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Abstract
Background: The study of organisms with restricted dispersal abilities and presence in the fossil
record is particularly adequate to understand the impact of climate changes on the distribution and
genetic structure of species. Trochoidea geyeri (Soós 1926) is a land snail restricted to a patchy,
insular distribution in Germany and France. Fossil evidence suggests that current populations of T.
geyeri are relicts of a much more widespread distribution during more favourable climatic periods
in the Pleistocene.

Results: Phylogeographic analysis of the mitochondrial 16S rDNA and nuclear ITS-1 sequence
variation was used to infer the history of the remnant populations of T. geyeri. Nested clade analysis
for both loci suggested that the origin of the species is in the Provence from where it expanded its
range first to Southwest France and subsequently from there to Germany. Estimated divergence
times predating the last glacial maximum between 25–17 ka implied that the colonization of the
northern part of the current species range occurred during the Pleistocene.

Conclusion: We conclude that T. geyeri could quite successfully persist in cryptic refugia during
major climatic changes in the past, despite of a restricted capacity of individuals to actively avoid
unfavourable conditions.

Background
The predicted global climate change will undoubtedly
have a major impact on the distribution ranges and sur-
vival of many animal and plant species [1]. Taxa with
poor active dispersal abilities and fragmented habitats are
especially likely to be affected from a shifting climate. The
study of the reactions of such species on historical climate
changes might help to understand the impact of future cli-
matic changes on species distribution and biodiversity.

Land snails are suitable organisms to address this issue.
While some snails have achieved a cosmopolitan distribu-
tion via passive anthropogenic dispersal (reviewed in [2]),
most species show limited distribution ranges. Moreover,
many species have particular habitat requirements, which
result in a patchy, insular habitat distribution [3]. In gen-
eral, active dispersal is quite restricted in snails (e.g., [4–
6], preventing them to escape changing ecological condi-
tions. So it is commonplace to assume that only few, if
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any, land snail species were able to survive the pleniglacial
phases of the Pleistocene in northern parts of Europe [7].
However, due to the good preservation of gastropod shells
in loess deposits, snail fossils are relatively abundant [8].
Low dispersal capacities and presence in the fossil record
are features that render an organism particularly amena-
ble to phylogeographic study [9]. While low vagility pre-
serves patterns of genetic variation arisen in the past,
fossils allow for the integration of knowledge about past
distributions into the formulation of phylogeographic
hypotheses.

Despite their suitability for phylogeographic study, only a
few such studies have been carried out in land snails. With
one exception [10], these studies relied on large Helicoid
snails of the genera Cepaea and Helix [11–13], which are
especially prone to displacement by human activities.
Unfortunately, anthropogenic dispersal may easily result
in phylogeographic patterns that do not reflect the impact
of historical climate changes. In order to understand the
consequences of climate changes on the distribution and
genetic structure of snail populations, the study of species
with rare human dispersal should be preferred.

Trochoidea geyeri (Soós 1926) is a small land snail of the
Helicellinae subfamily within the Helicidae. Its active dis-
persal capacity is about 3 m during its one-year lifetime
[6]. The mating system of the hermaphroditic species is
obligately outcrossing. Today, the species range comprises
parts of Germany and the south of France, showing a dis-
continuous, patchy distribution. T. geyeri fossils are rela-
tively abundant. In loess deposits, the presence of T. geyeri
shells has been reported since the early Pleistocene [14].
The subfossilised shell deposits in southern England and
large parts of France are correlated with the widespread
occurrence of rather arid cold steppe vegetation forma-
tions [15]. These formations are associated with transi-
tional phases of Pleistocene climate cycles, covering parts
of Europe even during maximal glacial expansion [16] thus
providing the potential for local refugia. Both Pleistocene
interstadial and pleniglacial periods resulted in altitudinal
and latitudinal shiftings of these formations, as well as in
reductions in their extent. T. geyeri is found today in open
calcareous or loessic grass and scrublands with a sparse
vegetation cover on mountaintops, carstic highland pla-
teaus and disturbed pastures, which are thought to consti-
tute ecological refuges [17]. The fossil record suggests that
the population history of T. geyeri is linked to palaeocli-
mate changes [15]. The latitudinal shifts of suitable habi-
tat during Pleistocene across Europe, driven by climate
change, were anticipated by T. geyeri in the fossil record
with remarkably short time lags. In other words, the spe-
cies can be detected in the fossil record very soon after the
onset of a suitable climate phase [15]. This raises the ques-
tion whether these recurrent range expansions originated

from one or few major refuges or from cryptic refuges
strewn all over the species range. Such northern refugia
were recently identified for several plants, fishes and small
mammals [18,19].

