes the log-likelihood

n̂ = argmaxn log L(F|θ̂ , n). (11)

Since the results may depend on the initialization point, we
repeat the procedure with ten different initialization points. The
parameter values associated with the highest likelihood become
our parameter estimates.

2.9. Statistical Inference on Surrogate Data
To determine the precision and the validity of the EM method
for extracting release properties, we apply the method on
simulated data. We assume that the fluorescence amplitude are
sampled from the gamma-Gaussian distribution. Once a sample
is drawn, we will use the EM method to extract the release
properties, namely the parameters γ , λ, n and p. Knowing the
true parameters allows us to calculate the average difference
between estimated and true parameters (bias) and the size of
random fluctuations in the estimated parameters (variance).
Since these estimator bias and variance will depend on the
specific set of parameter values used to generate surrogate data,
we must explore different types of parameter values. For the
sake of illustration, we consider three cases: i) Univesicular
release (Figure 7A), ii) multivesicular release with a low value
of the shape parameter corresponding to the absence of dip in
the probability distribution (Figure 7B) and; iii) multivesicular

release with a high value of the shape parameter leading to
well resolved quantal peaks but inconsistent with the biophysical
constraints (Figure 7C).

We computed the bias and standard deviation of the
estimates using 500 surrogate experiments and the expectation-
maximization algorithm of the gamma-Gaussian mixture (see
Methods Sect. 4.6). Since both the bias and the standard
deviation are expected to depend on the number of samples
per dataset, N, we report the bias and standard deviation as
a function sample size. The correlation coefficients shown in
Figure 7D reveal two interactions. Firstly, release probability
as well as the shape and scale parameter estimates are
strongly correlated. Secondly, these three parameter estimates
are anti-correlated with the estimate of the number of vesicles.
These compensations are also reflected in the sample-size
dependent biases, where an underestimate (overestimate) in
n is accompanied by an overestimate (underestimate) in the
other parameters (Figures 7E–H). This reflects the fact that n is
determined in a separate step from the other parameters and that
for a larger n the other parametersmust decrease to keep the same
mean amplitude. We have verified with simulated sample sizes of
50 000 that these biases are restricted to small sample sizes, at very
large sample sizes the biases reach zero.

Next, we consider the bias and variance of estimators for a
sample size of 50, which represents a realistic sample size for our
experimental conditions. At those sample sizes, we find that our
method underestimates release probability, shape parameter and
scale parameter (Figures 7E–G, red lines). These biases reflect
the fact that, given the small number of vesicles considered,
the number of vesicles can only be overestimated (Figure 7H).
Considering sample size of 50 but for surrogate data with two
vesicles, there remains a small underestimation of the shape
parameter (Figures 7E–G, green lines) but the bias in the number
of vesicles is much reduced (<0.25), and so is the bias in release
probability and scale parameter. These biases are further reduced
and become negligible in the less realistic situation where quantal
peaks can be identified (Figures 7E–H, blue lines). Lastly, we note
that the estimator standard deviations at N = 50 are sufficiently
substantial to require averaging over multiple synapses in order
to make precise parameter estimates.

2.10. Statistical Inference on Experimental
Data
We next apply this EM algorithm on experimental data from
iGluSnFR-mediated optical recordings of glutamate release. We
used recordings of iGluSnFR-mediated signal induced by trains
of ten axonal electrical stimulation at low frequencies (1,2,4,
and 8Hz), from which we extracted a distribution of fitted
release amplitudes (see Methods). Amplitude distribution from
an exemplar spine is shown in Figure 8A. This distribution
is captured very well by the gamma-Gaussian mixture model
(Equation 2). The best fit for this recording was achieved for
shape parameter γ = 1.4, scale parameter λ = 0.2, release
probability p = 0.42 and 2 vesicles. Figure 8A shows that the
theoretical distribution fits the empirical histogram well. This fit
arises from individual components having an important skew.
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FIGURE 7 | Validation of the Expectation-Maximization method on simulated gamma-mixtures. Count histograms for simulated data (gray bars) and best fit probability

