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Abstract. Prostate cancer (PCa) is characterized as being 
histologically and molecularly heterogeneous; however, 
this is not only incorrect among individuals, but also at the 
multiple foci level, which originates in the prostate gland 
itself. The reasons for such heterogeneity have not been fully 
elucidated; however, understanding these may be crucial in 
determining the course of the disease. PCa is characterized 
by a complex network of chromosomal rearrangements, which 
simultaneously deregulate multiple genes; this could explain 
the appearance of exclusive events associated with molecular 
subtypes, which have been extensively investigated to establish 
clinical management and the development of therapies targeted 
to this type of cancer. From a clinical aspect, the prognosis of 
the patient has focused on the characteristics of the index lesion 
(the largest focus in PCa); however, a significant percentage of 
patients (11%) also exhibit an aggressive secondary foci, which 
may determine the prognosis of the disease, and could be the 
determining factor of why, in different studies, the classification 
of the subtypes does not have an association with prognosis. 
Due to the aforementioned reasons, the analysis of molecular 
subtypes in several foci, from the same individual could assist 
in determining the association between clinical evolution 
and management of patients with PCa. Castration‑resistant 
PCa (CRPC) has the worst prognosis and develops following 
androgen ablation therapy. Currently, there are two models to 
explain the development of CRPC: i) The selection model and 
ii) the adaptation model; both of which, have been found to 

include alterations described in the molecular subtypes, such 
as Enhancer of zeste 2 polycomb repressive complex 2 subunit 
overexpression, isocitrate dehydrogenase (NAPD+)1 and 
forkhead box A1 mutations, suggesting that the presence of 
specific molecular alterations could predict the development of 
CRPC. This type of analysis could lead to a biological under‑
standing of PCa, to develop personalized medicine strategies, 
which could improve the response to treatment thus, avoiding 
the development of resistance. Therefore, the present review 
discusses the primary molecular factors, to which variable 
heterogeneity in PCa progress has been attributed.
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1. Introduction

According to the report by the International Agency for 
Research on Cancer of 2018 (1), prostate cancer (PCa) has 
the second highest estimated age‑standardized incidence 
rate worldwide (29.3 per 100,000) and is the sixth cause of 
cancer‑associated death in men (7.6 per 100,000). The problem 
with the management of PCa is due to the difficulty in strati‑
fying between indolent and aggressive cases. Although <5% 
of patients exhibit advanced disease, up to 40% of patients 
will eventually develop metastatic disease despite local 
therapy (2,3). Other patients with PCa undergo hormonal 
therapy treatment, radical prostatectomy (RP) or radiotherapy, 
so, numerous cases of PCa only require expectant manage‑
ment; thus, in these patients, an overtreatment may result in 
significant morbidity. 

High Grade Prostatic Intraepithelial Neoplasia (HGPIN) 
is a prostate preneoplastic lesion, which may develop towards 
an invasive PCa (25 to 30%) during a process, which may 
take over 10 years (4), according to a study conducted at 
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Johns Hopkins University School of Medicine, in patients 
of Baltimore (Maryland, United States of America). Both, 
HGPIN and PCa are multifocal, and HGPIN foci coexist in 
adjacent areas of PCa sharing chromosome deletions and 
interstitial translocations that originate the TMPRSS2‑ERG 
fusion gene and genetic alterations, such as hypermethylation 
of the π‑class glutathione S‑transferase (GSTP1) promoter, 
which suggests a common origin (5). The heterogeneous 
and multifocality nature of the disease makes it difficult to 
understand prostate carcinogenesis (6). Currently, there is no 
adequate method to differentiate patients with poor prognosis 
of PCa from those with indolent disease, who should only have 
a controlled follow‑up. The primary method of determining the 
suitable treatment option for a patient with PCa is based on the 
Gleason classification (5), an assessment of its morphological 
heterogeneity, which is associated with prognosis. Pathologists 
can classify each focus of PCa using Gleason patterns (GP) 
ranging from 1 to 5, and assigning a Gleason score (GS); or 
using the updated Gleason grade group, which includes the 
two most representative GPs in the tumor (7,8). Despite the 
association between Gleason classification and tumor behavior 
(the degree of differentiation of the neoplastic cells) the asso‑
ciation between morphological heterogeneity and molecular 
heterogeneity has not been elucidated (9).  

Molecular studies of PCa have revealed numerous recurrent 
DNA alterations associated with deregulating genes involved 
in the development of the prostate, such as the deletions and 
interstitial translocations that originate the TMPRSS2‑ERG 
fusion gene, chromatin modification, cell cycle regulation 
and androgen signaling (10,11). Over the last decade (12), 
the investigation into PCa has focused on identifying the 
exclusive molecular events in the development of PCa, which 
could represent early and divergent events and could direct 
the course of the disease (13); thus, it is crucial to elucidate 
the carcinogenesis of PCa and utilize the information in the 
treatment of patients. 

The present review will describe an updated review of 
intratumoral heterogeneity in multifocal PCa, to understand 
the carcinogenic process and its implication in the manage‑
ment of the disease; as the vast majority of molecular studies 
in PCa performed are single focused, and do not take into 
account molecular heterogeneity, which could contribute to 
limiting the use of molecular subtypes in the prognosis and 
treatment of the disease. 

2. Molecular heterogeneity of PCa

The origin of PCa could be defined by the occurrence of 
chromosomal rearrangements that simultaneously, and 
in a coordinated manner, cause the inactivation of tumor 
suppressor genes (TSG) and the creation of oncogenic fusions, 
which would support a model of punctuated development 
in PCa (11,14). This could in turn be associated with the 
appearance of canonical alterations, and with the molecular 
subtypes involved in a broad genomic and transcriptomic 
diversity within and among intraprostatic PCa foci. Several 
studies have shown potential for their utilization as prognostic 
biomarker signatures (15‑17). Recently published data from 
The Cancer Genome Atlas (TCGA) (17) supports the divi‑
sion of the major molecular subclasses of localized PCa into 

erythroblast transformation specific (ETS)‑rearrangement 
PCa [PCa with rearrangements and overexpression of ETS 
transcription factor ERG (ERG), ETS variant transcription 
factor (ETV)‑1, ‑4, or other ETS family transcription factors], 
SPOP‑mutated and CHD1‑deleted [speckle type BTB/POZ 
protein (SPOP)/chromodomain helicase DNA binding protein 
1] altered cancers (17), and several smaller categories, such 
as FOXA1 or IDH1deletion, which have been described in 
Table I. The use of molecular classifiers to personalize treat‑
ment shows promise; however, it is still in its infancy and 
additional validation and optimization are required to ensure 
it can be used in a clinical setting.

