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Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in
the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mam-
mals have little to say to each other. Accordingly, their research tends to track the particularities and
peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of
explanations. Here, I present evidence in support of the heterodox idea that evolution might look
to a general theory that does more than serve as a tautology (‘evolution explains evolution®). Specifi-
cally, I argue that far from its myriad of products being fortuitous and accidental, evolution is
remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian
mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek expla-
nations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated
systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully
unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its
Newton, biology its Darwin: evolutionary biology now awaits its Einstein.
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1. INTRODUCTION

Oxymoronically, the sheer obviousness of organic evol-
ution can only explain the many quotations that
declare the self-evident. Consider, for example,
Thomas Henry Huxley’s post-1859 exclamation of
‘How extremely stupid not to have thought of that!’
(Huxley 1900, vol. 1, p. 170), or more recently per-
haps Richard Dawkins’ somewhat hypothetical
question posed by visiting extraterrestrials as to
whether we had yet stumbled on the Darwinian for-
mula (Dawkins 1989, p. 1). Both, of course, miss the
point. Whatever Huxley’s talents, he had not the
remotest chance of formulating a workable hypothesis
for organic evolution. Indeed, even after the publi-
cation of Darwin’s Origin, he kept on missing the
point (Desmond 1998). So too I suspect any extrater-
restrial tourists are more likely to enquire whether we
have yet dropped the habit of killing millions of inno-
cents on the basis of truly daft ideologies, as likely as
not based on some mutant French philosophie. And
should the conversation stray to science, they might
politely enquire as to the current progress in our
understanding, say, of quantum entanglement.

Yet, if evolution is glaringly obvious, why is it not
only greeted with growing hostility, but the siren-call
of anti-evolutionary dogma, notably ‘intelligent
design’, remains a rallying point to individuals that in
any other respect fail to manifest any obvious sign of
mental instability? The reasons, of course, are complex
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and so far as the explication (and defence) of the
science of evolution is concerned, it can hardly be
assisted by those who ironically treat it as a religion
(Midgley 1985). I wonder if paradoxically the diffi-
culty stems from Darwin himself. Curiously, it is
seldom appreciated that whatever else his masterpiece
(Darwin 1860) set out to achieve it was at heart an
exorcism of William Paley (Conway Morris 2009).
With consummate skill, and in striking contrast to
the belligerent and graceless rhetoric of some of his
intellectual descendants, he systematically dismantled
Paley’s creationism. But 150 years on the message
has evidently failed to sink in.

While the aim of this paper is, I hope, straightfor-
ward, it is also designed to point to some unfinished
business. Of course, and as already indicated, the rea-
lity of evolution is not in dispute. Nor is the Darwinian
formulation, for which the evidence is overwhelming.
The question quite simply is whether the theory is
complete. At heart are the questions as to what life is
itself and the nature of the organizational principles
that might underpin it. The first topic was most
famously articulated by Schrodinger (1948), and con-
tinues to receive attention, albeit at times in a
somewhat desultory (if not unfocused) fashion. But
the question is of central importance and a recent
and highly germane articulation is given by Macklem
(2008). As he points out, life seems to occupy a very
precise zone (indeed, I suspect a gossamer-like tight-
rope) perched between systems that are either very
highly ordered (crystalline) or largely chaotic and sub-
ject to recurrent instabilities. As he concludes,
‘understanding life requires knowledge of how the
design of living creatures and emergent phenomena,

This journal is © 2010 The Royal Society


mailto:sc113@esc.cam.ac.uk

134 S. Conway Morris

Review. Evolution is predictable

appearing spontaneously in self-ordered, reproducing,
interacting, energy-consuming, nonlinear, dynamic
ensembles makes us what we are. I believe this will
be the next biological revolution’ (Macklem 2008,
p. 1846). This writer also emphasizes the central role
of emergence in biological systems. Together with
the related topic of self-organization, these concepts
can be melded with the currency of evolution in the
form of developmental constraints (the role of which
may be exaggerated) and epigenetics to suggest that
indeed something is missing in the Darwinian
synthesis.

Here, I will suggest that one central tenet of the cur-
rent neo-Darwinian synthesis, that evolution is for all
intents and purposes open-ended and indeterminate
in terms of predictable outcomes, is now open to ques-
tion. Thus, not only is life suspended between
permanently uninhabitable regions that are either
locked into crystalline immobility or in continuous
and chaotic flux, but that the lines of evolutionary
vitality thread through a landscape that leaves evol-
ution with surprisingly few choices. The basis of this
view relies on the phenomenon of evolutionary conver-
gence. This concept is, of course, not only entirely
familiar to evolutionary biologists, but also provides
some of the strongest arguments in favour of adapta-
tional explanations. However, much less appreciated
is the ubiquity of this convergence, with examples
spanning the entire biological hierarchy from mol-
ecules to social systems and cognitive processes. In
support of this thesis, which I explore at far greater
length elsewhere, I briefly touch on (i) what, if any,
key steps in the evolution of life are entirely fortuitous
and (ii) what, if any, biological innovations are unique?

2. ARE THE KEY STEPS IN EVOLUTION
FORTUITOUS?

If there is a fatal flaw in the argument for evolutionary
inevitabilities, if not a determinism, then it is in the
widely accepted proposition that certain key tran-
sitions in the history of life are the result of
effectively fortuitous sets of evolutionary events that
in combination are so improbable as to render the pro-
cess fundamentally unpredictable. That evolution is
not utterly random is evident from the ubiquity of
homoplasy, at least within clades that encompass
lower parts of the taxonomic hierarchy. The question,
however, is does this principle extend to the major div-
isions of life? No definitive answer can yet be given, not
least because the origins of the great majority of major
groups are shrouded in obscurity, although jointly
molecular data and the fossil record continue to
make major assaults on this citadel of ignorance.
One can, moreover, point to the particular examples
that, I suggest, point to a more general principle.

(a) Frogs and theropods

Consider, for example, the seemingly arcane area of
frog ecomorphs. As befits an evolutionary laboratory,
the frogs of Madagascar show a series of adaptive radi-
ations, with the occupation of habitats as diverse as
burrowing, as well as dwelling in trees, rocks and
torrential streams. These ecomorphs find a series of
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striking convergences (Bossuyt & Milinkovich 2000)
with the frogs of Asia (principally India), and so too
in this latter region there are further episodes of paral-
lel evolution (e.g. independent development of fangs).
The comparisons between Madagascan and Asian
frogs are all the more striking because they extend to
the larval forms, but there is one striking omission.
Thus, in Asia there is no counterpart to the iconic
poisonous mantellids. So, the principle of the repeat-
ability of evolution fails at the first hurdle? Not quite,
because the mantellids display a series of striking
convergences with the neotropical dendrobatids
(poison-arrow frogs; e.g. Clark ez al. 2005).

The question, therefore, is how far does this prin-
ciple extend? To be sure, the evidence is that both
frogs and amphibians (and indeed vertebrates and
animals) are monophyletic, yet in each and every
case the assemblage of the body plans (at whatever
taxonomic level; Conway Morris 2002) reveals a com-
plex (and often controversial) story of stem groups
typified by striking parallels in evolutionary direction-
ality. In addition, although widely remarked upon the
general observation that early in the evolution of a
group there is very often a mélange of ‘unexpected’
features, leading to repeated remarks of ‘bizarre’ mor-
phologies and ‘problematic relationships’, is actually
one of profound evolutionary importance. A recent
example involves a new reptile close to the origin of
the birds (Zhang ez al. 2008), which in turn underlines
some important generalizations. Thus, when we con-
sider the origin of the birds, the story of Archacopteryx
and its theropod connection, not to mention the specta-
cular evidence of subsequent bird evolution in the
Cretaceous (e.g. Ji & Ji 2007; Zhou er al. 2008),
needs no emphasis. Perhaps, less well appreciated is
that within this group the Late Cretaceous genus
Rahonavis ostromi, initially interpreted as a primitive
bird (Foster et al. 1998a,b; see also Zhou 2004), and
indeed coexisting in Madagascar with genuine birds
(Foster et al. 1996), is now placed in the dromaeosaur-
ids and is close to such genera as Buirrerapror and
Unenlagia (e.g. Makovicky er al. 2005; Senter 2007).
So too independently in this group we see the evol-
ution of the extraordinary four-winged Microrapror
gui (Xu et al. 2003; see also Zhou 2004), although in
this case the capacity for aerial excursions more prob-
ably involved an wundulatory gliding rather than
powered flight (Chatterjee & Templin 2007; but see
Xu et al. 2005).