density function (full line) for a gamma mixture with (A) n = 1 vesicles, a skew γ = 7, scale λ = 0.12 and release probability p = 0.6, (B) n = 2 vesicles, skew γ = 6,

scale λ = 0.1 and release probability p = 0.55, (C) n = 2 vesicles, skew γ = 15, scale λ = 0.1 and release probability p = 0.51. (D) Correlation coefficient between

parameter estimates of simulated data B with sample size = 100. The bias of estimates for (E) release probability (p), (F) shape parameter (γ ), (G) scale parameter (λ),

and (H) number of vesicles (n) is shown as a function of number of samples. Error bars show parameter estimates s.d.

FIGURE 8 | Inferring quantal parameters from iGluSnFR recordings. (A) Evoked fluorescence amplitude histogram for one exemplar spine (gray bars) and probability

distribution of the gamma-Gaussian model with properties inferred using the EM algorithm (full red line). A total of 400 electrical stimuli (40 trials of 10 stimuli) were

delivered at varying frequencies (1–8 Hz) while recording the same spine and the peak amplitudes of iGluSnFR events were pooled. Individual release components for

k = 1 and k = 2 are also shown (dashed red lines). Inset shows the negative log likelihood calculated by the EM algorithm versus number of vesicles released, n, for

the spine shown. (B) Mean release properties obtained from the spine shown in A and a set of 18 spines. Bars left of dashed line use left axis scale, bars right of

dashed line use right axis scale. Error bars represent s.e.m. The averages are 0.194 ± 0.003 for λ, 0.69 ± 0.08 for p, 2.1 ± 0.3 for n and 1.42 ± 0.08 for γ (mean ±
SEM). Error bars show SEM. (C) Univesicular CV when n is the chosen vesicular release by the EM algorithm (blue), and averaging over all estimates at that n (green).

The black dashed line shows the theoretical univesicular CV. (D) Factors explaining the variance in synaptic transmission. Based on average parameters obtained in

panel (B) and Equation 3, we can parse out the variability in terms of optical noise (optical; green), the stochastic release of 0, 1, or 2 vesicles (binomial; orange) and

the unequal potency of each vesicle (UVR; blue).

The inset of Figure 8A shows the negative log-likelihood as a
function of the number of vesicles. Although there is a clear
minimum at n = 2 vesicles, the curvature is fairly large,
as is predicted by the small estimator variance (Figure 7H)
under Cramer-Rao inequality. Importantly, the likelihood is
considerably worse for the n = 1 model compared to any
n > 1 models. Altogether, parameter inference using this
EM algorithm on iGluSnFR-based analysis of glutamate release
on single synapse argues that an action potential stochastically
triggers the fusion of a few vesicles releasing a variable and highly
skewed amount of glutamate.

We repeated this analysis on a set of experiments from 18
different spines (Figure 8B). Here, the average number of vesicles

fitted by the algorithm was 2.10 ± 0.3, while individual spines
were best fit by n ranging between 1 and 3 vesicles. The average
shape parameter value was 1.42± 0.08. This parameter regulates
the univesicular releases, the univesicular CVUVR, described
in the biophysical predictions. In principle, the average shape
parameter fitted by the EM algorithm should correspond to a
univesicular CVUVR of 0.84, but we recall that our estimates
of the shape parameter were shown to bear a small-sample
bias, which we estimated to negative 0.2 (Figure 7F). As a
consequence, our bias-corrected estimate of univesicular CV is
0.77. In comparison, we predicted that a CVv = 0.38 (Figure 3)
would arise from known vesicle dimensions, thus a difference of
0.39. To see how our estimate of univesicular CV depends on the
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number of vesicles in the model, we fixed n and inferred CVUVR

for each spine (Figure 8C). We find that increasing n increases
the CVUVR inferred. This CVUVR remained high and above both
the variability expected from volumes (CVv) and the variability
of thresholded successes (CVsuc). This is consistent with the view
that CVv is a lower bound (Lavoie et al., 2011) and CVsuc is
underestimated (Figure 5). In sum, statistical inference of our
gamma-Gaussian model suggests CA3-CA1 stochastically release
1-3 vesicles with variable quantum.