Multiple complex chromosomal rearrangement, as a cause 
of molecular alterations in PCa. There are several molecular 
alterations in the PCa, such as copy number changes, gene 
fusions, single nucleotide mutations and polymorphisms, meth‑
ylation, microRNAs and long non‑coding RNAs, one of the 
most characteristic involves multiple complex chromosomal 
rearrangement processes (Fig. 1A), which has been reported 
in 63% of PCa cases (18). These rearrangements can be clas‑
sified as chromothripsis or chromoplexy (Fig. 1B and C), 
and some coordinated structured rearrangements may have 
intermediate chromothripsis and chromoplexy properties (11), 
for instance both chromothripsis and chromoplexy display 
random breakage and fusion of genomic segments with low 
copy numbers, most likely mediated by non‑homologous 
end‑joining. 

In addition, Dzamba et al (18) used the CouGaR statistical 
method, in 63% of PCa, and in 27% of bladder cancers, which 
is in contrast with other types of cancer such as rectal, breast 
and thyroid cancer, where these types of alterations have not 
been identified. The CouGaR method is a novel method for 
predicting the overall genomic configuration resulting from 
characterizing the genomic structure of amplified complex 
genomic rearrangements, leveraging both depth of coverage 
(DOC) and discordant pair‑end mapping techniques, to 
identify multiple chromosomal rearrangements. The results 
of Dzamba et al are noteworthy, as it has been reported that 
bladder and PCa may both develop in the same patient (19). 

It has been found that the breaking points of DNA rear‑
rangements are more likely to occur near specific DNA 
sequences, where the androgen receptor (AR) binds as a 
transcription factor, known as androgen response elements 
(ARE), compared with that in other randomly predicted 
locations, that is anywhere else in the genome (20,21). This 
finding suggests that AR‑ARE complexes may be predis‑
posed to genomic rearrangements through transcriptional 
stress, since androgen signaling promotes co‑recruitment of 
androgen receptor and topoisomerase II β (TOP2β) to sites 
of TMPRSS2‑ERG genomic breakpoints, triggering recom‑
binogenic TOP2β‑mediated DNA double‑strand breaks. For 
example, it has been found that transmembrane serine protease 
2 (TMPRSS2)‑ERG fusion is induced by the interaction of 
androgens with AR (14,22).

In the development of PCa, chromothripsis is relatively 
rare and occurs as one clonal early event; in contrast, chro‑
moplexy is a common and sequential event, which is detected 
at clonal or sub‑clonal level (14,18,23). In a study performed 
using 57 patients with PCa, Baca et al (11) identified over 5,000 
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somatic rearrangements associated with this type of chromo‑
somal rearrangements. Several cancer genes were repeatedly 
deleted or rearranged by chromoplexy, including PTEN, NK3 
homeobox 1, cyclin dependent kinase inhibitor 1B, tumor 
protein p53 (TP53), and RB transcriptional corepressor 1. 
These multiple complex chromosomal rearrangements are one 
of the primary reasons for the high molecular heterogeneity 
in PCa.

Molecular subtypes in PCa. Over the last decade, several 
studies have focused on determining the excluding molecular 
events in the development of PCa, which are able to establish 
different subtypes, and are associated with the prognosis 
of the disease, and have the potential to be developed into 
targeted therapies (11,16,17,24). Therefore, the current status 
of PCa subtypes, will be subsequently discussed, using TCGA 
study (17) as a reference for the majority of the comparisons, 
the prognostic involvement, and the therapies of inhibitors of 
target oncogenes associated with subtypes, such as EZH2 or 
ERG (Table I), which have been used or are currently in the 
experimental phase, in this way some treatments that apply to 
cases that are ETS(+) will not work for those that are ETS(‑), 
such as blocking function of ERG regulating co‑factors, such 
as PARP1 (25‑27) (Table I). Table I summarizes the main 
clinical‑pathological characteristics of the subtypes and 
treatments that have been investigated as a development of 
personalized medicine (13,17,24‑26,28‑63).

ETS(+) subtypes. The ETS family of transcription factors 
consists of phosphorylated proteins with DNA‑binding 
domains (ETS domain) that act as either activators or repres‑
sors of transcription. The family consists of 30 identified genes, 
28 of which are found in the human genome. Previous studies 
have found that between 50 and 70% of patients with PCa 
overexpress ETS, following gene fusion, which causes ETS 
to be controlled by ARE (12). Due to the prevalence of these 

types of rearrangements, efforts to molecularly characterize 
PCa begin by separating the cases which have gene fusion 
from those that do not, termed ETS(+) and ETS(‑), respectively 
in numerous studies (20,38,64). TCGA study (17) has charac‑
terized four different ETS(+) subtypes, depending on the type 
of ETS involved in the fusion: ERG, ETV1, ETV4 and Fli‑1 
proto‑oncogene, ETS transcription factor ERG is the most 
frequently overexpressed ETS. TMPRSS2 the most frequent 
fusion gene in all ETS fusions; however, fusions with other 
androgen‑regulated genes have also been described, including 
solute carrier family 45 member 3 and N‑myc downstream 
regulated 1 (65). 

 The TMPRSS2‑ERG gene fusion causes ERG overex‑
pression, which initiates a cascade of events that continues 
with Enhancer of zeste 2 polycomb repressive complex 2 
subunit (EZH2) overexpression and decreased NKX3‑1 
expression (Fig. 2) (20,28). EZH2 is a methyltransferase 
from the polycomb group, involved in tissue‑specific differ‑
entiation by histone methylation (H3K27), while NKX3‑1 is 
an androgen‑regulated, prostate‑specific gene, which encodes 
a critical transcription factor during prostate development by 
downregulating epithelial cell growth, and is considered a 
TSG (20,28,66). 

Other common molecular alterations in PCa are dele‑
tions and point mutations of PTEN, leading to activation of 
Akt, which can subsequently lead to over‑activation of AR 
signaling; and in the presence of TMPRSS2‑ERG gene fusion, 
it can increase the activation of a cascade involving ERG, 
EZH2 and NKX3‑1 (Fig. 2) (20,31,33). 