These observations need some qualifications.
Thus, the identification of feathers on the legs of
Archaeopreryx (Christiansen & Bonde 2004; Longrich
2006), as well as more derived birds (Zhang & Zhou
2004), and even maniraptorian dinosaurs (Xu &
Zhang 2005; see also Zhang er al. 2008), may have a
bearing (in the last case) on their pre-adaptation for
aerial activity and also the aerodynamic origins and
subsequent performance once aloft. However, not
only are a variety of integumentary structures known
(e.g. Zhang et al. 2006), but in the case of some
examples, such as Telociraptor, the forearms evidently
carried feathers but the animal was far too large to
fly (Turner et al. 2007). It is also evident that although
the small size necessary for an aerial mode of life was
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ancestral in this group, such miniaturization was
achieved before the capacity for flight and there is also
a series of striking parallels towards gigantism
(Turner er al. 2007). Finally, we need to remind our-
selves that evidence from trackways suggests that the
diversity of this group is not completely understood
(Li er al. 2008), while intriguingly bird-like foot-
prints (figure la) from the Late Triassic (or Early
Jurassic) hint at a much earlier group of avian-like
theropods (Melchor et al. 2002; De Valais & Melchor
2008). Indeed, so striking are these imprints that point
not only to the various styles of walking, but also
evidently probing and alighting (as seen in living
shore-birds), that the proposed age needs assessment
(Genise et al. 2009). It is, however, based on appar-
ently reliable radiometric and palaeobotanical
evidence (De Valais & Melchor 2008).

In the theropods, therefore, flight evolved indepen-
dently at least two times, and quite conceivably four
times. Nor would I be surprised if this total was to
grow. One of the many disadvantages of the cladistic
methodology, apart from its profound lack of interest
in functional integration (and too often ontogenetic
trajectories) and a preference for a bizarre atomism,
is that it is largely resistant to the concept of evolution
being a highly dynamic process where we see not only
mosaic evolution (e.g. Ji & Ji 2007), but also the
repeated acquisition and loss of features. This point
is well made by Kurochkin (2006). Thus, one can
hardly be surprised that something very like a bird
evolved multiple times among the theropods: both
bipedality and integumentary modifications are vital
pre-adaptations. But do we not face an indefinite
regress of evolutionary cause and effect? All ‘birds’
arise from within the theropods, but how probable is
a theropod-like construction per se? An important
clue comes from the archosaurians, a more primitive
group of reptiles that flourished in the Triassic. Here,
in the archosaur Effigia, we see a series of striking con-
vergences with not only the theropods, but even the
coelurosaurians and in turn the ornithomimosaurians
(Nesbitt & Norell 2006; Nesbitt 2007). Effigia is
most closely related to Shuvosaurus, and this latter
genus had previously been interpreted as a dinosaur.
The dangers of convergence are spelt out by Parker
et al. (2005) in their description of another archosaur
Revueltosaurus. This is simply because with the recov-
ery of more complete skeletons it has become evident
that isolated teeth (the common currency of much of
vertebrate palaeontology), which had routinely been
assigned to Late Triassic dinosaurs, are just as likely
to derive from convergent archosaurian taxa.

In fact, it now transpires that there are a series of
striking convergences between archosaur and dinosaur
morphs that go well beyond the theropod-like forms
mentioned above. Thus, among the archosaurs, we
see both carnosaur-like and ankylosaur-like forms,
which in a number of cases were previously thought
to be dinosaurs. Molnar (2008, p. 586) extended this
list and made the important point that ‘far from
being a mere curiosity, the Triassic instances (of con-
vergence) affect our whole understanding of the
evolutionary origin of important components of the
Mesozoic tetrapod faunae, and provoke questions of
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Figure 1. Two ‘unexpected’ examples of convergent evol-
ution. (a) Trackways from the Santo Domingo Formation
(Late Triassic—Early Jurassic) of Argentina that are inter-
preted as representing the activities of some sort of
theropodian avialian (‘bird’), and possibly convergent to
other flying theropods. Centimetric scale bar. Picture cour-
tesy of Ricardo Melchor (Universidad Nacional de la
Pampea, Argentina). (b) A protistan convergence. The dino-
flagellate Haplozoon praxillellae, an intestinal parasite of
polychaete worms that has converged on a cestode-like body-
form, including attachment structures, strobilation and a
hairy covering. Scale bar, 10 mm. Picture courtesy of Brian
Leander (University of British Columbia).

why animals seemingly effectively occupying certain
ecological niches were somehow replaced by phyleti-
cally distinct forms sufficiently similar to be mistaken
for one another’. So, it seems that something very
like a dinosaur is very much on the evolutionary
cards. From this perspective, the important insights
on the question of competitive superiority of the dino-
saurs as against the archosaurs (Brusatte ez al. 2008)
still need to be seen in the wider context of the
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likelihood of a dinosauromorph (or indeed a
reptiliomorph, a tetrapodiomorph, and so on).

(b) Carboxysomes and viruses

Birds, theropods, dinosaurs and archosaurs may be,
respectively, instructive in terms of convergences,
and indeed I believe they point to a general, but neg-
lected, principle. The details remain to be tested, but
here I offer an outline as to a series of convergences
associated with some of the major transitions in evol-
ution that indicate that in each case the step was
very probable, if not inevitable. Consider first the
viruses. While the notion that they may be the most
primitive forms of life has been largely abandoned,
they do provide a useful proxy for the minimum
desiderata for an organism. One of the defining
characteristics of a virus is, of course, the highly
organized protein coat. When we turn to the micro-
compartments of a number of eubacteria, and
especially the carboxysomes (figure 2), they too build
a polyhedral protein coat in a strikingly similar fashion
(Cannon er al. 2001; Kerfeld et al. 2005; Bobik 2006).
To be sure the carboxysomes are not icosahedral and
the coat itself is thinner (perhaps because of its orga-
nelle-like status; see T'sai er al. 2007), but the tightly
packed hexameral arrangement evidently forms by
self-assembly (Yeates et al. 2007), and the striking
similarity between carboxysomes and viral coats has
been repeatedly stressed. And with respect to viruses
themselves, we see striking examples of convergence
(e.g. Bull ez al. 1997; Cuevas et al. 2002), no small
matter given their role in disease (e.g. De Lamballerie
et al. 2008; Kryazhimskiy er al. 2008). However, in
terms of viral convergence arguably the most fascinat-
ing examples involve the giant DNA viruses, best
known in the form of the mimivirus (e.g. Suhre
2005). These viruses are effectively re-inventing them-
selves as true organisms, with genomes substantially
larger than some bacteria, and driven by both gene
duplication and lateral transfer from their hosts.
Significantly, however, the two principal groups (T4
and NCLDVs) are strikingly convergent in not only
the methods of genome increase, but also the locations
of the laterally transferred material in the viral genome
(Fileé & Chandler 2008).

(¢) Bacteria: re-running the tape

As already indicated, it is not suggested that bacteria
are derived from viruses (or viral coats from carboxy-
somes), but these examples are indicative that
the evolution of viruses may be more constrained
than might be imagined. So too among the prokar-
yotes, we find many striking convergences not only
within the archaea and eubacteria, but also more sig-
nificantly between these two groups. One of the most
interesting, and especially important because of its
misappropriation by the proponents of the scientific
fiction referred to as ‘intelligent design’, is the inde-
pendent evolution of the flagellar motor in either
bacterial group (e.g. Thomas ez al. 2001; Trachtenberg
et al. 2005). Among the other convergences that occur
between the archaea and the ubacteria, particularly
striking examples can be found among the
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extremophiles, notably the halophiles (e.g. Mongodin
et al. 2005; Paul er al. 2008) and thermophiles (e.g.
Lin 2008; Puigbo er al. 2008). Given such extremo-
philes are a major focus of attention for what may be
typical extraterrestrial environments (e.g. Tosca ez al.
2008), and recalling that thermophiles can flourish at
122°C (Takai er al. 2008) and in supersaturated
brines (Mongodin et al. 2005), then these
convergences may confer an unexpected predictability
in terms of remote microbial biospheres.