These entire characteristics make T. geyeri an ideal organ-
ism for the study of the role of historical climate changes
on species distribution and population structure. Here we
explicitly addressed the question of whether T. geyeri, an
organism with restricted dispersal abilities, survived the
Pleistocene glacial periods in situ in local northern refugia,
or instead went extinct to re-colonise in recent times the
northern range of its present day distribution from the
south.

To answer this question, we analysed mitochondrial 16S
rDNA and nuclear ITS-1 variation within a statistical phy-
logeographic framework using coalescent and nested
clade analyses to test hypotheses on population history.

Results
Mitochondrial and nuclear haplotype diversity
The amplified 16S rDNA sequences were on average 356
base pairs long. Thirty-one haplotypes were identified,
with 39 variable sites (Table 2). Three indels were
observed, all in loop coding regions of the 16S rDNA
according to the molluscan consensus secondary structure
model of Lydeard et al. [20]. The number of substitutions
between haplotypes ranged from 1 to 23 (0.27–6.41%).
The transition/transversion ratio and gamma shape
parameter (α) estimates were 2.2597 and 0.0079. Such a
small value of α indicates that there is a strong rate varia-
tion among sites: a few sites are changing very fast, while
the rest do not change, or change very slowly. With the
exception of haplotype 20, which was found in two neigh-
bouring sampling localities on the Causse de Larzac, all
haplotypes were restricted to a single population (Table
2). The number of haplotypes per sampling site ranged
from one to five, and decreased from south to north. The
mean sequence divergence among populations was
2.88% ± 1.52 (s.d.), while the mean within population
diversity was 0.28% ± 0.31 (s.d.).

The ITS-1 fragment was between 525 and 527 bp long.
There were no signs of heterozygosity in the data; the
sequences could therefore be treated as haplotypes. Six
haplotypes, defined by six variable sites, were found.
Within all populations only a single haplotype could be
detected. There were no signs of recombination

Phylogenetic relationships of haplotypes
In the statistical parsimony (SP) analysis of 16S variation,
haplotypes separated by up to eight mutational steps had
a greater than 95% probability of being connected in a
parsimonious fashion (i.e., no over imposed mutations),
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Table 1: Sampled populations, abbreviations used, geographical location and number of sampled individuals.

Population Abbreviation Location Sample size

Schlüchtern/Hohenzell SHZ 50°21'N 09°33'E 7
Eisleben/Süβer See ESS 51°35'N 11°40'E 5
Münsingen MUN 48°25'N 09°30'E 8
Mont Ventoux/Sommet MVS 44°11'N 05°16'E 8
Mont Ventoux/Les Rabets MVR 44°08'N 05°10'E 5
Montagne de Lure ML 44°07'N 05°28'E 7
Plateau de Vaucluse PTV 43°58'N 05°28'E 7
Grand Luberon LUB 43°49'N 05°28'E 6
Sainte Victoire STV 43°32'N 05°43'E 5
Chaine des Etoiles CDE 43°24'N 05°28'E 9
Sainte Baume STB 43°19'N 05°47'E 5
Cause de Larzac 1 LAR1 44°00'N 03°20°E 3
Causse de Larzac 2 LAR2 43°59'N 03°10'E 5
Causse de Larzac 3 LAR3 44°01'N 03°15'E 6

Table 2: a) Distribution of T. geyeri 16S rDNA and b) ITS-1 haplotypes (columns) at each sampled location (rows).