ETS(‑) subtypes. ETS(‑) are PCa subtypes with a canonic altera‑
tion, which is different to that in the ETS fusion genes. Whereas 
rearrangements occurring in ETS(+) tumors display features 
of chromoplexy, ETS(‑) tumors display a higher frequency of 
chromothripsis (11). Among the ETS(‑) subtypes, different 
studies have found the existence of a highly‑expressed EZH2 

Figure 1. Muliple chromosomal rearrangements in prostate cancer. (A) Mechanisms for the formation of multiple chromosomal rearrangements. DNA ds breaks 
can be repaired by DNA‑ breakage, deletion or fusion. Loss of DNA at sites of ds breaks may result in simple deletions (top) or ‘deletion bridges’ (middle) 
which span breakpoints from distinct fusions. Adjacent breakpoints or deletion bridges may provide evidence for mulitple rearrangements. Concerted repair 
with minimal loss of DNA results in fusion breakpoints which map to adjacent positions (indicated by the punctuated arrows). (B) Chromoplexy. Multiple 
breakpoints, including several chromosomes (C) Chromothripsis. Hundreds of breaking points grouped in one or two chromosomes. DS, double strand.



SEGURA‑MORENO et al:  HETEROGENEITY IN PROSTATE CANCER EVOLUTION4

Ta
bl

e 
I. 

Pr
os

ta
te

 c
an

ce
r m

ol
ec

ul
ar

 su
bt

yp
es

, p
ro

gn
os

is
 si

gn
ifi

ca
nc

e 
an

d 
ta

rg
et

 th
er

ap
y.

 

A
, E

TS
(+

) s
ub

ty
pe

s (
50

‑7
0%

 p
re

va
le

nc
e 

in
 P

C
a)

M
ol

ec
ul

ar
 su

bt
yp

e 
(%

pr
ev

al
en

ce
 in

 P
C

a)
 

C
ha

ra
ct

er
iz

at
io

n 
of

 th
e 

su
bt

yp
e 

Pr
og

no
si

s 
Ta

rg
et

s f
or

 tr
ea

tm
en

ts

ER
G

 (4
6)

 
O

ve
re

xp
re

ss
io

n 
of

 E
R

G
 le

ad
s t

o 
ov

er
ex

pr
es

si
on

  
M

et
as

ta
tic

 p
he

no
ty

pe
 d

ue
 to

 a
n 

D
ire

ct
ed

 to
 o

ve
rc

om
e 

ep
ig

en
et

ic
 si

le
nc

in
g 

ET
V

1 
(8

) 
of

 E
ZH

2,
 w

hi
ch

 fa
ci

lit
at

es
 fo

rm
at

io
n 

of
  

in
cr

ea
se

 in
 c

el
lu

la
r m

ig
ra

tio
n,

 
ca

us
ed

 b
y 

EZ
H

2:
ET

V
4 

(4
) 

he
te

ro
ch

ro
m

at
in

 a
nd

 th
e 

de
cr

ea
se

d 
ex

pr
es

si
on

 o
f  

de
cr

ea
se

 in
 a

no
ik

is
 a

nd
  

‑D
ZN

ep
: A

 g
lo

ba
l h

is
to

ne
 m

et
hy

la
tio

n 
in

hi
bi

to
r t

ha
t

FL
I1

 (1
) 

N
K

X
3‑

1 
(2

8)
. 

C
R

PC
 (2

4,
28

). 
re

ac
tiv

at
es

 d
ev

el
op

m
en

ta
l g

en
es

 n
ot

 si
le

nc
ed

 b
y

 
PT

EN
M

ut
 is

 fr
eq

ue
nt

ly
 fo

un
d,

 a
nd

 h
as

 b
ee

n 
 

PT
EN

M
ut
 h

as
 b

ee
n 

as
so

ci
at

ed
 w

ith
 

D
N

A
 m

et
hy

la
tio

n,
 in

 in
 v

itr
o 

as
sa

ys
 (3

2)
.

 
as

so
ci

at
ed

 w
ith

 su
bs

eq
ue

nt
 a

ct
iv

at
io

n 
of

 A
kt

,  
a 

hi
gh

er
 G

S 
an

d 
a 

lo
w

er
 d

is
ea

se
‑ 

‑H
D

A
C

 a
nd

 D
N

M
T 

in
hi

bi
tio

n 
in

 in
 v

itr
o 

as
sa

ys
 (3

3)
.

 
w

hi
ch

 le
ad

s t
o 

up
re

gu
la

tio
n 

of
 A

R
 a

nd
 E

R
G

  
fr

ee
 su

rv
iv

al
 ra

te
 (3

0,
31

). 
In

hi
bi

to
rs

 o
f E

ZH
2:

 
si

gn
al

in
g 

in
 T

M
PR

SS
2‑

ER
G

 (F
ig

. 2
) (

29
). 

 
 ‑G

SK
 1

26
: 

In
 v

itr
o,

 o
ve

rc
om

es
 r

es
is

ta
nc

e 
to

 e
nz

al
u‑

ta
m

id
e 

(a
nt

ag
on

is
t o

f A
R

) i
n 

C
R

PC
 (3

4)
. 

 
 

 
 ‑C

PI
‑1

20
5:

 C
om

bi
ne

d 
w

ith
 e

nz
al

ut
am

id
e/

ab
ira

te
ro

ne
 

(in
hi

bi
to

r o
f a

nd
ro

ge
n 

bi
os

yn
th

es
is

) i
s 

cu
rr

en
tly

 b
ei

ng
 

te
st

ed
 fo

r p
at

ie
nt

s w
ith

 C
R

PC
 (3

5)
.

 
 

 
D

ire
ct

ed
 to

 in
hi

bi
t E

R
G

 fu
nc

tio
n:

 
 

 
‑E

R
G

 d
ire

ct
 in

hi
bi

tio
n 

is
 d

iffi
cu

lt.
 

 
 

 
 ‑B

lo
ck

in
g 

fu
nc

tio
n 

of
 

ER
G

 
re

gu
la

tin
g 

co
‑f

ac
to

rs
, 

su
ch

 a
s 

PA
R

P1
, i

s 
m

or
e 

fe
as

ib
le

 in
 p

re
‑c

lin
ic

al
 a

ss
ay

s 
in

 v
itr

o 
an

d 
in

 v
iv

o 
(2

5‑
27

).