The very rapid rates of reproduction and the ease of
maintaining a series of isolated clones, not to mention
the capacity to create a complete ‘fossil record’ by the
expedient of freezing the sample of a given population,
is our best approximation of re-running the tape of life,
at least in a microbial context. This has been achieved
with spectacular success by Rich Lenski and col-
leagues and in Escherichia coli has revealed a number
of striking instances of convergent evolution (e.g.
Travisano et al. 1995; Cooper er al. 2003). By no
means are all trends convergent, and more importantly
there are striking instances where historical contin-
gency evidently underlies the emergence of a key
innovation. One such example is the capacity of E.
coli to use a citrate substrate (Blout ez al. 2008). By
way of background, it should be explained that the
experiment depends on 12 independent lineages of
E. coli, initially identical, which over tens of thousands
of generations have evolved and so explored a large
mutation space. At first sight the unexpected emer-
gence of a citrate capacity is exactly the sort of test
case that would appear to torpedo the entire thesis of
this paper. A closer examination actually reveals the
exact reverse. Thus, while the mutations that enabled
this experimental population of E. coli to use a citrate
substrate after more than 30000 generations do
appear to be genuinely fortuitous, we need first to
recall that E. coli is very unusual in being unable
under anaerobic conditions to employ citrate (and as
such is a convenient way to identify this bacterium in
a medical context). The vast majority of other micro-
organisms can employ citrate (e.g. Bott 1997; Polen
et al. 2007), and more significantly not only can E.
coli do the same in the natural environment but it
also does this by virtue of plasmids (e.g. Ishiguro
et al. 1988). The origin of these plasmids appears to
be obscure, but the actual citrate carrier (CitT)
belongs to a novel eubacterial transporter family (Pos
et al. 1998). Not only have a wide range of these citrate
carrier plasmids been identified (Sasatsu er al. 1985),
but looking across a wider range of bacteria these
two types of plasmids fall into at least two distinct
classes in terms of sequence (Shinagawa er al. 1982).

Interesting as the results of Blout er al. (2008,
p. 7905) most certainly are, when the declared title
is ‘Historical contingency and the evolution of a key
innovation’ and their paper concludes by proclaiming
that ‘our study shows that historical contingency
can have a profound and lasting impact under the sim-
plest, and thus most stringent, conditions in which
initially identical populations evolve in identical
environments. Even from so simple a beginning,
small happenstances of history may lead populations
along different evolutionary paths. A potentiated cell
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Figure 2. Another ‘unexpected’ example of convergent evolution. Carboxysomes of bacteria that are strikingly similar to the
protein coats of viruses, but are independently evolved. Upper, transmission electron micrographs of carboxysomes in a cya-
nobacterium (Synechocystis). (a) Entire cell in the process of dividing, five polyhedral carboxysomes are visible. Scale bar,
200 nm; (b) individual carboxysome. Scale bar, 50 nm. Reproduced from fig. 1a,b in Kerfeld, C.A., Sawaya, M.R., Tanaka,
S., Nguyen, C.V,, Phillips, M., Beeby, M. & Yeates, T.O. 2005 Protein structures forming the shell of primitive bacterial orga-
nelles. Science 309, 936—938; with the permission of AAAS and the authors. (¢) and (d) show the alternative models for the
carboxysome shell. Each is based on a shell constructed of 740 hexameral units and 12 pentamers, and the two models (¢,d)
differ in terms of the orientation of the hexamers. Reproduced from fig. 3d in Tanaka, S., Kerfeld, C.A., Sawaya, M.R., Cai, F,,
Heinhorst, S., Cannon, G.C. & Yeates, T.O. 2008 Atomic-level models of the bacterial carboxysome shell. Science 319,

1083-1086; with the permission of AAAS and the authors.

(for citrate utilization) took the one less travelled by,
and that has made all the difference’ then we need to
register a mild protest. To be sure this stirring rhetori-
cal mélange of Charles Darwin and Scott Peck (if not
Robert Frost) certainly applies to this experimental
population of E. coli but let us take the wider view.
Thus, the ubiquity of citrate utilization and the inde-
pendent employment of plasmids with citrate carriers
suggest that the contingency identified by Blout and
co-workers is genuine, but of only parochial relevance.

3. KEY STEPS

These few examples of evolutionary convergence are
only indicative of what I suspect will be a ubiquitous
phenomenon, but of course the origins of the archaea
and eubacteria are still shrouded in mystery. So too is
the nature of the first eukaryote, and while there is now
general agreement that it is effectively a chimaera of
the two prokaryotic lineages (e.g. Yutin ez al. 2008),
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it is certainly possible to argue that the eukaryotic con-
dition is also more or less fortuitous. Nevertheless,
there are some pointers in the opposite direction. For
example, it is now clear that bacteria possess a cytoske-
leton, including tubulin, actin and intermediate
filaments (e.g. Graumann 2007; Pogliano 2008).
Although showing no sequence similarity to the
eukaryotic equivalents, at the moment the consensus
is that these proteins are homologous. Nevertheless,
their diverse functionality in the bacteria reflects the
evolutionary versatility of these cytoskeletal elements.
And again, we find the echoes of eukaryotic potential-
ity in the bacteria. Thus, in the famous magnetotactic
bacteria, whose employment of magnetic minerals is
convergent (DelLong ez al. 1993), the enclosing mag-
netosomes employ actin and this membranous
organization recalls, of course, a type of organellar
construction. Another key aspect of eukaryotic
construction is the complex internal membranes,
exemplified by the Golgi apparatus and endoplasmic
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reticulum. But again in bacteria we find intriguing par-
allels that involve both the attachment of ribosomes
(Herskovits et al. 2002) and what appears to be the
budding of intracellular vesicles (Rachel ez al. 2002).
From these perspectives, the emergence of a eukary-
otic form does not seem so improbable. Nor does
the independent evolution of multicellularity in the
prokaryotes, of which the Eudorina-like arrangement
in some magnetotactic bacteria is arguably the most
striking (Keim ez al. 2004).

(a) Endosymbiosts and endocytosis

If there is one aspect of the origin of eukaryotes that is
not controversial, then it is the endosymbiotic deri-
vation of the chloroplasts and mitochondria. In the
latter case, current evidence suggests that this was a
unique event, the ur-mitochondrion deriving from an
a-proteobacteria similar to the extant rickettsialids
(Fitzpatrick er al. 2006). However, as these authors
point out, the genomic diversity of this group is still
poorly known. Given the drastic erosion of the
genome in both the mitochondria and independently
in the pathogenic rickettsialids, and in the former
case the intense selective pressure to export as many
genes as possible in the face of the production of oxi-
dative free radicals (e.g. Allen 2003), then it would
be quite possible that the convergence of function
has obliterated mitochondrial polyphyly, even among
the a-proteobacteria.

And the same may apply to the chloroplasts, where
some evidence for a polyphyletic origin exists (Stiller
2003; Stiller ez al. 2003; but see also Palmer 2003).
So, while the evidence strongly points to the chloro-
plasts being derived from the cyanobacteria, and
most probably those with heterocysts (Deusch er al.
2008), various workers have stressed that the sampling
of extant cyanobacterial genomes is by no means com-
plete and that extrapolation to ancestral forms living
perhaps 2 billion years ago is not straightforward
(Larkum ez al. 2007). Combine this with the ever pre-
sent difficulties of phylogenetic reconstruction, not
least long-branch attraction, then the monophyly of
chloroplasts (and mitochondria) may well be only a
default position. In fact, this is only one example of a
general problem in evolution, which in a nutshell has
to decide if the obvious differences are the result of
(unremarkable) divergence as against an over-looked
polyphyly. As Howe ez al. (2008) stressed, the wielding
of Ockham’s razor effectively pre-disposes the
conclusion to monophyly.