a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LUB 2 1 1 2
MVS 3 4 1
MVR 5
PTV 2 3 2 1
ML 6 1
STV 2 3
CDE 9
STB 3 2
LAR1 3
LAR2 3 1 1
LAR3 2 1 1 1 1
SHZ 6 1
MUN 8
ESS 5

b)

n1 n2 n3 n4 n5 n6

LUB 6
MVS 8
MVR 5
PTV 7
ML 7
STV 5
CDE 9
STB 5
LAR1 3
LAR2 5
LAR3 6
SHZ 7
MUN 5
ESS 8
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Geographical location of Trochoidea geyeri sampling sitesFigure 1
Geographical location of Trochoidea geyeri sampling sites. For abbreviations see Table 1.
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so that the criterion of parsimony could be assumed for all
mutational connections in the network. Haplotype 9 had
the highest relative root probability (p = 0.12) [21], which
suggests that this haplotype could be the oldest among
those sampled. The SP network was almost fully resolved
(Fig. 3), except for the position of haplotype 4.

The ITS-1 haplotype network was completely resolved.
The longest connections were two mutational steps,
which indicates that all connections were parsimonious,
because in this marker connections longer than 9 steps
have a probability of less than 95% of being

Statistical parsimony network and associated nested designFigure 2
Statistical parsimony network and associated nested design. Statistical parsimony network and associated nested 
design. Haplotypes are designated by names as defined in table 2. Zeros indicate haplotype states that are necessary intermedi-
ates but were not present in the sample. Each line represents a single mutational step connecting two haplotypes. Haplotypes 
belonging to the same clade level are boxed up to clade level 4-x. Clade level designations are given within each box that con-
tains observed haplotypes. a) Nested cladogram for 16S rDNA and b) for ITS-1 variation.
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Geographical distribution of 3 and 4-step clades of 16S rDNA variation and inferred events in Trochoidea geyeriFigure 3
Geographical distribution of 3 and 4-step clades of 16S rDNA variation and inferred events in Trochoidea 
geyeri. The font size of the inferences decreases with nesting level.
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parsimoniously connected. Haplotype n2 had the highest
root probability (p = 0.27).

Two major clades were identified in both phylogenetic
analyses. The first major clade comprised all haplotypes
from populations in the Provence, east of the river Rhône
(clade 4-1 in Fig. 2a and clade 2-1 in Fig. 2b). The second
major clade included all haplotypes from the Causse de
Larzac and the populations from Germany (clade 4-2 and
clade 2-2 in Fig. 2). Within clade 4-1, there were two
clearly separated groups: the LUB population (clade 3-1 in
Fig. 3), and the rest of populations (clade 3-2). This rela-
tion is also reflected in the ITS-1 network (clades 1-1 and
1-2). Phylogenetic relationships in clade 4-2 suggest that
haplotypes found in the LAR populations from the Causse
de Larzac (clade 3-3 and 1-3, respectively) are ancestral to
the German haplotypes (clade 3-4 and 1-4, respectively).

Inferred population history from NCA
Nested clade analysis showed for both loci a highly signif-
icant association between genetic and geographic distri-
bution whenever there was geographic and genetic
variation. The inferred population history is essentially

the same for both loci, except for a lower resolution of the
ITS-1 locus. For both loci, the oldest inferred event (corre-
sponding to the 4-step level in 16S and the 2-step level in
ITS-1) was a range expansion from populations east of the
Rhône to the Causse de Larzac. After this range expansion,
a fragmentation was inferred between the population on
the Luberon mountain chain (clade 3-1, 1-1, respectively)
and all other populations east of the Rhône (clade 3-2, 1-
2). Within the western clade (4-2, 2-2) a range expansion
event to the north (clade 3-4, 1-4) was suggested. On
lower (i.e., younger) clade levels, several episodes of range
expansions and fragmentation events were inferred with
the 16S rDNA marker, which exhibited due to its larger
variability the better temporal resolution. The results are
summarised in Table 3. Geographical distributions of
major clades and inferences of population history derived
from the 16S rDNA locus are represented in Figure 3.