B
, E

TS
(‑

) s
ub

ty
pe

s (
50

‑3
0%

 p
re

va
le

nc
e 

in
 P

C
a)

 
 

 

M
ol

ec
ul

ar
 su

bt
yp

e 
(%

pr
ev

al
en

ce
 in

 P
C

a)
 

C
ha

ra
ct

er
iz

at
io

n 
of

 th
e 

su
bt

yp
e 

Pr
og

no
si

s 
Ta

rg
et

s f
or

 tr
ea

tm
en

ts

H
ig

hl
y 

ex
pr

es
se

d 
EZ

H
2 

O
ve

re
xp

re
ss

io
n 

of
 E

ZH
2 

ca
n 

be
 c

au
se

d 
by

 M
Y

C
  

Si
m

ila
r t

o 
ET

S(
+)

, b
ut

 w
ith

 w
or

se
  

Th
e 

sa
m

e 
th

at
 fo

r E
TS

(+
), 

bu
t w

ith
ou

t E
R

G
 in

hi
bi

tio
n.

bu
t i

nd
ep

en
de

nt
 o

f E
R

G
  

ov
er

ex
pr

es
si

on
, m

iR
‑2

6a
, m

iR
‑2

6b
 a

nd
 m

iR
‑1

01
  

pr
og

no
si

s (
39

). 
In

 v
itr

o 
as

sa
ys

 w
ith

 a
ris

te
ro

m
yc

in
 a

nd
 D

ZN
eP

 c
au

se
ex

pr
es

si
on

 (3
1)

 
lo

ss
 (3

6‑
38

). 
 

 gr
ow

th
 in

hi
bi

tio
n 

of
 P

C
a 

vi
a 

in
du

ct
io

n 
of

 m
ir‑

26
a 

(4
0)

 
 

 
 In

hi
bi

to
r o

f M
Y

C
 (a

ga
in

st
 M

Y
C

‑d
riv

en
 P

C
a 

in
cl

ud
in

g 
C

R
PC

):
 

 
 

 ‑A
ZD

12
08

 (
or

al
 P

IM
1 

ki
na

se
 i

nh
ib

ito
r)

: 
Ef

fe
ct

iv
e 

at
 

do
w

nr
eg

ul
at

in
g 

M
Y

C
 a

ct
iv

ity
, 

in
hi

bi
tin

g 
th

e 
gr

ow
th

 
of

 M
Y

C
‑d

riv
en

 P
C

a,
 i

nh
ib

its
 t

um
or

ig
en

es
is

 i
n 

tis
su

e 
re

co
m

bi
na

nt
s, 

M
yc

‑P
C

a,
 a

nd
 h

um
an

 P
C

a 
xe

no
gr

af
t 

m
od

el
s (

41
). 



ONCOLOGY LETTERS  21:  376,  2021 5

Ta
bl

e 
I. 

C
on

tin
ue

d.

M
ol

ec
ul

ar
 su

bt
yp

e 
(%

pr
ev

al
en

ce
 in

 P
C

a)
 

C
ha

ra
ct

er
iz

at
io

n 
of

 th
e 

su
bt

yp
e 

Pr
og

no
si

s 
Ta

rg
et

s f
or

 tr
ea

tm
en

ts

 
 

 
 ‑C

X
‑6

25
8 

(p
an

‑P
IM

 k
in

as
e 

in
hi

bi
to

r)
 w

ith
 C

X
‑5

46
1 

(in
hi

bi
to

r 
of

 R
N

A
 p

ol
ym

er
as

e 
I)

: 
Pr

ec
lin

ic
al

 e
ffi

ca
cy

 
of

 t
he

ra
pi

es
 t

ha
t 

co
m

bi
ne

 t
o 

ta
rg

et
 M

Y
C

‑d
ire

ct
ed

 
si

gn
al

in
g 

to
 th

e 
rib

os
om

e 
(4

2)
. 

SP
O

PM
ut
/  

‑S
PO

P 
is

 a
 T

SG
, w

hi
ch

 c
od

ifi
es

 fo
r a

 p
ro

te
in

 
‑L

es
s a

dv
er

se
 p

at
ho

lo
gi

c 
fe

at
ur

es
  

D
ire

ct
ed

 to
 S

PO
P'

s s
ub

st
ra

te
s:

SP
IN

K
‑1

 o
ve

re
xp

re
ss

io
n 

in
vo

lv
ed

 in
 b

ot
h 

pr
ot

ea
so

m
al

 d
eg

ra
da

tio
n 

an
d 

an
d 

fa
vo

ra
bl

e 
pr

og
no

si
s (

47
). 

‑L
es

ta
ur

tin
ib

: I
nh

ib
ito

r f
or

 P
R

K
‑1

 (s
er

in
e/

th
re

on
in

e 
(1

1‑
15

) 
D

N
A

 re
pa

ir 
(1

3)
.  

‑T
he

 h
ig

h 
ex

pr
es

si
on

 o
f S

PI
N

K
‑1

 
ki

na
se

 o
f t

he
 P

K
C

 fa
m

ily
). 

PR
K

‑1
 w

as
 sh

ow
n 

to
 p

la
y

 
‑I

nc
re

as
e 

of
 S

PO
P 

su
bs

tra
te

 le
ve

ls
 (A

R
, E

R
G

,  
co

ul
d 

be
 a

ss
oc

ia
te

d 
w

ith
 h

ig
h 

G
S 

an
 im

po
rta

nt
 ro

le
 in

 th
e A

R
 c

om
pl

ex
. P

re
‑c

lin
ic

al
 

D
A

X
X

, D
EK

 a
nd

 S
R

C
‑3

) a
nd

 th
e 

N
H

EJ
 p

at
hw

ay
 (4

3)
. 

an
d 

a 
po

ss
ib

le
 b

io
ch

em
ic

al
 o

r 
m

od
el

 in
 v

itr
o 

of
 tr

ea
tm

en
t d

ire
ct

ed
 to

 A
R

 a
nd

 
‑H

ig
h 

D
N

A
 m

et
hy

la
tio

n 
le

ve
ls

 h
av

e 
be

en
 a

ss
oc

ia
te

d 
 

cl
in

ic
al

 re
cu

rr
en

ce
 (4

8,
49

). 
SR

C
‑3

 (5
1,

52
).

 
w

ith
 th

e 
pr

es
en

ce
 o

f C
H

D
1 

m
ut

at
io

ns
 a

nd
  

‑S
PI

N
K

‑1
 in

du
ce

s E
M

T,
 w

hi
ch

 
‑A

bi
ra

te
ro

ne
 (i

nh
ib

ito
r o

f a
nd

ro
ge

n 
bi

os
yn

th
es

is
):

 
M

A
P3

K
7 

(4
4,

45
). 

in
cr

ea
se

s m
ig

ra
to

ry
 a

nd
 in

va
si

ve
 

C
R

PC
s w

ith
 S

PO
PM

ut
 a

nd
 C

H
D

1 
lo

ss
 a

pp
ea

r h
ig

hl
y 

 
‑S

PI
N

K
‑1

 o
ve

re
xp

re
ss

io
n 

co
ul

d 
ac

t a
s a

 g
ro

w
th

  
ca

pa
ci

ty
 in

 v
itr

o 
(4

6)
. 

se
ns

iti
ve

 (5
3)

.
 

fa
ct

or
, s

tim
ul

at
in

g 
si

gn
al

in
g 

th
ro

ug
h 

 
A

nd
ro

ge
n‑

de
pr

iv
at

io
n 

th
er

ap
y 

M
ab

 a
nt

i‑S
PI

N
K

‑1
 (5

4)
.