In the case of the chloroplasts, a further reason for
caution are the various instances of algal endosymbio-
sis, of which one of the most striking is the
incorporation of a cyanobacterium (quite separate
from the chloroplasts) as a quasi-plastid in the
amoeba Paulinella (Marin et al. 2005; Archibald
2006; Rodriguez-Ezpeleta & Philippe 2006; and for a
comparable case in a diatom, see Prechtl er al
2004). In conclusion, the multiple evolution of at
least the chloroplasts appears conceivable. It is also
worth remembering that despite their respective
roles in oxidative metabolism and photosynthesis,
mitochondria and chloroplasts have striking similarities
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in the adaptations of their electron transport systems
to endosymbiosis (Berry 2003), and as with a
number of other molecular pathways one can enquire
just how many alternatives are viable.

(b) Protistans

Within the eukaryotes, we also encounter conver-
gences that at first sight are decidedly puzzling
because they clearly involve the re-invention of a struc-
ture that has already evolved in the common ancestor
and so in principle is already available. One of the
most striking examples comes from the ciliates where
there is compelling evidence for the independent evol-
ution of an important part of cell machinery involved
with transport in the form of secretory vesicles and
known as dense core granules (Elde ez al. 2007). The
evidence (Elde er al. 2005) is based on the indepen-
dent evolution of the protein machinery, notably
GTPases known as dynamins, and Nels Elde and col-
leagues raise the tantalizing possibility that ‘certain
cellular pathways might be more prone to convergent
evolution than others’ (Elde ez al. 2007, p. 162) and
they continue this important speculation to the effect
that possibly ‘the capacity to make granules was
inherent in the basic organization of the Golgi complex
and TGN [mrans-Golgi network]’. To speak of inher-
ency in evolutionary circles is certainly heterodox,
not least because it might point to the Darwinian pro-
cess being far more predictable than customarily
perceived, but as I have argued elsewhere (Conway
Morris 1998, 2003), inherency is widely overlooked
in an evolutionary context.

Another valuable service Elde ez al. (2007) perform
is to warn us against the uncritical reliance of assuming
that similar structures are necessarily so because of
common descent. This may be the appropriate default
position, but one major contribution of the molecular
revolution is to show repeatedly that similarity does
not automatically equate with homology. Very many
examples could be given (Conway Morris 2003), but
among the most startling concerns the recognition
that in the insects the olfactory transduction proteins
(e.g. Benton 2006) follow the classic seven-helices
transmembrane arrangement exemplified by the
opsins, but the former clearly have a completely separ-
ate origin (Sato et al. 2008; Wicher ez al. 2008). Given
these proteins are the cheek-by-jowl (or the nearest
arthropodan equivalent) to the visual opsins, and
given also that in other animals all the transduction
proteins (including opsins) appear to belong to a
single large family (G-protein coupled receptors), it
is curious that in the case of the insects they have re-
invented the molecular wheel (and, of course, the
overall configuration of the olfactory process is itself
also strikingly convergent with that found in the ver-
tebrates; e.g. Eisthen 2002; Ache & Young 2005;
Kay & Stopfer 2006). But far more significant is that
at least on this planet, and at least among the animals,
the transduction of any sensory data will look to the
same molecular solution.

Space does not allow a similar set of discourses on
the likelihood or otherwise of key steps within the
eukaryotes also being effectively inevitable, although
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there is certainly a striking evidence for convergence
among the protistans (e.g. Leander 2008), not only
in terms of recurrent architectures but also in terms
of more specific instances. Particularly intriguing
examples are found among the dinoflagellates. Thus,
some show intriguing convergences with the ciliates
(Yukubi & ILeander 2008), but even more notable
are the warnowiids with a camera-eye (e.g. Couillard
1984), which like the related polykrikids (Westfall
et al. 1983) have also evolved cnidarian-like nemato-
cysts (Greuet 1971) that are used to capture prey
(Matsuoka et al. 2000). Other dinoflagellates are para-
sitic, and interesting as the convergences are among
some fish ectoparasites (Levy ez al. 2007), even more
remarkable is the intestinal parasite (of a polychaete
worm), known as Haploxoon praxillellae (figure 1b).
This dinoflagellate has re-invented itself as a tape-
worm, complete with attachment structures,
segmental strobila terminating in sporocytes that
break away and even strikingly similar surface orna-
mentation of microtrich-like structures (Leander
2008; Rueckert & Leander 2008).

(¢) The roads to multicellularity

What of more complex eukaryotes, especially those
that are multicellular? Here too some more general
principles may be instructive. Thus, it is important
to emphasize that even if the basic molecular machin-
ery has evolved at an early stage, the ways in which it is
deployed in different groups may vary but, nevertheless,
the independent duplications as paralagous genes may
well lead to convergences, as, for example, in the vital
process of membrane trafficking (Dacks ez al. 2008).
Of particular interest in this context are the SNARESs
(N-ethylmalemide-sensitive factors attachment protein
receptors). These play a central role in vesicle trans-
port and membrane interactions. Not surprisingly,
they are ubiquitous among eukaryotes, and even in
the ancestral form are inferred to have shown
considerable elaboration (Kloepper ez al. 2007). Inde-
pendently, in various eukaryotic lineages, the SNARESs
have both diversified and undergone duplications, but
there is a particularly intriguing correlation between
the expansion of this gene family and the appearance
of multicellularity (or other increases in organismal
complexity; Dacks & Field 2007; Sanderfoot 2007;
Kloepper et al. 2008).

To be sure the correlation is not absolute, in as much
as single-celled protistans can have a very large number
of SNARESs, while the fungi have a relatively limited
number (Kloepper et al. 2007). However, as these
authors point out, the large number of SNARESs in Para-
mecium 1s less surprising given ‘its stunningly complex
subcellular organization’ (p. 3467), while the fungal
data draw on two ascomycetes (yeast and Neurospora).
In addition, Kloepper ez al. (2007) included the oomy-
cete Phytophthora, but this is now well known to be
convergent with the fungi (Money ez al. 2004), although
in passing we should note that there is evidence that this
convergence is unusual because in part it arises from lat-
eral gene transfer (LGT) from ascomycete fungi to
oomycetes. The identified genes, however, are involved
principally with osmotrophy (Richards ez al. 2006) and
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to date there is no evidence for LGT of the SNARE
genes. In the case of those fungi which are histologically
complex, such as Sphaerobolus (Webster & Weber 2007),
it would be interesting to know if the diversity of
SNAREs has increased. If so, this would support
Sanderfoot’s (2007) suggestion of a correlation between
gene duplications of SNARE genes and the emergence
of multicellularity, at least in the green plants.

The case of the animals, in which we may take at
least a parochial interest, is particularly problematic
at present. Thus, so far as the fossil record is con-
cerned, the Ediacaran assemblages appear to offer
some tantalizing insights into the diversity of early
metazoans (and quite possibly other distantly related
macroscopic groups), but to date they give no clues
as to the transition from more primitive forms. Mol-
ecular phylogenies are scarcely more helpful because,
while there is strong evidence for the protistan choano-
flagellates being the sister group of animals (e.g. Carr
et al. 2008), neither they nor related groups that
include corallochyteans, ichthyosporeans and minis-
teriids (e.g. Steenkamp er al. 2006) give many clues
as to how the transformation to animals might have
been achieved. Certainly, the prior existence of genes
linked to cell adhesion and signalling in choanoflagel-
lates (King er al. 2008; Ruiz-Trillo er al. 2008) points
to the pre-adaptations for multicellularity. Note, how-
ever, that in at least one choanoflagellate, the
unicellular(!) Monosiga, the tyrosine kinase signalling
apparatus is not only far more diverse than any
metazoan (Manning ez al. 2008, p. 9678), but as the
investigators note this network reveals ‘several
common themes that suggest convergent evolution
and a limited set of recurring molecular themes
favoured by signalling pathways’.