The formalism outlined above allows to begin parsing out
the variability of synaptic transmission at single synapses.
Using the average parameters extracted using the expectation-
maximization algorithm, Equation 3 can be used to separate the
variability of observed evoked amplitudes in three terms. The
first term captures the variability due to the glutamate sensor
itself and to concurrent optical measurements The second term
captures the fluctuations in release amplitude attributable to a
single vesicle release and scaled by the average number of vesicle
released (i.e., diffusion, loading and vesicle volume). The last
term captures the variability of releasing sometimes two, one
or zero vesicles (with zero unitary variability). We named these
sources of variability optical, unitary and binomial, respectively.
As shown in Figure 8D, we estimate that that 4% of the variability
was optical, 30% binomial and 66% was unitary. Thus the results
suggests that, despite the fluctuating number of vesicles being
released, the variability of synaptic transmission arises mostly
from the variability in unitary vesicle content released.

3. DISCUSSION

The use of the glutamate fluorescent reporter iGluSnFR provides
a valuable proxy of glutamate release at single central synapses.
To interpret the variability of glutamate release observed in our
recordings, we built a gamma-Gaussian mixture model based
on stochastic release of vesicles, each with a variable diameter
size and additional sources of variability. We highlighted
important biases in the traditional measures of the variability
of successes and provided an alternative method based on
the expectation-maximization algorithm. Our statistical method
showed small biases on surrogate data and allows inference of
estimates of quantal parameters. Together, these experimental
and analytical tools allow to resolve the dynamic structure of
synaptic transmission.

Optical quantal analysis confers several distinct advantages
over classical electrophysiological methods, but also some
limitations. One of the main advantages of optical methods is
that the experiment is localized at an unambiguous source spine,
thereby removing classical uncertainties such as the unknown
location of synaptic inputs, the impact of dendritic filtering, and
the determination that a single synaptic input is beingmonitored.
While strong criteria have been developed in the past to
classify electrophysiological data as arising from a single synaptic
contact (i.e., minimal stimulation criteria; Malinow and Tsien,
1990; Raastad et al. , 1992; Stevens and Wang, 1995; Dobrunz
and Stevens, 1997, 1999), some of these criteria may actually
introduce false rejections and selection biases in population

sampling, favoring against synapses that display multi-quantal,
highly-variable, and/or a high probability of release. Optical
methods are not without their disadvantages, chief amongst
them being their still poorer temporal resolution as compared to
traditional electrophysiological methods. Nevertheless, advances
in molecular engineering have enabled faster and more specific
optical reporters of synaptic transmission, including iGluSnFR
which offers a significant temporal improvement over some of the
fastest genetically-encoded optical calcium reporters (Figure 2E).
Interestingly, the iGluSnFR family of reporters is still growing
to include faster variants and variants with different emission
spectra (Marvin et al., 2018; Wu et al., 2018).