 
EG

FR
/M

A
PK

 (4
6)

. 
in

du
ce

 S
PI

N
K

1 
up

re
gu

la
tio

n 
 

 
as

so
ci

at
es

 w
ith

 n
eu

ro
en

do
cr

in
e 

 
 

pr
os

ta
te

 c
an

ce
r p

he
no

ty
pe

 in
 

 
 

m
ic

e 
an

d 
pa

tie
nt

s (
50

). 
FO

X
A

1M
ut

 (3
) 

‑F
O

X
A

1 
is

 im
po

rta
nt

 to
 d

iff
er

en
tia

te
 e

pi
th

el
ia

l  
‑I

t p
ro

m
ot

es
 p

ro
gr

es
si

on
 o

f t
he

 c
el

l 
‑F

O
X

A
1 

do
w

nr
eg

ul
at

io
n 

in
du

ce
s T

G
F‑

β 
si

gn
al

in
g,

 
ce

lls
 in

 th
e 

pr
os

ta
te

; i
t b

in
ds

 th
e 

en
ha

nc
er

 re
gi

on
s  

cy
cl

e 
in

 C
PR

C
 in

 p
re

‑c
lin

ic
al

 
EM

T,
 a

nd
 c

el
l m

ot
ili

ty
, w

hi
ch

 is
 b

lo
ck

ed
 b

y 
th

e 
TG

F‑
β

 
in

 th
e 

ge
no

m
e,

 in
cr

ea
se

s l
oc

al
 c

hr
om

at
in

  
as

sa
ys

 b
ot

h 
in

 v
itr

o 
an

d 
re

ce
pt

or
 I 

in
hi

bi
to

r, 
LY

21
57

29
9.

 C
om

bi
na

tio
n

 
ac

ce
ss

ib
ili

ty
, a

nd
 fa

ci
lit

at
es

 th
e 

re
cr

ui
tm

en
t o

f A
R

. 
in

 v
iv

o 
(1

7,
58

,5
9)

. 
LY

21
57

29
9 

tre
at

m
en

t s
en

si
tiz

ed
 P

C
a 

ce
lls

 to
 

H
ow

ev
er

, d
ue

 to
 it

s d
ua

l r
ol

es
 a

s r
e‑

pr
og

ra
m

m
in

g 
‑M

ut
at

io
ns

 in
 F

O
X

A
1 

W
in

g2
 

en
za

lu
ta

m
id

e,
 le

ad
in

g 
to

 sy
ne

rg
is

tic
 ef

fe
ct

s i
n 

in
hi

bi
tin

g
 

fa
ct

or
 o

f A
R

, a
s w

el
l a

s f
un

ct
io

ni
ng

 a
s a

  
do

m
ai

ns
 (5

0%
 o

f a
ll 

m
ut

at
io

ns
)  

ce
ll 

in
va

si
on

 in
 v

itr
o,

 a
nd

 x
en

og
ra

ft 
C

R
PC

 tu
m

or
 

co
lla

bo
ra

tin
g 

fa
ct

or
, F

O
X

A
1 

ha
s b

ee
n 

sh
ow

n 
to

 
w

er
e 

de
te

ct
ed

 in
 P

C
a 

at
 a

ll 
st

ag
es

, 
gr

ow
th

 a
nd

 m
et

as
ta

si
s i

n 
vi

vo
 (5

8)
. 

 
ex

hi
bi

t b
ot

h 
on

co
ge

ni
c 

an
d 

tu
m

or
 su

pp
re

ss
iv

e 
w

he
re

as
 m

ut
at

io
ns

 a
t t

he
 h

ig
hl

y 
‑I

n 
vi

tro
 a

ss
ay

s s
ho

w
 th

at
 P

A
R

P‑
2 

in
hi

bi
to

rs
 su

pp
re

ss
 

ro
le

s i
n 

pr
os

ta
te

 c
an

ce
r (

55
). 

co
ns

er
ve

d 
D

N
A

‑c
on

ta
ct

 re
si

du
e 

A
R

 si
gn

al
in

g 
an

d 
PC

a 
gr

ow
th

 th
ro

ug
h 

di
sr

up
tio

n
 

‑F
O

X
A

1 
m

ut
at

io
ns

 h
av

e 
be

en
 a

ss
oc

ia
te

d 
w

ith
 th

e 
 

R
21

9 
(~

5%
) a

re
 e

nr
ic

he
d 

in
 

of
 F

O
X

A
1 

fu
nc

tio
n 

(5
9)

.
 

SP
O

PM
ut
/S

PI
N

K
‑1

 su
bt

yp
e 

(1
3)

. m
R

N
A

, S
C

N
A

  
m

et
as

ta
tic

 tu
m

or
s w

ith
 

 
an

d 
m

et
hy

la
tio

n 
pr

ofi
le

s o
f t

hi
s s

ub
ty

pe
 w

er
e 

 
ne

ur
oe

nd
oc

rin
e 

hi
st

ol
og

y 
(6

0)
. 

 
si

m
ila

r t
o 

SP
O

P 
(1

7)
.



SEGURA‑MORENO et al:  HETEROGENEITY IN PROSTATE CANCER EVOLUTION6

Ta
bl

e 
I. 

C
on

tin
ue

d.

M
ol

ec
ul

ar
 su

bt
yp

e 
(%

pr
ev

al
en

ce
 in

 P
C

a)
 

C
ha

ra
ct

er
iz

at
io

n 
of

 th
e 

su
bt

yp
e 

Pr
og

no
si

s 
Ta

rg
et

s f
or

 tr
ea

tm
en

ts

ID
H

1M
ut
 (1

)  
‑I

D
H

1M
ut
 p

ro
du

ce
s R

‑2
‑H

G
, w

hi
ch

 le
ad

s t
o 

‑D
ue

 to
 it

s l
ow

 fr
eq

ue
nc

y,
 th

er
e 

‑U
se

 o
f b

lo
ck

in
g 

ag
en

ts
 o

f D
‑2

‑h
yd

ro
xy

gl
ut

ar
at

e 
an

d
 

hy
pe

rm
et

hy
la

tio
n 

of
 D

N
A

 b
y 

th
e 

in
hi

bi
tio

n 
of

  
ar

e 
no

 si
gn

ifi
ca

nt
 c

on
cl

us
io

ns
 

hy
po

m
et

hy
la

tin
g 

ag
en

ts
 in

 p
re

‑c
lin

ic
al

 in
 v

itr
o 

 
m

em
be

rs
 o

f t
he

 α
‑K

G
‑d

ep
en

de
nt

 d
io

xy
ge

na
se

  
on

 it
s p

ro
gn

os
is

; h
ow

ev
er

, 
as

sa
ys

 (6
2)