(d) Homeotic convergences

Perhaps, one day, the entire molecular and morpho-
logical transition from protist to animal will be
available, but if we enquire what fundamentally is
required to make an animal among the most important
presumably are: homeotic genes, structural molecules
such as collagen, muscles for movement and nerves
for the rapid propagation of information. Once
again, it is difficult to see what might have prevented
them from evolving. Thus, the homeodomain (HD)
proteins go deep into eukaryotic history, and their
presence in metazoans, fungi, Dictyostelium and
plants points to a role in the evolution of multi-
cellularity. Despite this striking association, Derelle
et al. (2007) also argued that the last common ancestor
of all eukaryotes possessed at least two types (TALE,
non-TALE) of HD protein and, echoing the story of
the SNARE genes, suggest that the rounds of dupli-
cation occurred independently. This leads them to
‘suggest that the eukaryotes as a whole are pre-adapted
for multicellularity’ (Derelle ez al. 2007, p. 217). In
the context of evolutionary likelihoods, if not inevit-
abilities, it is also important to note that striking
structural analogues to the HD proteins occur in the
prokaryotes (Treisman er al. 1992; Kant er al. 2002).
The independent emergence of more complex
homeotic systems does not seem that improbable.
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Moreover, the functional convergence of systems
that serve to control cell proliferation and differen-
tiation in plants and animals (respectively, GEM and
geminin), with important implications for the evol-
ution of complex multicellularity (Cara & Gutierrez
2007), again points to likelihoods rather than acci-
dents. Unfortunately, to date, the origin of homeobox
systems in the animals, such as the canonical Hox clus-
ters, is obscure, not least because there is no evidence
for either these or the other genes central to metazoan
body plans occurring in even their sister group, the
choanoflagellates (King ez al. 2008, p. 787). Indeed,
as these authors remark, both the invention of such
genes and their integration to an already existing and
complex network of signals and regulatory pathways
‘remain mysterious’. In at least one respect, however,
the choanoflagellates are helpful because there is geno-
mic evidence for the protein collagen (King er al.
2008), typically with repeated amino acid (aa) triplets
(glycine—proline—another aa) and in all metazoans a
key structural component. Moreover, given the col-
lagen’s essential reliance on the amino acids proline
and hydroxyproline, disposed in a triple helix, its evol-
ution does not seem to entail intractable steps. Indeed,
a prokaryotic collagen-like protein (with multiple
XXG repeats, typically proline—threonine—glycine)
occurs in the outer wall of the anthrax spore (Dauben-
speck ez al. 2004).

So far as other diagnostic components of the ani-
mals are concerned, the origin of muscles seems
more than probable given the ancient origins of the
myosin molecular motors upon which they are based
(e.g. Richards & Cavalier-Smith 2005; Foth er al.
2006). As with the SNAREs and HD proteins, we
see a fascinating series of divergences for an extraordi-
nary variety of functions that require molecular motors
in the context of cellular transport and transduction
(e.g. Thompson & Langford 2002). Also, parallel to
the SNAREs and HD proteins, the molecular evidence
concerning myosin evolution supports massive diversi-
fication (and convergences) but a single origin.
Nevertheless, any familiarity with the recurrent mol-
ecular solutions to particular functional challenges
(as might be the case in vesicle transport and mem-
brane activity, DNA binding and actin-based motors)
means that if any of these systems actually transpired
to be convergent I will not be unduly surprised
(but others will be).

(e) An inevitable nervous system

Just as the present evidence indicates a monophyletic
origin for animal musculature, so too the nervous
system is restricted to the eumetazoans. Once again,
however, we can see significant precursors that point
to a deeper inevitability. Thus, it is not particularly
surprising to find among the sponges, which evidently
lack any nervous tissue, a series of proteins that (with
some notable absences) are otherwise central to the
post-synaptic configuration in higher animals (Sakarya
et al. 2007). These proteins have been identified in a
distinctive group of flask-shaped cells and the fact
that they display molecular mechanisms that are also
the hallmark of neurogenesis (Richards ez al. 2008)
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also suggests, as is so often the case in evolution,
that a substantial part of the architecture necessary
for the evolution of the nervous system has evolved
‘in advance’. Even more significantly not only do a sig-
nificant number of the genes, notably those connected
with the transport of synaptic vesicles, occur in both
plant and yeast but in defining five functional cat-
egories associated with neural development in the
planarian flatworms, all were also identified in these
non-animal groups (Mineta ez al. 2003).

It is also important to stress that other key com-
ponents of the nervous system evolved long before
even the appearance of sponges. Among the most strik-
ing is the very widespread employment of acetylcholine
(Wessler et al. 2001), notably in plants where, for
example, the concentrations of this molecule in rapidly
growing tips of bamboo can be 80 times that found in
rat brain (Kawashima ez al. 2007). Intriguingly, the cor-
responding acetylcholinesterase found in maize appears
to be unrelated to the equivalent enzyme in animals
(Sagane er al. 2005). Such a similarity should not sur-
prise us because in this case the function is based on
the well-known serine catalytic triad, which itself is ram-
pantly convergent (e.g. Dodson & Wlodawer 1998;
Gheradini ez al. 2007). Nor is acetylcholine restricted
to multicellular organisms, because it also occurs in
such protistans as the ciliates (e.g. Delmonte Corrado
et al. 2001), as do a variety of other hormone-like mol-
ecules, including [B-endorphins and serotonin (e.g.
Csaba ez al. 2007).

Not only are significant parts of the molecular sub-
strate necessary for a nervous system already in
position, to be recruited as appropriate, but other
key elements of the nervous system have also evolved
independently. Most notable in this respect are
the Na™ voltage-gated channels, which in contrast to
the K and Ca'™ equivalents are usually thought to
be restricted to the animals. Certainly, in this king-
dom, there has been independent diversification of
the Na¥ channels (Goldin 2002), but more signifi-
cantly, such a channel has not only evolved
independently in the protistans (Febvre-Chevalier
et al. 1986) but even in the bacteria (e.g. Ito ez al.
2004; Koishi ez al. 2004). It seems, therefore, that
the emergence of a nervous system is by no means as
improbable as might be thought, and it is equally tell-
ing that the evolutionary history of neural evolution is
strewn with convergences ranging from the indepen-
dent evolution of myelination (e.g. Pereyra & Roots
1988; Davis er al. 1999) to cognitive landscapes, nota-
bly among the corvids (Emery & Clayton 2004;
Lefebvre er al. 2004). And it is at this point that evol-
utionary convergences are the most important, but
where I cease this review.

4. CONCLUSION

Elsewhere, I have argued that something very like a
human is an evolutionary inevitability (Conway
Morris 2003), a view that hardly sits comfortably
with neo-Darwinian orthodoxy. Here, I have tried to
show in the most sketchy manner how major tran-
sitions are unproblematic and that paradoxically
unrelenting divergence is always accompanied by
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convergence. It also seems that there are a number of
additional strands that collectively paint a heterodox
picture of evolution and so are worthy of further
exploration. It is, for example, striking how frequently
complex systems emerge on the basis of a pre-existing
molecular architecture. In addition, although under-
appreciated, the emergence of major groups often
displays a remarkably mosaic-style of evolution.
Here, ostensibly ‘key’ characters, which subsequently
often serve to define monophyletic assemblages,
show a seemingly erratic and ‘unexpected’ set of distri-
butions. In many cases, we also see that the particular
molecules show a remarkable versatility of function in
what appear to be unrelated contexts. It is most prob-
able that these molecules are homologous, but in many
cases the overall architecture and the iron constraints
of active sites (or equivalents) suggest that conver-
gence should not be automatically dismissed. It is
also striking how in general the idea that primitive
groups are simple, almost skeletal constructions in
comparison to their descendants, is simply incorrect
and in precursors as diverse as the last common ances-
tor of the eukaryotes or choanoflagellates we either
infer or see an extraordinary degree of complexity.
Rather than imagining that this arose by a series of
conveniently cryptic prior stages, we may have to
face the possibility that evolution involves what to us
seem to be a baffling series of self-organizations.
Evolution is no stranger to heterodoxy, but it is
striking how the Darwinian mantra continues to stran-
gle innovation. Could we begin to accept that Darwin
got it right in terms of mechanism, but frankly this is as
interesting as ionic bonding would be to most chemists
(other than those who choose to study it). What we do
not understand is how organisms assemble as exceed-
ingly complex functional entities nor why they
repeatedly navigate to convergent solutions. What we
can be sure of, I suggest, is that these processes are
predictable, and that this should provide modest
encouragement that there is still work to be done.