Past gene-flow estimates
Even though every possible pairwise gene-flow rate was
estimated, most were far below 0.001 4 Nm, indicating a
high degree of population subdivision. The unilateral
gene-flow from MV to LAR supports the NCA inference of

Table 3: χ2-test of geographical association of clades and inferences of biological causes for association for the different clades for a) 16S 
rDNA and b) ITS-1. The inferences were obtained following the newest version of the inference key given in Templeton (1998).

a)

Clade χ2 p-value Inference

Haplotypes nested in 1–8 9.000 0.008 Long distance colonisation of MVR from MVS
Haplotypes nested in 1–10 12.000 0.002 Past fragmentation between PTV and CDE
Clades nested in 2–3 68.000 <0.001 Long distance colonization of STB from Albion area
Clades nested in 2–4 9.000 0.008 Past fragmentation between PTV and STV
Clades nested in 2–7 11.700 0.043 Restricted gene-flow with isolation by distance between populations on the 

Causse de Larzac
Clades nested in 2–8 15.000 <0.001 Long distance colonisation of MUN from SHZ
Clades nested in 3–2 46.384 <0.001 Continuous range expansion with subsequent fragmentation in the Albion area
Clades nested in 3–3 3.111 0.308 No geographical association of clades
Clades nested in 3–4 20.000 <0.001 Range expansion of southern German populations to ESS, but impossible to dis-

criminate between contiguous range expansion and long distance dispersal
Clades nested in 4–1 42.000 <0.001 Past fragmentation between LUB and all other Provence populations, confirmed 

by longer than average mutational connection
Clades nested in 4–2 34.000 <0.001 Range expansion, but impossible to discriminate between contiguous range 

expansion and long distance dispersal from LAR to northern areas
Clades in entire cladogram 77.000 <0.001 Range expansion from Provence to Causse de Larzac

b)

Clade χ2 p-value Inference
Haplotypes nested in 1–2 46.000 <0.001 Isolation by distance among Provence populations except LUB
Haplotypes nested in 1–4 20.000 <0.001 Inadequate sampling design to discriminate between fragmentation, range 

expansion or isolation by distance among German populations
Clades nested in 2–1 52.000 <0.001 Past fragmentation of LUB from the rest of the Provence populations
Clades nested in 2–2 34.000 <0.000 Range expansion from the Causse de Larzac to Germany
Total cladogram 86.000 <0.001 Contiguous range expansion from Provence to the Causse de Larzac
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the populations in Provence being ancestral to the LAR
population (Fig. 4). The ML and the PTV populations
appear to be the source for most other populations in Pro-
vence, except LUB that is fragmented from other popula-
tions. In the West, the LAR region was the source to the
SHZ and ESS population, which was in turn the origin of
MUN. The major events on which the argumentation is
based like the northern range expansion from the LAR to
SHZ, the fragmentation of the LUB population and other
events inferred by the NCA are thus congruent with the
gene-flow pattern suggested by Migrate (Fig. 4).

Divergence times among 3-step clades
Divergence times estimates for the 16S rDNA locus fol-
lowing Nei [22] for 3-step clades ranged from 180,000 ±
108,000 years (mean ± s.d.) between clades 3-3 and 3-4,
to 990,000 ± 90,000 years between clades 3-1 and 3-4. A
population mutation parameter (θ) of 11 was estimated
for a model with population subdivision and fluctuating
population size in Genetree. Applying our previously esti-
mated substitution rate of 0.056 changes per site and mil-
lion years, an effective population size of 270,000 was

obtained. Using these estimates, coalescence analysis sug-
gested an age of 232,000 ± 36,600 (mean ± 95% confi-
dence limit) for the mutation defining the split between
the lineages in clade 3-3 (Causse de Larzac) and 3-4
(Germany). The average clade sequence divergence on the
3-step level of 0.039 is 5.4 fold higher than the within
clade diversity of 0.007. According to the 'three times rule'
[23], we can thus expect the majority of the nuclear loci
having reached mutual monophyly, which is for ITS-1
indeed the case among these clades.

Discussion
Combined use of mitochondrial and nuclear markers for 
phylogeographic inference
A more complete understanding of processes shaping the
pattern of genetic variation can be gained from the simul-
taneous use of independent loci. This is due to the fact
that potential selection will affect only certain loci,
whereas population demography and -history will leave a
common imprint across all neutral loci [24]. The concord-
ance among 16S and ITS-1 phylogenies is thus strong evi-
dence that they reflect indeed the species history.