.
 

pr
ot

ei
n 

fa
m

ily
. I

t c
au

se
s a

 sh
ift

 to
w

ar
ds

  
ID

H
1 

m
ut

at
io

n 
is

 ra
re

 in
 

‑K
no

ck
do

w
n 

of
 ID

H
1 

de
cr

ea
se

d 
ca

nc
er

 c
el

l
 

gl
yc

ol
ys

is
 a

nd
 a

ng
io

ge
ne

si
s, 

as
 a

n 
ad

ap
ta

tio
n 

to
  

 lo
ca

te
d 

PC
a 

(1
7,

61
). 

pr
ol

ife
ra

tio
n 

an
d 

bl
oc

ke
d 

th
e A

R
‑m

ed
ia

te
d 

in
du

ct
io

n 
in

 
 

hy
po

xi
a,

 a
nd

 it
 c

ha
ng

es
 th

e 
ce

llu
la

r r
ed

ox
  

 
ID

H
 m

et
ab

ol
ic

 re
pr

og
ra

m
m

in
g 

in
 p

re
‑c

lin
ic

al
 a

ss
ay

s 
 

en
vi

ro
nm

en
t b

y 
al

te
rin

g 
th

e 
ra

tio
 o

f  
 

in
 v

itr
o 

(6
2)

.
 

N
A

D
PH

 to
 N

A
D

P+
 (6

0)
. 

B
ia

lle
lic

 lo
ss

 o
f 

‑C
ha

ra
ct

er
iz

ed
 b

y 
ta

nd
em

 fo
ca

l d
up

lic
at

io
ns

,  
‑A

ss
oc

ia
te

d 
w

ith
 C

PR
C

 (6
3)

. 
‑I

m
m

un
ot

he
ra

py
 b

y 
in

hi
bi

tio
n 

of
 th

e 
im

m
un

e 
co

nt
ro

l
C

D
K

12
 (6

.9
) 

ge
ne

 fu
si

on
s a

nd
 a

 m
ar

ke
d 

di
ffe

re
nt

ia
l e

xp
re

ss
io

n 
 

 
ch

ec
kp

oi
nt

 (a
nt

i‑P
D

1 
in

hi
bi

to
r)

 in
 a

 p
ilo

t c
lin

ic
al

 
 

of
 g

en
es

. H
ig

h 
lo

ad
 o

f n
eo

an
tig

en
s i

nd
uc

ed
 b

y 
 

 
st

ud
y 

(6
3)

.
 

fu
si

on
 a

nd
 in

cr
ea

se
d 

in
fil

tra
tio

n 
of

 tu
m

or
 T

 c
el

ls
 b

y 
 

 
cl

on
al

 e
xp

an
si

on
 (6

3)
. 

M
ut

, m
ut

at
ed

; E
TS

, e
ry

th
ro

bl
as

t t
ra

ns
fo

rm
at

io
n 

sp
ec

ifi
c;

 E
R

G
, E

TS
 tr

an
sc

rip
tio

n 
fa

ct
or

 E
R

G
; E

TV
, E

TS
 v

ar
ia

nt
 tr

an
sc

rip
tio

n 
fa

ct
or

; E
ZH

2,
 e

nh
an

ce
r o

f z
es

te
 2

 p
ol

yc
om

b 
re

pr
es

si
ve

 c
om

pl
ex

 2
 su

bu
ni

t; 
N

K
X

3‑
1,

 N
K

3 
ho

m
eo

bo
x 

1;
 S

PO
P,

 sp
ec

kl
e 

ty
pe

 B
TB

/P
O

Z 
pr

ot
ei

n;
 S

PI
N

K
1,

 se
rin

e 
pr

ot
ea

se
 in

hi
bi

to
r K

az
al

 ty
pe

 1
; E

G
FR

, e
pi

de
rm

al
 g

ro
w

th
 fa

ct
or

 re
ce

pt
or

; F
O

X
A

1,
 fo

rk
he

ad
 b

ox
 A

1;
 ID

H
1,

 is
oc

itr
at

e 
de

hy
dr

og
en

as
e 

(N
A

PD
+ ) 1

; C
D

K
12

, c
yc

lin
 d

ep
en

de
nt

 k
in

as
e 

12
; T

SG
, t

um
or

 su
pp

re
ss

or
 g

en
e.

 G
S,

 G
le

as
on

 S
co

re
; C

R
PC

, c
as

tra
tio

n‑
re

si
st

an
t p

ro
st

at
e 

ca
nc

er
.



ONCOLOGY LETTERS  21:  376,  2021 7

subtype, which is independent of ERG expression (38,39). The 
overexpression of EZH2 has been described as well; it is caused 
by nuclear phosphoprotein MYC, which is involved in the cell 
cycle progression, apoptosis and cellular transformation. MYC 
oncogene also represses transcription of microRNA (miR)‑26a 
and miR‑26b, which are targets of EZH2, thus contributing to 
overexpression of EZH2 (36,38). In addition, the genomic or 
functional loss of miR‑101, a TSG whose targets include the 
EZH2 gene, causes the overexpression of this gene (37) (Fig. 2). 

Since epigenetic abnormalities driven by MYC over‑
expression have been associated with a poorer prognosis of 
PCa (progression‑free survival after radical prostatectomy), 
therapies targeting these abnormalities may favor patients with 
EZH2 overexpression (25‑27) (Table I). Furthermore, TCGA 
describes 3 ETS(‑) subtypes, characterized by mutations in 
genes, including SPOP, overexpression of serine protease 
inhibitor Kazal type 1 (SPINK1), forkhead box A1 (FOXA1) 
or isocitrate dehydrogenase (NAPD+)1 (IDH1) (17) (Table I). 
Previous studies have reported an overexpression of SPINK, 
as an independent subtype (66,67); however, its overexpres‑
sion was associated with the mutated SPOP subtype in TCGA 
study (17). In 2018, Wu et al (63) reported a novel subtype, 
characterized by the inactivation of cyclin dependent kinase 
12, which could benefit from immune checkpoint inhibition 
therapy (Table I).