One feature of the iGluSnFR relies on its non-reliance on
postsynaptic glutamate receptor activation. Interpretation of
calcium-based and electrophysiological-based measurements of
synaptic release that rely on glutamate receptor activation are
confounded by issues such as the non-linear relationship between
glutamate concentration, glutamate receptor conductance and
calcium-mediated fluorescence (Smith and Howe, 2000),
the non-uniform distribution of glutamate receptors in the
postsynaptic membrane (Biederer et al., 2017), and the distance
between the presynaptic site of release and postsynaptic
receptors (Franks et al., 2003), all of which are difficult
to measure and contribute to convolving the end-result
signal. iGluSnFR, being plasma membrane localized but
lacking postsynaptic anchoring domains, is presumably evenly
distributed on the cell surface and reports glutamate release
largely independently of the precise location of vesicle release.
Additionally, iGluSnFR reports glutamate release events in
the presence of glutamate receptor antagonists (Figure 2I)
which offers experimental flexibility. Finally, as demonstrated in
Figure 3F, iGluSnFR provides a linear report of physiologically-
relevant glutamate release, which allows for a more direct
quantitative interpretation of the glutamate signal. Altogether,
the experimental method we describe addresses a number of
historical limitations and provides a welcome complement
to existing methodologies to study basic features of synaptic
transmission and plasticity.

Synaptic transmission is variable. Obtaining an accurate
estimate of the size of this variability is an obligatory step
in order to parse information content from noise during
neural communication. By applying a traditional threshold-
based classification of successes and failures on iGluSnFR
transients, we obtained a fairly low average variability CVsuc ≈0.5
(Figure 8C). Some of our recordings showed CVsuc in the
0.2-0.4 range, which closely matches the values reported for
putative single-synapse electrophysiological recordings using
either manual or threshold-based classification of failures and
successes (Bekkers and Stevens, 1995; Dobrunz and Stevens,
1997; Hanse and Gustafsson, 2001). We however readily
observed synapses that showed a higher CVsuc (up to 0.8)
when optically probed. It is likely that these synapses would
have been ignored when applying selection criteria commonly
used for minimal stimulation experiments. Moreover, threshold-
based classification inherently introduces classification errors,
which can dramatically alter estimates of CVsuc. The statistical
methodology presented here should circumvent this issue.
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Consistent with our estimates on surrogate data (Figure 5),
we observed that the variability of individual synaptic release
can be much higher than threshold-based CVsuc and reach
CVUVR = 0.8. Further consistent with the effect of classification
errors, our estimate of the average release probability of
individual release is higher using the expectation algorithm
(p = 0.69; Figure 8B) than using a threshold-based approaches
(previous estimates were <0.61 Hanse and Gustafsson, 2001, 0.4
Bekkers and Stevens, 1995 and 0.2–0.4 Dobrunz and Stevens,
1997). Our assumption that glutamate is packaged at equal
concentration in vesicles may be factually incorrect, implying
that neurons have evolved a means to normalize glutamate
content across vesicles that differ in volume. Such a result
imply a redistribution of the relative breakdown of factors that
contribute to quantal variability Figure 8D. Irrespective of this
interpretation, our results further suggest that vesicle fusion
can release very small but non-zero glutamate transients and
that glutamate release variability is considerably higher than
previously thought.

The usefulness of the experimental methodology and
analytical formalism described herein extends beyond our
preliminary efforts to identify the source of quantal variability.
The iGluSnFR family of optical reporters are well suited to study
the dynamical mechanisms that regulates synapse-specificity
such as those controlling glutamate spillover (Asztely et al.,
1997; Chalifoux and Carter, 2011; Lee, 2012) and its downstream
impacts on neuronal function. Furthermore, by providing a
direct proxy of release, it is well suited to interrogate several
features of synaptic plasticity mechanisms across a wide range
of central synapses and experimental preparations, including
in vivo. In principle, optical fluorescent reporters may also be
amenable to use in combination with complementary imaging
modalities: for instance, one can envision using super-resolution
imaging to estimate how strongly the modeled parameter n –
the maximum number of vesicles released simultaneously –
relates to optical estimates of the total number of active release
sites (i.e., transsynaptic nanocolumns). Such investigations could
provide a deeper understanding of the precise nature of quantal
variability and its impact on the plasticity of information transfer
at central synapses.

4. METHODS

The essential elements of optical quantal analysis are described
in the main text. In this section, we give additional precisions on
experimental, analytical and computational methods.