ITS-1 showed a lower apparent substitution rate than did
16S. This is at least partially due to the four times larger
effective population size in the nuclear genome compared
to mitochondrial markers. Application of the 'three-times-
rule' [23] to the sequence divergence among
mitochondrial 3-step clades showed, however, that a
reciprocal monophyly among these entities could be
expected in the nuclear marker (Table 3).

Population history
Nested clade analysis indicated that there was significant
population structure at all clade levels (Table 3). The NCA
inferences emphasise the role of historical events in shap-
ing the distribution of haplotypes that we see today. This
is evidenced by the relatively ancient fragmentation of the
Luberon (LUB) population on the 3-step level from all
other populations east of the Rhône. Because the Luberon
lies between the Albion area and Sainte Victoire (STV), it
seems likely that the haplotypes of the Luberon had their
origin elsewhere and colonised the Luberon after the frag-
mentation of the former populations (Fig. 4).

Populations in the Albion area are found today at high
altitude (above 1000 m) on Mont Ventoux (MVR, MVS)
and Plateau de Vaucluse (PTV). NCA suggests that these
populations expanded from the Montagne de Lure and
were isolated from each other since then. This is congru-
ent with the idea previously suggested by [15] from fossil
evidence that the warming climate after one of the last gla-
cial phases has prevented these populations to pertain at
lower altitudes and therefore to exchange migrants. The
mountain range Sainte Baume seems to have been colo-

Past gene-flow estimates among populations inferred from 16S rDNA and ITS-1 in Trochoidea geyeriFigure 4
Past gene-flow estimates among populations inferred 
from 16S rDNA and ITS-1 in Trochoidea geyeri. Esti-
mates of 4 Nm >= 0.001 are indicated by arrows.
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nised in a distinct event from the Albion area, despite
being closer to both Sainte Victoire and Luberon popula-
tions (Fig. 4).

There is little indication for current gene flow between
populations of T. geyeri. The only exceptions from this
general picture are the LAR populations of clade 3-3 on
the Causse de Larzac. This area is a large carstic highland
plateau with an unfragmented habitat for T. geyeri, where
large herds of sheep may have served as vectors for passive
transportation [25]. It is therefore plausible that some
(restricted) gene flow occurs among these populations.
The German populations seems to have originated from a
northern range expansion from the populations on the
Causse de Larzac. (Fig. 3, 4). All haplotypes currently
found in the northern species range form a monophyletic
clade, suggesting that German populations originated
from a single expansion event. It is possible that this range
expansion went over an intermediate, now extinct, popu-
lation in the north of France. The current distribution of
the German populations (clade 3-4) seem to have origi-
nated from SHZ in the centre of their range, following a
northern expansion founding the ESS population and a
younger long distance colonization to the south that orig-
inated the MUN population.

Northern cryptic refugia?
To speculate about the potential causes for the inferred
population events, we need at least a rough idea about
when they occurred. The reciprocal monophyly of 4- and
3-step clades (Figs. 2 & 3), and the appreciable sequence
divergence (3.9%) between the 3-step clades, suggests that
the events causing the geographical fragmentations of
these clades are relatively old. The time estimates
obtained suggest that the splits between 3-step clades were
most likely driven by climatic changes associated with sev-
eral different glacial cycles of the Pleistocene, ranging back
almost one million years.

The age of clade 3-4 was of special interest, because it
could indicate whether T. geyeri survived pleniglacial
phases in periglacial refuges in the north, as suggested by
the fossil record [15]. We applied two different
approaches to estimate divergence times for the German
populations. The method of Nei [22] takes in account
ancient polymorphisms in order to distinguish between
the divergence of genes and the divergence of
populations, whereas the coalescent approach uses the
temporal information contained in the gene tree [26].
Results from both methods remarkably agreed; the point
estimate for gene divergence from coalescence analysis
(232,000 years BP) preceded the point estimate for the
population divergence by approximately 50,000 years, as
we expect if we consider that gene divergence happened
before the population split [26]. The age of the German

split suggests that snails arrived to the north during the
Riss-Wuermian interglacial, a view supported by the fossil
record from Burgundy [14], and that they survived in situ
posterior glaciations in local periglacial refugia with suit-
able microclimate. We based this interpretation upon
three arguments:

1) Divergence time estimates: Indeed, the accuracy of the
divergence times estimates depends on the reliability of
the substitution rate assumed. The estimated rate of 5.6%
sequence divergence per million years is fast compared to
the widely used of 2% for invertebrate mitochondrial
sequences (e.g. [27,28]). If we were estimating the substi-
tution rate in this gene, this only means that the inferred
gene and population divergence events date even further
back in time. On the other hand, only a substitution rate
of about 80% or an extreme rate heterogeneity among
sites would give a population divergence estimate that
would fall, with 95% confidence, into the Holocene. The
accuracy of the presented molecular clock estimate is thus
not critical to arrive to the conclusion of a pre-Holocene
split between clade 3-3 and 3-4.

2) Extinct source populations: On the other hand, an
alternative interpretation of the data would be that the
population split may have occurred somewhere else and
that the colonisation of the German area was accom-
plished at the beginning of the Holocene by ancient hap-
lotypes from a now extinct population. Potential
candidate areas, with the necessary calcareous under-
ground, could be the Northeast of France and the Rhône
valley. The former area had a pleniglacial vegetation com-
parable to the potential refugial areas in Germany [16].
Our conclusions about the existence of glacial refuges in
the North would thus not change, but shift to the West
(from Germany to Northeast France or Central Belgium).
The lower Rhône valley was isolated from Germany by the
Rhône glacier at the beginning of the Holocene [29], thus
blocking a recolonisation from the South perhaps until
the reforestation of the landscape extinguished the habitat
of T. geyeri. The inferred gene flow pattern supports this
view. Gene flow can be traced only from the SHZ popula-
tion to the MUN population, but not vice versa, as it
should be expected if a recolonisation occurred from the
South (Fig. 5).

3) Distribution of northern genetic variation: In addition,
if the northern colonisation originated from the south in
France in recent times, we would expect to find shared
haplotypes among the northern populations, as it is the
case for another Helicellinae species, Candidula unifasciata
[10] and for the marine gastropod Acanthinucella spirata
[30]. The fact that the German populations are mono-
phyletic with respect to both nuclear and mitochondrial
loci, suggests that German populations have completed
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the process of lineage sorting, which in turn suggests that
their origin is quite old. Especially the nuclear monophyly
provides strong evidence for an ancient split. It seems
unlikely that the repeated Pleistocene climatic fluctua-
tions would have allowed the accumulation of the
observed divergence in a scenario of colonisations from
the same source population.

The microspatial structuring within snail populations as
i.e. shown for the SHZ population [6], is likely to main-
tain genetic variation longer than expected from popula-
tion size alone, as pointed out by Thomaz et al. [12] and
Ross [31]. The reciprocal monophyly of populations
within clade 3-3 is therefore indicative of a relatively
ancient isolation, most likely in the region where they are
found today. The alternative explanation, postglacial
leptokurtic dispersal from now extinct southern refugia,
appears therefore as an unnecessary ad hoc explanation.

As far as it can be traced back into the Pleistocene, the
population history of T. geyeri, can be described as a
repeated suite of range expansions out of local refuges and
subsequent fragmentations. It seems that T. geyeri was
capable of using the spread of favourable habitat during
the transitional climate phases for recurrent range expan-
sions. The range expansions, even on lower clade levels,
involved large distances compared to the dispersal capac-
ity of the snail, so that it is unlikely that the colonisations
were achieved by active dispersal. We can only speculate
about the vectors for a passive transportation, but the rich
Pleistocene fauna of large mammals in this region [32] is
a likely candidate for such a task [25], even though other
animals like birds or even wind have been implicated in
dispersal of snails [33,34].

Conclusions
T. geyeri seems to have survived in local refugia the reduc-
tion of the favourable steppe-like habitat due to climatic
extremes during the pleniglacial and interstadial periods,
as it is the case today. Pfenninger & Bahl [35] suggested
that snail species with restricted dispersal might survive in
habitats of a size in the magnitude of few square meters.
There is increasing evidence that such small spots with a
favourable microclimate existed in the periglacial area of
central Europe [19] and were presumed to have provided
refuges for comparatively cold resistant snail species [7].
The present study fits thus well into the increasing evi-
dence that the well-studied southern and eastern Euro-
pean refugia were supplemented by cryptic sanctuaries in
northern Europe during the late Pleistocene in shaping
present day species composition.