My thanks to the Royal Society for the invitation to write this
review, and to Vivien Brown for exemplary manuscript

preparation. Critical remarks by Chris Howe, Ken
McNamara and Nick Strausfeld are also greatly
appreciated, and 1 apologize that the lack of space

prohibited the proper analysis of many invaluable points.
Cambridge Earth Sciences Publication ESC.1182.

REFERENCES

Ache, B. W. & Young, J. M. 2005 Olfaction: diverse species,
conserved principles. Neuron 48, 417—430. (doi:10.1016/
j.neuron.2005.10.022)

Allen, J. F. 2003 The function of genomes in bioenergetic
organelles. Phil. Trans. R. Soc. Lond. B 358, 19-38.
(d0i:10.1098/rstb.2002.1191)

Archibald, J. M. 2006 Endosymbiosis: double-take on plas-
tid origins. Curr. Biol. 16, R690-R692. (doi:10.1016/
j.cub.2006.08.006)

Benton, R. 2006 On the ORigin of smell: odorant receptors
in insects. Cell. Mol. Life Sci. 63, 1579-1585. (doi:10.
1007/s00018-006-6130-7)

Berry, S. 2003 Endosymbiosis and the design of eukaryotic
electron transport. Biochim. Biophys. Acta Bioenerg.
1606, 57—72. (d0i:10.1016/S0005-2728(03)00084-7)

Phil. Trans. R. Soc. B (2010)

Blout, Z. D., Borland, C. Z. & Lenski, R. E. 2008 Historical
contingency and the evolution of a key innovation in an
experimental population of Escherichia coli.. Proc. Nail
Acad. Sci. USA 105, 7899-7906. (doi:10.1073/pnas.
0803151105)

Bobik, T. A. 2006 Polyhedral organelles compartmenting
bacterial metabolic processes. Appl. Microbiol. Biotech.
70, 517-525. (d0i:10.1007/s00253-005-0295-0)

Bossuyt, F. & Milinkovich, M. C. 2000 Convergent adaptive
radiations in Madagascar and Asian ranid frogs reveal
covariation between larval and adult traits. Proc. Nail
Acad. Sci. USA 97, 6585-6589. (doi:10.1073/pnas.97.
12.6585)

Bott, M. 1997 Anaerobic citrate metabolism and its regu-
lation in enterobacteria. Arch. Microbiol. 167, 78—88.
(doi:10.1007/s002030050419)

Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. 2008
Superiority, competition, and opportunism in the
evolutionary radiation of dinosaurs. Science 321,
1485-1488. (doi:10.1126/science.1161833)

Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck,
J. P, Hillis, D. M., Gulati, A., Ho, C. & Molineux, I. J.
1997 Exceptional convergent evolution in a virus. Genetics
147, 1497-1507.

Cannon, G. C., Bradburne, C. E., Aldrich, H. C., Baker,
S. H., Heinhorst, S. & Shively, J. M. 2001 Microcompart-
ments in prokaryotes: carboxysomes and related
polyhedra. Appl. Environ. Microbiol. 67, 5351-5361.
(doi:10.1128/AEM.67.12.5351-5361.2001)

Cara, E. & Gutierrez, C. 2007 The green GEM: intriguing
analogies with animal geminin. Trends Cell Biol. 17,
580-585. (d0i:10.1016/j.tcb.2007.09.008)

Carr, M., Leadbeater, B. S. C., Hassan, R., Nelson, M. &
Baldauf, L. 2008 Molecular phylogeny of choanoflagel-
lates, the sister group of Metazoa. Proc. Natl Acad. Sci.
USA 105, 16641-16646. (doi:10.1073/pnas.080
1667105)

Chatterjee, S. & Templin, R. J. 2007 Biplane wing planform
and flight performance of the feathered dinosaur Micro-
raptor gui. Proc. Natl Acad. Sci. USA 104, 1576—1580.
(d0i:10.1073/pnas.0609975104)

Christiansen, P. & Bonde, N. 2004 Body plumage in Archae-
opteryx: a review and new evidence from the Berlin
specimen. Compt. Rendus Paleovol. 3, 99—-118. (doi:10.
1016/j.crpv.2003.12.001)

Clark, V. C., Raxworthy, C. J., Rakotomalala, V., Sierwald, P. &
Fisher, B. L. 2005 Convergent evolution of chemical
defense in poison frogs and arthropod prey between Mada-
gascar and the Neotropics. Proc. Natl Acad. Sci. USA 102,
11617-11622. (doi:10.1073/pnas.0503502102)

Conway Morris, S. 1998 The crucible of creation: the Burgess
Shale and the rise of animals. Oxford, UK: Oxford Univer-
sity Press.

Conway Morris, S. 2002 Body plans. In Encyclopedia of evol-
ution (ed. M. Pagel), pp. 117-120. Oxford, UK: Oxford
University Press.

Conway Morris, S. 2003 Life’s solution: Inevitable humans
i a lonely wuniverse. Cambridge, UK: Cambridge
University Press.

Conway Morris, S. 2009 (Re) Reading the origin. Curr. Biol.
19, R102-R103.

Cooper, T. F, Rozen, D. E. & Lenski, R. E. 2003 Parallel
changes in gene expression after 20 000 generations of
evolution in Escherichia coli. Proc. Natl Acad. Sci. USA
100, 1072-1077. (doi:10.1073/pnas.0334340100)

Couillard, P. 1984 Photoreception in Protozoa, an overview.
In Photoreception and vision in invertebrates (ed. M. A. Ali),
pp. 115-130. New York, NY: Plenum.

Csaba, G., Kovacs, P. & Pallinger, E. 2007 Increased hor-
mone levels in Terrahymena after long-lasting starvation.


http://dx.doi.org/doi:10.1016/j.neuron.2005.10.022
http://dx.doi.org/doi:10.1016/j.neuron.2005.10.022
http://dx.doi.org/doi:10.1098/rstb.2002.1191
http://dx.doi.org/doi:10.1016/j.cub.2006.08.006
http://dx.doi.org/doi:10.1016/j.cub.2006.08.006
http://dx.doi.org/doi:10.1007/s00018-006-6130-7
http://dx.doi.org/doi:10.1007/s00018-006-6130-7
http://dx.doi.org/doi:10.1016/S0005-2728(03)00084-7
http://dx.doi.org/doi:10.1073/pnas.0803151105
http://dx.doi.org/doi:10.1073/pnas.0803151105
http://dx.doi.org/doi:10.1007/s00253-005-0295-0
http://dx.doi.org/doi:10.1073/pnas.97.12.6585
http://dx.doi.org/doi:10.1073/pnas.97.12.6585
http://dx.doi.org/doi:10.1007/s002030050419
http://dx.doi.org/doi:10.1126/science.1161833
http://dx.doi.org/doi:10.1128/AEM.67.12.5351-5361.2001
http://dx.doi.org/doi:10.1016/j.tcb.2007.09.008
http://dx.doi.org/doi:10.1073/pnas.0801667105
http://dx.doi.org/doi:10.1073/pnas.0801667105
http://dx.doi.org/doi:10.1073/pnas.0609975104
http://dx.doi.org/doi:10.1016/j.crpv.2003.12.001
http://dx.doi.org/doi:10.1016/j.crpv.2003.12.001
http://dx.doi.org/doi:10.1073/pnas.0503502102
http://dx.doi.org/doi:10.1073/pnas.0334340100

142 S. Conway Morris

Review. Evolution is predictable

Cell Biol. Int. 31, 924-928. (doi:10.1016/j.cellbi.2007.02.
007)

Cuevas, J. M., Elena, S. F. & Moya, A. 2002 Molecular basis
of adaptive convergence in experimental populations of
RNA viruses. Genetics 162, 533-542.