In TCGA study, 26% of PCa cases could not be clas‑
sified into any of the identified subtypes (17). There were 
three major groups of prostate cancers in the study, one with 
mostly unaltered genomes (referred to as quiet), a second 
group encompassing 50% of all tumors with an intermediate 
level of SCNAs, and a third group with a high burden of arm 
level genomic gains and losses (17). These PCa were clini‑
cally and genomically heterogeneous; low‑pass and high‑pass 
whole‑genome sequencing (WGS) on 100 and 19 tumor/normal 
pairs, some of had numerous somatic copy number altera‑
tions (SCNA) and a high GS, which is an indicator of poor 
prognosis; 33% of them were genomically similar to the SPOP 
and FOXA1 subtypes, others were enriched for mutations of 
TP53, KDM6A, and KMT2D (lysine methyltransferase 2D) 
or specific SCNAs spanning MYC and CCND1 (cyclin D1) 
and other cases had a low GS (GS 6) with fewer genomic 
alterations (38% in the ‘quiet’ class vs. 8% in the class with 
the greatest burden of alterations), such as SCNA and DNA 
methylation patterns similar to those in normal tissue (17). 

Table I organizes the different subtypes with their clinical 
significance and the treatment options that are being addressed 
for the future development of personalized medicine; however, 
this classification has not been clear or reproducible in 
numerous cases, nor has the response of patients to the treat‑
ments either, as ~75% of PCa are multifocal, and more than 

Figure 2. EZH2 overexpression in prostate cancer. The following steps are involved: 1. ERG‑dependent mechanisms. Upregulation of the PI3K/Akt signaling 
pathway by PTEN mutations increases AR signaling and contributes to ERG overexpression in ETS(+) tumors. TMPRSS2‑ERG fusion leads to overexpres‑
sion of ERG, leading to overexpression of the EZH2 protein. 2. MYC oncogene binds to the E‑box of the EZH2 promoter and induces its expression. 3. 
Post‑transcriptional regulation of EZH2 by miRNAs. miR101, miR26a and miR26b reduces the translation of EZH2. Genomic loss of miR‑101 and over‑
expression of MYC, which represses the transcription of miR‑26a and miR‑26b, increases EZH2 translation. 4. EZH2 is involved in gene silencing of TSG, 
NKX3‑1. miR, microRNA; TSG, tumor suppressor gene; EZH2, enhancer of zeste 2 polycomb repressive complex 2 subunit; ERG, ETS transcription factor 
ERG; AR, androgen receptor; TMPRSS2, transmembrane serine protease 2; EBS, ETS binding site; NKX3‑1, NK3 homeobox 1; ARE, androgen response 
elements.
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one subtypes can coexist in the same patient with multifocal 
PCa (6,68). 

Intratumoral molecular heterogeneity. The Gleason clas‑
sification, using histological methods, that heterogeneity 
in multifocal PCa can be recognized, which is higher when 
analyzed from a molecular point of view (6,69). This intra‑
tumoral heterogeneity makes it difficult to associate specific 
molecular alterations, detected in a single focus, with the clinical 
behavior of a patient with multifocal PCa (6,69). In molecular 
studies, the pattern of the index tumor is typically obtained to 
assign molecular alterations and subtypes; however, other foci 
are not taken into account (6). The index tumor is the largest 
tumor focus, which in most cases (89%) can be associated with 
significant pathological parameters, such as the highest GS, 
the largest tumor volume and extraprostatic extension (70); 
however, this is not always the case (69). Numerous studies 
have found that a single clone is responsible for the dispersal of 
all metastatic foci (13,71,72); which suggests that identifying 
the ‘deadly’ clone is of utmost importance, and should not 
necessarily start from the index tumor.

Due to the heterogeneity caused by multifocality in PCa, 
it is necessary to perform studies, that analyze the molecular 
alterations in various foci, which would allow the identifica‑
tion of the impact of different molecular subtypes in the 
same patient (4,64). Some studies using the TMPRSS2‑ERG 
fusion (73,74), PTEN deletion (75), SPINK1, ERG (67), and 
whole genome sequencing (6,75‑77) have found a markedly 

interfocal discordance, which was consistent with the concept 
that multiple foci of PCa have a multiclonal origins (6). 
Wei et al (6) also found this heterogeneity when using commer‑
cial PCa diagnostic kits (Decipher, Prolaris and Oncotype 
DX), which are based on the expression of various genes, 
including immune response genes like testis‑specific basic 
protein and PBX homeobox 1 of Decipher, cell cycle‑related 
genes CDC20 (Cell Division Cycle 2), CDKN3 (Cyclin 
Dependent Kinase Inhibitor 3), CDC2 (cell division control 
protein 2 homolog) of Prolaris, genes of androgen signaling 
AZGP1 (Alpha‑2‑Glycoprotein 1) and FAM13C (Family With 
Sequence Similarity 13 Member C) of Oncotype DX. These 
results suggest that applying a single subtype of the molecular 
taxonomy of PCa proposed by TCGA to a patient, i.e., studying 
a single focus, is an over simplified and incorrect view of the 
molecular landscape of PCa. 

3. Molecular progression to castrate‑resistant prostate 
cancer 

As aforementioned, the origins of PCa begins as a 
pre‑neoplastic lesion which progresses to localized cancer, and 
can subsequently metastasize. Elimination of androgens using 
surgical or chemical castration, in numerous cases, results in 
control of PCa (78,79). However, when relapse occurs despite 
treatment, PCa has progressed to an androgen‑independent 
form of cancer or CRPC, which is considered the most aggres‑
sive form of PCa (80).

Figure 3. Models proposed for the origin of castration resistant PCa. (A) Selection model. Most luminal cells undergo apoptosis, following androgen ablation, 
while basal cells proliferate and neuroendocrine cells are resistant to castration. (B) Adaptation model. Following androgen ablation, androgen‑dependent PCa 
cells acquire novel alterations which allow them become androgen‑independent. However, it is also possible that both models, independently or cooperatively, 
contribute to CRPC growth in a patient, forming a selection and adaptation joint model. The orange line indicates the basal membrane. The grey cells with a 
black X represent cells that have undergone apoptosis. AR, androgen receptor; IDH1, isocitrate dehydrogenase (NAPD+)1; PCa, prostate cancer.
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Most of the molecular alterations in PCa have been 
described from HGPIN (or associated with HGPIN). However, 
there are studies, which have found associations between some 
of these alterations with different stages of PCa progression. 
ETS fusions and FOXA1 mutations frequently occur in 
HGPIN (14,23). Overexpression of SPINK1 (~10‑25%) and 
SPOP (~11%), TP53 (~25%), IDH1 (~1%), MAP3K7 and CHD1 
(~10‑20%) mutations (11,13,17,23,49,81) are more frequent in 
localized PCa, while the highest and lowest expression levels 
of EZH2 and NKX3‑1, respectively, together with PTEN 
deletion, have been found in metastatic CRPC (11,23,82). 
Monoallelic loss of PTEN is present in up to 60% of local‑
ized prostate cancers and complete loss of PTEN in prostate 
cancer is linked to metastasis and androgen‑independent 
progression (86). Alteration of the AR signaling pathway 
compared with that in other pathways in CRPC suggest that 
AR signaling continues being the ‘master regulator’ for PCa 
progression (45,55,84), including AR copy number gain (24% 
of CRPCs) or AR point mutation (20% of CRPCs). These 
results assist to define the sequence of the molecular events 
in the development of PCa, from the origins of the disease 
through to its progression into metastasis, resistance to treat‑
ment and death. 