Methods
Sampling collection and DNA extraction
Fourteen sites were sampled in Germany and France, com-
prising all known extant populations of T. geyeri (Fig. 1,
Table 1). Eighty-eight individuals were crushed with their
shells in 10% w/v laundry detergent solution for storage
at room temperature and tissue digestion following the
protocol of Bahl & Pfenninger [36]. All samples were
shaken for 24 h at 37°C in the laboratory prior to phenol/
chloroform extraction of total DNA following a standard
protocol [37].

Amplification of 16S rDNA, sequencing and alignment
The 16S target-DNA from 79 individuals was amplified by
PCR with standard universal primers of the sequence 16S1
5' > CGC AGT ACT CTG ACT GTG C < 3' and 16S2 5' >
GTC CGG TTT GAA CTC AGA TC < 3'. Amplification was
performed with Boehringer Taq-polymerase in 12,5 ml
total reaction volume with standard reaction conditions.
Samples were amplified for 10 cycles (92°C for 50 s, 44°C
for 50 s and 72°C for 40 s) and 36 cycles (92°C for 30 s,
48°C for 40 s and 72°C for 40 s.) after initial incubation
of 90°C for 2 min 30 s. The nuclear ITS1 locus was ampli-
fied with primers obtained from Armbruster et al. [38].
Amplification was performed with 40 cycles (92°C for 1
min, 48°C for 1 min, and 72°C for 1 min 30 s). Both
strands of the purified amplification products were cycle-
sequenced with the Perkin Elmer Taq DyeDeoxy Termina-
tor Cycle Sequencing Kit after the protocol of the supplier
and read automatically on the ABI Prism 377 sequencing
device of the same manufacturer. Sequences were depos-
ited in GenBank (Accession nos. XXXX-XXXX). Sequences
were aligned with the Clustal option [39] in the computer
program SequenceNavigator (Perkin Elmer, Applied Bio-
systems) and manually adjusted.

Nested clade analyses
The phylogeny of the mitochondrial and nuclear haplo-
types was inferred using statistical parsimony (SP; [40]).
Indels were regarded as a fifth state. The SP networks were
constructed using TCS v1.06 [41].

We used nested clade analysis (NCA; [42]) to infer the
population history of T. geyeri. The NCA is an objective
statistical analysis that first tries to reject the null hypoth-
esis of no association between haplotype variation and
geography, and then interprets the significant association
patterns using explicit criteria that include an assessment
of sampling adequacy. This analysis uses the temporal
information contained in the haplotype tree to partition
historical (fragmentation, range expansion) from current
(gene flow, genetic drift, system of mating) processes
responsible for the observed pattern of genetic variation.
In addition, the NCA allows for the inference of separate
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evolutionary events in space and time. The NCA has been
succesfully applied to diverse sets of data (e.g. [10,43,44].

The NCA nesting design was constructed by hand upon
the SP network following the rules given in Templeton
[44] and Crandall [45]. The program GeoDis 2.0 [46] was
used to calculate the various NCA distance measures and
their statistical significance. The statistics calculated for all
clades were i) the nested clade distance (DC), that meas-
ures the average distance of all clade members from the
geographical centre of distribution, ii) the nested clade
distance (DN), that measures how widespread a particular
clade is relative to the distribution of its sister clades in the
same nesting group, and iii) the interior-tip distances (I-
TC and I-TN), that indicate how widespread evolutionary
younger clades (tip clades) are relative to their ancestors
clades (interior clades). The statistical significance of the
different NCA distance measures was calculated by com-
parison with a null distribution (i.e., no association
between genetic variation and geographical distribution)
constructed from 10000 random permutations of clades
against sampling locality. Biological inferences for each
clade with significant geographical association were
drawn from the patterns of significant distance measures
using the inference key given in Templeton [44].