Dacks, J. B. & Field, M. C. 2007 Evolution of the eukaryotic
membrane-trafficking system: origin, tempo and mode.
F Cell Sci. 120, 2977-2985. (d0i:10.1242/jcs.013250)

Dacks, J. B., Poon, P. K. & Field, M. C. 2008 Phylogeny of
endocytic components yields insights into the process of
nonendosymbiotic organelle evolution. Proc. Nail Acad.
Sci. USA 105, 588-593. (d0i:10.1073/pnas.
0707318105)

Darwin, C. 1860 In On the origin of species, etc. 2nd edn.
London, UK: John Murray.

Daubenspeck, J. M., Zeng, H.-D., Chen, P., Dong, S.-L.,
Steichen, C. T., Krishna, N. R., Pritchard, D. G. &
Turnbough, C. L. 2004 Novel oligosaccharide side
chains of the collagen-like region of BclA, the major
glycoprotein of the Bacillus anthracis exosporium. J. Biol.
Chem. 279, 30945-30953. (doi:10.1074/jbc.M40
1613200)

Davis, A. D., Weatherby, T. M., Hartline, D. K. & Lenz,
P. H. 1999 Myelin-like sheaths in copepod axons.
Nature 398, 571. (doi:10.1038/19212)

Dawkins, R. 1989 The selfish gene. Oxford, UK: Oxford Uni-
versity Press.

Delmonte Corrado, M. U., Politi, H., Ognibene, M.,
Angelini, C., Trielli, F., Ballarini, P. & Falugi, C. 2001
Synthesis of the signal molecule acetylcholine during
the developmental cycle of Paramecium primaurelia
(Protista, Ciliophora) and its possible function in
conjugation. J. Exp. Biol. 204, 1901-1907.

Delong, E. F., Frankel, R. B. & Bazylinski, D. A. 1993
Multiple evolutionary origins of magnetotaxis in bacteria.
Science 259, 803-806. (doi:10.1126/science.259.5096.
803)

Derelle, R., Lopez, P., Le Guyader, H. & Manuel, M. 2007
Homeodomain proteins belong to the ancestral molecular
toolkit of eukaryotes. Evol. Dev. 9, 212-219.

Desmond, A. 1998 Huxley: from devil’s disciple to evolution’s
high priest. London, UK: Penguin.

Deusch, O., Landan, G., Roettger, M., Gruenheit, N.,
Kowallik, K. V., Allen, J. F., Martin, W. & Dagan, T.
2008 Genes of cyanobacterial origin in plant nuclear gen-
omes point to a heterocyst-forming plastid ancestor. Mol.
Biol. Evol. 25, 748-761. (doi:10.1093/molbev/msn022)

De Valais, S. & Melchor, R. N. 2008 Ichnotaxonomy of bird-
like footprints: an example from the late Triassic-early
Jurassic of northwest Argentina. ¥ Vert. Paleont. 28,
145-159.  (doi:10.1671/0272-4634(2008)28[145:10B
FAE]2.0.CO;2)

Dodson, G. & Wlodawer, A. 1998 Catalytic triads and their
relatives. Trends Biochem. Sci. 23, 347—-352. (d0i:10.1016/
S0968-0004(98)01254-7)

Eisthen, H. L. 2002 Why are olfactory systems of different
animals so similar? Brain Behav. Evol. 59, 273-293.
(d0i:10.1159/000063564)

Elde, N. C., Morgan, G., Winey, M., Sperling, L. &
Turkewitz, A. P. 2005 Elucidation of clathrin-mediated
endocytosis in Terrakymena reveals an evolutionary con-
vergent recruitment of dynamin. PLoS Genet. 1, e52.
(doi:10.1371/journal.pgen.0010052)

Elde, N. C., Long, M.-Y. & Turkewitz, A. P. 2007 A role for
convergent evolution in the secretory life of cells. Trends
Cell Biol. 17, 157-164. (doi:10.1016/j.tcb.2007.02.007)

Emery, N. J. & Clayton, N. S. 2004 The mentality of
crows: convergent evolution of intelligence in corvids
and apes. Science 306, 1903-1907. (doi:10.1126/
science.1098410)

Phil. Trans. R. Soc. B (2010)

Febvre-Chevalier, C., Bilbaut, A., Bone, Q. & Febvre, 1.
1986 Sodium-calcium action potential associated with
contraction in the heliozoan Actinocoryne contractilis.
¥ Exp. Biol. 22, 177-192.

Fileé, J. & Chandler, M. 2008 Convergent mechanisms of
genome evolution of large and giant DNA viruses.
Res.  Microbiol. 159, 325-331. (doi:10.1016/j.resmic.
2008.04.012)

Fitzpatrick, D. A., Creevey, C. J. & Mclnerney, J. O. 2006
Genome phylogenies indicate a meaningful a-proteobac-
terial phylogeny and support a grouping of the
mitochondria with the Rickettsiales. Mol. Biol. Evol. 23,
74-85. (doi:10.1093/molbev/msj009)

Foster, C. A., Chiappe, L. M., Krause, D. W. & Sampson,
S. D. 1996 The first Cretaceous bird from Madagascar.
Nature 382, 532-534. (doi:10.1038/382532a0)

Foster, C. A., Sampson, S. D., Chiappe, L. M. & Krause,
D. W. 1998a The theropod ancestry of birds: new evi-
dence from the late Cretaceous of Madagascar. Science
279, 1915-1919. (doi:10.1126/science.279.5358.1915)

Foster, C. A., Sampson, S. D., Chiappe, L. M. & Krause,
D. W. 19986 Letters: genus correction. Science 280, 179.

Foth, B. J., Goedecke, M. C. & Soldati, D. 2006 New
insights into myosin evolution and classification. Proc.
Natl Acad. Sci. USA 103, 3681-3686. (doi:10.1073/
pnas.0506307103)

Genise, J. F., Melchor, R. N., Archangelsky, M., Bala, L. O.,
Straneck, R. & de Valais, S. 2009 Application of neoich-
nological studies to behavioural and taphonomic
interpretation of fossil bird-like tracks from lacustrine
settings: the ILate Triassic—Early Jurassic? Santo
Domingo Formation, Argentina. Palaeogeogr. Palacoclim.
Palaeoecol. 272, 143—-161.

Gheradini, P. F., Wass, M. N., Helmer-Citterich, M. &
Steinberg, M. J. E. 2007 Convergent evolution of
enzyme active sites is not a rare phenomenon. J. Mol
Biol. 372, 817—845. (d0i:10.1016/j.jmb.2007.06.017)

Goldin, A. L. 2002 Evolution of voltage-gated Nat channels.
F. Exp. Biol. 205, 575-584.

Graumann, P. L. 2007 Cytoskeletal elements in bacteria.
Ann. Rev. Microbiol. 61, 589-618. (doi:10.1146/
annurev.micro.61.080706.093236)

Greuet, C. 1971 Etude ultrastructurale et evolution des cni-
docystes de Nematodinium, péridinien Warnowiidae
Lindemann. Protistologia 7, 345—355.