There are 3 types of cells which interact in PCa to survive 
androgen ablation treatment: Androgen‑dependent, androgen 
producing, and androgen‑independent cells (85). The interac‑
tion among them determines whether CRPC will develop 
or not. The pathway which leads from the development of 
androgen‑dependent to androgen‑independent cells is still 
unknown. However, there are two models which have been 
used to explain this process. Some studies suggest that there 
is a collection of androgen‑independent preexisting cells 
following therapy (selection model) (86,87); in contrast, other 
studies postulate that cells acquire novel alterations which 
allow them to survive in the absence of androgens (adaptation 
model) (88) for developing CRPC (Fig. 3). 

Selection model. In this model, primary PCa consists of a 
heterogeneous mix of luminal, neuroendocrine and stem cells. 
When the patient undergoes androgen ablation treatment, most 
of the androgen‑dependent cells undergo apoptosis, while 
androgen‑independent cells persist and survive due to their 
low androgen requirement (Fig. 3) (86,87,89).

The vast majority of PCa are luminally differentiated 
adenocarcinomas with the presence of neuroendocrine 
cells, and respond to hormonal therapy (90); however, there 
are some tumors, which consist of aggressive and highly 
proliferating neuroendocrine cells only, for example small 
cell neuroendocrine PCa, which do not respond to hormone 
therapy, therefore platinum‑based chemotherapy (phase II 
trial) is used (90,91). These malignant neuroendocrine cells, 
which share their origin with normal prostatic neuroendocrine 
cells (93), express epidermal growth factor receptor (EGFR) 
and receptor tyrosine‑protein kinase erbB‑2; for these reasons, 
they are classified as androgen‑independent cells (94), and 
their abundance is considered a promising prognostic marker 
for the development of CRPC (95). 

A previous study compared global transcriptomic profiles 
of normal basal and luminal epithelial lineages from samples 
of patients with PCa and PCa cell lines (87). It was found that 

PCa cells exhibited a gene expression profile similar to that 
found in a luminal cell and aggressive and neuroendocrine 
PCa were similar to basal cells (87).

In addition to cell type, in a few cases, point mutations in 
AR can cause cells, which were originally androgen‑depen‑
dent, to become androgen‑independent cells, and can be 
resistant to therapy, that is, those pre‑existing mutations 
in the localized disease confer a selective advantage with 
threapy‑resistant cells (84,95‑97). The S646F mutation within 
AR, in the hinge region, has been associated with a short 
response to endocrine therapy, due to a markedly increased 
transcriptional activity on ARE‑containing promoters (95). 
In addition, AR gene copies (two to four copies), due to 
polysomy of the X‑chromosome, are present in a subgroup of 
localized PCa, and these specimens may have an advantage in 
low concentrations of androgens due to therapy (96), since the 
additional AR copies may be a factor leading to a poor clinical 
outcome of antiandrogen therapy as there is a compensatory 
mechanism allowing activation of the AR post‑castration. 
Furthermore, that study concluded that high stage primary 
prostate cancer may be associated with increased frequencies 
of aneuploidies of the X chromosome resulting in an increased 
AR gene copies number. 

Adaptation model. The adaptation model suggests that resis‑
tance to castration is the result of the acquisition of genetic 
and/or epigenetic alterations in response to therapy, which 
allows cells that were previously dependent on androgens 
to proliferate at low concentrations of androgens due to 
therapy (97). Adaptations to androgen ablation treatment 
include the occurrence of mutations with a copy number 
gain of the AR gene, changes in the expression of AR 
co‑regulation molecules (48,84,98), and deregulation of key 
molecules in proliferation (99), such as Akt overexpres‑
sion (29).

The evidence supports the selection model (100‑102); 
however, it is difficult to establish either of these models as the 
definitive or exclusive mechanism. It is also possible that both 
models independently or cooperatively contribute to the devel‑
opment of CRPC (85,100). Some cells could be independent 
of androgens and be selected, or they can also gain adaptive 
advantages to proliferate at low concentrations of androgens; 
or there could be cells selected for their independence from 
androgens, and others that adapt and proliferate at low concen‑
trations of androgens (100). 

The aforementioned neuroendocrine PCa from small cells 
may arise de novo, which would support the selection model; 
however, these generally occur as recurrent tumors in men 
who have received hormone therapy for prostatic adenocarci‑
noma, suggesting that the neuroendocrine phenotype is driven 
by the hostile environment created by hormone therapy, or 
the adaptation model, and such tumors are composed of 
pure neuroendocrine cells that are highly proliferative and 
aggressive (88,90,103), due mutation in P53 (104) (allele 
of a missense transition converting G to A at position 747, 
changing negatively charged aspartic acid to hydrophilic 
amino acid asparagine at amino acid 184) and the inactiva‑
tion of the interleukin‑8‑C‑X‑C motif chemokine receptor 2 
signaling pathway (90,104). Differential epigenetic markers 
between the neuroendocrine and non‑neuroendocrine CRPC 
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support a key role of the epigenome in the emergence and/or 
maintenance of neuroendocrine CRPC (105).

With the widespread use of novel drugs targeting the 
androgenic axis, such as abiraterone acetate and enzalu‑
tamide, there has been a rapid increase in the incidence of 
small cell neuroendocrine carcinoma (91,105), on the basis of 
autopsy series and other studies this type of PCa may repre‑
sent approximately 25% of late stage of PCa (106), which will 
become a major challenge in the treatment of these patients. 
The clarification of the determining factors that lead to CRPC 
will be key to understanding the carcinogenesis process and 
guiding the clinical management of each patient.

4. Conclusions

The use of molecular subtypes in PCa to personalize treatment 
is promising; however, it is necessary to consider multifocality. 
The lack of an association between subtype and prognosis in 
PCa may be due to the fact that only the index tumor is investi‑
gated. It is important to analyze the subtypes in multiple foci, to 
elucidate the development of PCa, which could include different 
molecular subtypes; during the development of tumor foci, these 
would be selected according to their adaptive advantages, such 
as resistance to castration and the ability to metastasize.

 The presence or absence of a specific alteration in any 
of the foci may be associated with the potential of PCa to 
progress to CRPC or to be the target for the development of 
targeted therapy, which does not necessarily have to be found 
in the index lesion.
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