4.1. Organotypic Slices and Biolistic
Transfection
A detailed description of our methodology for hippocamal
organotypic slice preparation and biolistic transfection is
described in (Soares et al., 2014). Briefly, organotypic slices were
prepared from both male and female postnatal day 7 Sprague
Daley rats (Charles River Laboratories, MA, USA) using the
interface method originally described in Stoppini et al. (1991).
In accordance with protocols approved by the University of
Ottawa’s Animal Care Committee, animals were anesthetized in

an isofluorane infused chamber, decapitated, and hippocampi
were removed in ice cold cutting solution containing (in mM):
119 choline chloride, 2.5 KCl, 4.3 MgSO4, 1.0 CaCl2, 1.0
NaH2PO4–H2O, 1.3 Na-ascorbate, 11 glucose, 1 kynurenic acid,
26.2 NaHCO3, saturated with 95% O2 and 5% CO2 (pH =
7.3; 295-310 mOsm/L). Transverse slices were cut at 400 µm
thickness using a MX-TS tissue slicer (Siskiyou, Grants Pass, OR)
and cultured on 0.4 mmmillicell culture inserts (EMDMillipore,
Etobicoke, Canada) at a temperature of 37oC.

Hippocampal slices were transfected at 6-7 DIV using a
hand held gene gun (Biorad, Hercules, CA). Cartridges for
the gene gun were prepared in advance by precipitating
50 µg of cDNA plasmid onto 8-10 mg of gold microparticles
(1.0 µm diameter; Biorad) at a ratio of 80/20 by weight of
either iGluSnFR or GCaMP6f and mCherry cDNA plasmid,
respectively. The precipitation step was performed in a 0.1
M KH2PO4 buffer solution containing 0.05 mM protamine
sulfate (rather than spermine, as per previous protocols). The
DNA-gold precipitate was washed and suspended (3 times)
in 100% ethanol before loading in the tubing station. Once
the cartridges were dried and cut, they were placed in a
sealed container with desiccant pellets at 4 oC until used. The
DNA-coated gold particles were delivered to the slice using
∼180 psi of helium air pressure. A modified gene gun barrel
was used to protect slices from helium blast (Soares et al., 2014).
Imaging experiments were performed 3-5 days after biolistic
transfection.

4.2. Optical Recording of IGluSnFR
Transients
Slices were removed from culture and placed in a custom
recording chamber under a BX61WU upright microscope
(60X, 1.0 NA objective; Olympus, Melville, NY). Slices were
continuously perfused with a Ringer’s solution containing (in
mM): 119 NaCl, 2.5 KCl, 4 MgSO4-7H20, 4 CaCl2, 1.0 NaH2PO4,
11 glucose, 26.2 NaHCO3 and 1 Na-Ascorbate, saturated
with 95% O2 and 5% CO2 (295-310 mOsm/L). For evoked
stimulation experiments, a glass monopolar electrode filled with
Ringer’s solution was positioned adjacent to transfected cells
in the direction of CA3. Simultaneous two-photon imaging of
iGluSnFR and mCherry was performed using a Ti:Sapphire
pulsed laser (MaiTai-DeepSee; Spectra Physics, Santa Clara,
CA) tuned to 950 nm. Emission photons were spectrally
separated using a dichroic mirror (570 nm) and the emitted
light was additionally filtered using two separate bandpass
filters (iGluSnFR: 495-540; mCherry: 575-630). The sampling
frequency of our line-scan experiments depended on length
of the imaged line segment (drawn over a spine and its
parent dendrite), but was typically in the range of 1.2 - 1.5
ms / line for all optical quantal analysis experiments. This
sampling rate was more than sufficient to fully capture and
quantify the rise and falling phases of iGluSnFR transients.
In our hands, an optimal trade-off between signal-to-noise,
sampling frequency, and reduced bleaching, was obtained by
using a 4 µs pixel dwell time. In the frame scan configuration,
the sampling limit of our optical system was 65 ms/frame
(2 µs pixel dwell time; 256 x 256 pixel frame) when
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scanning bidirectionally, which was sub-optimal for optical
quantal analysis.