Migration rates
While the NCA may be very useful to infer different histor-
ical processes, it does not allow for the estimation of
standard population genetic parameters. The coalescence
approach [47] can be used to obtain maximum likelihood
estimates of various population parameters. In particular,
estimates of gene flow among populations can be calcu-
lated taking population structure and demography into
account. We used both loci combined in a single coales-
cent analysis to estimate migration patterns with Migrate
1.2.4 [48]. Even though pooling of populations violates
certain assumptions of Migrate, it can be a reasonable
solution to keep computation feasible [10]. All LAR pop-
ulations and the populations MVR and MVS were pooled
because of their geographical proximity. The Migrate
approach to estimate gene-flow rates has advantages over
equilibrium approaches, because it takes history and

asymmetrical gene flow into account [49]. To obtain past
gene-flow estimates for a full migration model among all
populations, we used 30 short chains with 500 steps and
100,000 sampled genealogies, and 25 long chains with
5000 steps and 1,000,000 sampled genealogies.

Divergence times
The substitution rate for the 16S gene was estimated from
the estimated ML tree for T. geyeri, and three other species
from the same subfamily: Cernuella cespitum, Candidula
unifasciata and C. rugosiuscula (Sequences from Steinke
& Pfenninger, unpublished). Homogeneity of substitu-
tion rates among lineages was not rejected for this four
species (LRT; P > 0.05; [50]), and we calibrated the molec-
ular clock using a divergence time of approximately 3.2 (±
0.5) million years for the split between Candidula unifas-
ciata and Candidula rugosiuscula, obtained from fossil
evidence (unpublished). The estimated substitution rate
was 0.056 (± 0.011) changes per site per million years.

Average sequence divergence between inferred 3-step
clades in the nested cladogram was used to estimate diver-
gence times. Patristic pairwise distances among haplo-
types were inferred from the statistical parsimony
network. The divergence time t between clades was com-
puted as t = (dxy - 0.5 * (dx + dy)) * substitution rate), where
dx and dy denote as the average sequence diversity within
and dxy as sequence divergence among clades,
respectively[22].

We also explore a second approach for the estimation of
divergence times. A coalescent-likelihood framework was
used to obtain estimates of gene divergence times for the
mutations defining the haplotypes of populations SHZ,
ESS and MUN. The mean coalescent times and standard
deviations of all mutation events defining a haplotype
tree were estimated under different models of demo-
graphic history and population structure, using an
advanced simulation approach [51] implemented in the
computer program Genetree, version 8.3 (R. C. Griffiths).
Analysis of mutational ages was restricted to the previ-
ously inferred clade 4-2, because mutations in this clade
conform to the infinite sites model, which is a condition

Table 4: Nucleotide divergence and clade divergence times estimates Lower half: nucleotide divergence (mean and s.d) among 3-step 
clades, calculated as changes per site, diagonal: nucleotide diversity (mean ± s.d.) within 3-step clades and upper half: estimated 
divergence time in million years before present between clades (mean ± s.d.).

3-1 3-2 3-3 3-4

3-1 0.004 ± (0.004) 0.475 ± (0.119) 0.823 ± (0.084) 0.990 ± (0.090)
3-2 0.034 ± (0.007) 0.011 ± (0.007) 0.383 ± (0.121) 0.587 ± (0.123)
3-3 0.051 ± (0.005) 0.030 ± (0.007) 0.006 ± (0.005) 0.180 ± (0.108)
3-4 0.061 ± (0.005) 0.042 ± (0.007) 0.016 ± (0.006) 0.007 ± (0.006)
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required for the analysis, and to keep computing time rea-
sonable. Moreover, all pairwise connections in the
cladogram were parsimonious at the 95% confidence
level, which assures lack of homoplasy in the data set.
Mutational ages were estimated for a demographic model
with population subdivision under fluctuating popula-
tion size. The migration matrix for clade 4-2 obtained
with Migrate was used to specify the migration rates for
Genetree. Calculations were based on 10,000,000 simula-
tions. To convert coalescence time (T) to real time (t), the
relationship t = 2 T Ne Gt was used, where Gt stands for the
generation time in years and Ne for the effective popula-
tion size [51]. A minimum generation time of one year
was used [6]. The parameter Ne was estimated from the
relationship Ne = θ / 2 mµ. The population mutation
parameter θ was initially estimated under a fluctuating
population size model using the program Fluctuate [52].
We have then performed a maximum likelihood
maximisation of this value in Genetree, given the migra-
tion matrix estimated in Migrate.
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