Surveying methodology was designed to increase the
probability of finding dendritic spines that were responsive to the
electrical stimulus. While our frame scan configuration offered
the spatial resolution to monitor several spines at once, we
found it difficult in practice to identify rapid iGluSnFR-mediated
transients due to a low signal to noise ratio and low sampling
rate. As a result, line scans were exclusively used to survey the
dendritic arbor for responsive spines. Short duration (0.1 ms)
low intensity (5-25 mA) stimuli were delivered to the slice at
low-frequency (0.1 Hz) while randomly surveying dendritic
spines in the apical arbor of transfected cells. To facilitate the
process of finding a responsive spine, line scans were performed
simultaneously through multiple nearby dendritic spines and,
generally, a paired-pulse stimulus (50-100 ms inter stimulus
interval) was delivered to increase the probability of detecting
glutamate release. Dendritic spines that were unresponsive to an
initial probing phase consisting of 5-10 paired pulse stimuli, were
not considered for further analysis, while spines demonstrating
responsiveness to these initial probing stimuli were selected
for quantal analysis experiments. Fluorescent transients were
resolvable by eye and on-line analysis was not necessary. Prior
to starting an optical quantal analysis experiment at a responsive
spine, the stimulus intensity was gradually reduced up to a
minimum where time-locked responsiveness was still observed.
The process of identifying a responsive spine was generally
not trivial and often necessitated several re-positioning of the
stimulating electrode. Once a responsive spine was found,
however, it was extremely rare to lose fluorescent responsiveness
in response to electrical stimulation during an experiment.

4.3. Whole-Cell Electrophysiology and
Two-Photon Glutamate Uncaging
Whole-cell recordings were carried out using an Axon
Multiclamp 700B amplifier. Electrical signals were sampled
at 10 kHz, filtered at 2 kHz, and digitized using an Axon
Digidata 1440A digitizer (Molecular Devices, Sunnyvale, CA).
Transfected CA1 pyramidal neurons were targeted and patched
using borosilicate glass recording electrodes (World Precision
Instruments, Sarasota, FL) with resistances ranging from 3-
5 M�. All uncaging evoked currents were recorded at a holding
potential of −70 mV. The intracellular recording solution
contained (in mM): 115 cesium methane-sulfonate, 0.4 EGTA,
5 tetraethylammonium-chloride, 6.67 NaCl, 20 HEPES, 4 ATP-
Mg, 0.5 GTP, 10 Na-phosphocreatine (all purchased from Life
Technologies, Carlsbad, CA) and 5 QX-314 purchased from
Abcam (pH = 7.2-7.3; 280-290 mOsm/L). The extracellular
solution was similar to the one described above but also
contained 2 mM MNI-glutamate-trifluoroacetate (Femtonics,
Budapest, Hungary) and a reduced concentration of MgSO4-
7H20 (1.3 mM) and CaCl2 (2.5 mM). For glutamate uncaging
experiments, a second laser line tuned to 720 nm was used to
deliver 1 ms light pulses to the tips of dendritic spines while the

other laser was tuned to 950 nm to image the uncaging-evoked
iGluSnFR transients.

4.4. Analytical Derivation for Three Terms
of Variability
We consider the gamma-Gaussian model described by Equation
2 of main article. To determine CV2 we note that the mean of
Equation 2 is µx = npγ λ, the mean of the number of vesicles
is
∑n

k= 0 kb(k|n, p) = np and the mean amplitude per vesicle is
∫

xg(x|γ , λ)dx = γ λ. The variance of x is

σ 2
x = (1− p)n

∫

(x− µx)
2G(x|0, σ 2

opt)dx

+
n
∑

k= 1

b(k|n, p)
∫ ∞

0
(x− µx)

2g(x|kγ , λ)dx. (12)

The first term of this equation becomes

(1− p)n
(

σ 2
opt + µ2

x

)

(13)

and the second term is evaluated by centering the quadratic part
of the integrand around the mean of a component, kγ λ. This
gives for the second term of Equation 12

n
∑

k= 1

b(k|n, p)
∫ ∞

0

[

(x− kγ λ)2 + γ 2λ2(k− np)2

+ 2(x− kγ λ)(k− np)γ λ
]

g(x|kγ , λ)dx. (14)

To evaluate this expression, one can isolate the variance of the
number of vesicles:

∑n
k= 0(k − np)2b(k|n, p) = np(1 − p),

as well as the variance of amplitude from k vesicles
∫

(x −
kγ λ)2g(x|kγ , λ)dx = γ λ2. Since the last term vanishes in
Equation 14, we obtain

σ 2
x = (1− p)nσ 2

opt + npγ λ2 + γ 2λ2np(1− p). (15)

Using CV2
UVR = 1/γ and CV2

bin
= (1 − p)/np, taking the ratio

CV2 = σ 2
x /µ2

x we obtain Equation 3.

4.5. Regression for Amplitude Extraction
We describe the use of a template to extract the amplitude
of the evoked responses. The method involves two steps. First
we extract a template time-course k by computing the trial-
averaged fluorescence response that is triggered by the electrical
stimulation. This template is discretized, starts at the stimulation
time and ends at a pre-defined time T after it. Trial averaging is
performed on responses sufficiently isolated in time to be exempt
from other synaptic events. For each trial i the template is scaled
by β chosen so as to minimize the mean-squared error with the

observed fluorescence F
(i)
0 :T in the corresponding time window

indicated by the subscript 0 :T. The solution of this least-square
problem is well known and follows

βi = (kTk)−1kTF
(i)
0 :T (16)
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In order to report the maximum of the evoked waveform,
we scale the βi by the maximum value of the template.
This is the value reported in Figure 8. We calculated the
null distribution by fitting the template on fluorescence
measurements without electric stimulation. The variance of
the null distribution serves as our estimate of measurement
noise σ 2

opt = 0.07.

4.6. Surrogate Data Analysis
To generate surrogate data, we simulate n surrogate fluorescence
amplitudes and estimate the parameter values. Each surrogate
experiment is repeated M times in order to have M sets of
parameter estimates θ̂j. Using this set of surrogate experiments,
we can compute the bias, the variance and the correlation
coefficients of the estimates. The bias is calculated by averaging
the difference between the estimated parameter and the
simulated parameters

Estimator bias = 1

M

M
∑

j= 1

(θ̂j − θ).

In this way, a bias greater than zero means that the parameter
tends to be overestimated, and a bias smaller than zero means
that the inferred parameters are erroneously small.

To estimate the precision of the estimates, we calculate
the variance:

Estimator variance = 1

M

M
∑

j= 1

(

θ̂j −
1

M

M
∑

i= 1

θ̂i

)2

.

A small variance means that the estimate is precise, although it
may or may not be valid.

In addition, we compute the correlation coefficient between
different parameter estimates. The correlation coefficient

between a parameter θ (r) and θ (q) is simply

Correlation coefficient =
1
M

∑M
j= 1

(

θ̂
(r)
j −

∑M
i= 1 θ̂

(r)
i

) (

θ̂
(q)
j −

∑M
i= 1 θ̂

(q)
i

)

σrσq

where σr and σq are the square root of the estimator variances

for θ (r) and θ (q), respectively. When the correlation coefficient
is positive, it means that estimation errors tend to covary
with the same sign, and when the correlation coefficient is
negative, it means that an estimation error in parameter r
is associated with an estimation error of opposite sign in
parameter q.
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