Herskovits, A. A., Shimoni, E., Minsky, A. & Bibi, E. 2002
Accumulation of endoplasmic membranes and novel
membrane-bound ribosome-signal recognition particle
receptor complexes in Escherichia coli. §. Cell Biol. 159,
403-410. (doi:10.1083/jcb.200204144)

Howe, C. ]J., Barbrook, A. C., Nisbet, R. E. R., Lockhart,
P. J. & Larkum, A. W. D. 2008 The origin of plastids.
Phil. Trans R. Soc. B 363, 2675-2685. (doi:10.1098/
rstb.2008.0050)

Huxley, L. 1900 Life and letters of Thomas Henry Huxley by his
son Leonard Huxley. London, UK: Macmillan and Co.
Ishiguro, N., Sasatsu, M., Misra, T. K. & Silver, S. 1988
Promoters and transcription of the plasmid-mediated
citrate-utilization system in Escherichia coli. Gene 68,

181-192. (doi:10.1016/0378-1119(88)90020-0)

Ito, M., Xu, H.-X., Guffanti, A. A., Wei, Y., Zvi, L.,
Clapham, D. E. & Krulwich, T. A. 2004 The voltage-
gated Na' channel Na,BP has a role in motility,
chemotaxis, and pH homeostasis of an alkaliphilic Bacil-
lus. Proc. Natl Acad. Sci. USA 101, 10566-10571.
(doi:10.1073/pnas.0402692101)

Ji, S-A. & Ji, Q. 2007 infengopteryx compared to
Archaeopteryx, with comments on the mosaic
evolution of long-tailed avialan birds. Acta Geol. Sin. 81,
337-343.


http://dx.doi.org/doi:10.1016/j.cellbi.2007.02.007
http://dx.doi.org/doi:10.1016/j.cellbi.2007.02.007
http://dx.doi.org/doi:10.1242/jcs.013250
http://dx.doi.org/doi:10.1073/pnas.0707318105
http://dx.doi.org/doi:10.1073/pnas.0707318105
http://dx.doi.org/doi:10.1074/jbc.M401613200
http://dx.doi.org/doi:10.1074/jbc.M401613200
http://dx.doi.org/doi:10.1038/19212
http://dx.doi.org/doi:10.1126/science.259.5096.803
http://dx.doi.org/doi:10.1126/science.259.5096.803
http://dx.doi.org/doi:10.1093/molbev/msn022
http://dx.doi.org/doi:10.1671/0272-4634(2008)28[145:IOBFAE]2.0.CO;2
http://dx.doi.org/doi:10.1671/0272-4634(2008)28[145:IOBFAE]2.0.CO;2
http://dx.doi.org/doi:10.1016/S0968-0004(98)01254-7
http://dx.doi.org/doi:10.1016/S0968-0004(98)01254-7
http://dx.doi.org/doi:10.1159/000063564
http://dx.doi.org/doi:10.1371/journal.pgen.0010052
http://dx.doi.org/doi:10.1016/j.tcb.2007.02.007
http://dx.doi.org/doi:10.1126/science.1098410
http://dx.doi.org/doi:10.1126/science.1098410
http://dx.doi.org/doi:10.1016/j.resmic.2008.04.012
http://dx.doi.org/doi:10.1016/j.resmic.2008.04.012
http://dx.doi.org/doi:10.1093/molbev/msj009
http://dx.doi.org/doi:10.1038/382532a0
http://dx.doi.org/doi:10.1126/science.279.5358.1915
http://dx.doi.org/doi:10.1073/pnas.0506307103
http://dx.doi.org/doi:10.1073/pnas.0506307103
http://dx.doi.org/doi:10.1016/j.jmb.2007.06.017
http://dx.doi.org/doi:10.1146/annurev.micro.61.080706.093236
http://dx.doi.org/doi:10.1146/annurev.micro.61.080706.093236
http://dx.doi.org/doi:10.1083/jcb.200204144
http://dx.doi.org/doi:10.1098/rstb.2008.0050
http://dx.doi.org/doi:10.1098/rstb.2008.0050
http://dx.doi.org/doi:10.1016/0378-1119(88)90020-0
http://dx.doi.org/doi:10.1073/pnas.0402692101

Review. Evolution is predictable

S. Conway Morris 143

Kant, S., Bagaria, A. & Ramakumar, S. 2002 Putative home-
odomain proteins identified in prokaryotes based on
pattern and sequence similarity. Biochem. Biophys. Res.
Comm. 299, 229-232. (doi:10.1016/S0006-291X
(02)02607-4)

Kawashima, K., Misawa, H., Moriwaki, Y., Fujii, Y. X.,
Fujii, T., Horiuchi, Y., Yamada, T., Imanaka, T. &
Kamekura, M. 2007 Ubiquitous expression of acetyl-
choline and its biological functions in life forms without
nervous systems. Life Sci. 80, 2206—2209. (doi:10.1016/
j.1fs.2007.01.059)

Kay, L. M. & Stopfer, M. 2006 Information processing in
the olfactory systems of insects and vertebrates. Semin.
Cell. Dev. Biol. 17, 433-442. (doi:10.1016/j.semcdb.
2006.04.012)

Keim, C. N., Abreu, F., Lins, U., Lins de Barros, H. &
Farina, M. 2004 Cell organization and ultrastructure of
a magnetotactic multicellular organism. ¥ Struct. Biol.
145, 254-262. (d0i:10.1016/j.jsb.2003.10.022)

Kerfeld, C. A., Sawaya, M. R., Tanaka, S., Nguyen, C. V.,
Phillips, M., Beeby, M. & Yeates, T. O. 2005 Protein
structures forming the shell of primitive bacterial orga-
nelles. Science 309, 936-938. (doi:10.1126/science.
1113397)

King, N. ez al. (JGI sequencing group) 2008 The genome of
the choanoflagellate Monosiga brevicollis and the origin of
metazoans. Nature 451, 783-788. (doi:10.1038/
nature06617)

Kloepper, T. H., Kienle, C. N. & Fasshauer, D. 2007 An
elaborate classification of SNARE proteins sheds light
on the conservation of the eukaryotic endomembrane
system. Mol. Biol. Cell 18, 3463-3471. (doi:10.1091/
mbc.E07-03-0193)

Kloepper, T. H., Kienle, C. N. & Fasshauer, D. 2008
SNAREIing the basis of multicellularity: consequences of
protein family expansion during evolution. Mol Biol.
Ewol. 25, 2055-2068. (d0i:10.1093/molbev/msnl51)

Koishi, R., Xu, H.-X., Ren, D.-]., Navarro, B., Spiller, B. W.,
Shi, Q. & Clapham, D. E. 2004 A superfamily of voltage-
gated sodium channels in bacteria. ¥ Biol. Chem. 279,
9532-9538. (d0i:10.1074/jbc.M313100200)

Kryazhimskiy, S., Bazykin, G. A., Plotkin, J. & Dushoff, J.
2008 Directionality in the evolution of influenza A hae-
magglutin. Proc. R. Soc. B 275, 2455-2464. (doi:10.
1098/rspb.2008.0521)

Kurochkin, E. N. 2006 Parallel evolution of theropod
dinosaurs and birds. Entomol. Rev. 86(Suppl. 1), S45-
S58. (English transl. Zool. Zhur. 85, 283—-297; 2006).
(doi:10.1134/S0013873806100046)

Lamballerie, X., de Leroy, E., Charrel, R. N., Ttsetsarkin,
K., Higgs, S. & Gould, E. A. 2008 Chikungunya virus
adapts to tiger mosquito via evolutionary convergence: a
sign of things to come? Virol. ¥ 5, 33.

Larkum, A. W. D., Lockhart, P. J. & Howe, C. J. 2007 Shop-
ping for plastids. Trends Plant Sci. 12, 189—-195. (doi:10.
1016/j.tplants.2007.03.011)

Leander, B. S. 2008 A hierarchical view of convergent evol-
ution in microbial eukaryotes. ¥ Eukaryot. Microbiol. 55,
59-68. (doi:10.1111/j.1550-7408.2008.00308.x)

Lefebvre, L., Reader, S. M. & Sol, D. 2004 Brains, inno-
vations and evolution in birds and primates. Brain
Behavw. Evol. 63, 233—-246. (doi:10.1159/000076784)

Levy, M. G., Litaker, R. W., Goldstein, R. J., Dykstra, M. J.,
Vandersea, M. W. & Noga, E. J. 2007 Piscinoodinium, a
fish-ectoparasitic dinoflagellate, is a member of the class
Dinophyceae, subclass Gymnodiniphycidae: convergent
evolution with Amyloodinium. §. Parasit. 93, 1006—1015.
(doi:10.1645/GE-3585.1)

Li, R.-H., Lockley, M. G., Makovicky, P. J., Matsukawa, M.,
Norell, M. A., Harris, J. D. & Liu, W. 2008 Behavioral

Phil. Trans. R. Soc. B (2010)

and faunal implications of Early Cretaceous deinonycho-
saur trackways from China. Nawurwissenschaften 95,
185-191. (doi:10.1007/s00114-007-0310-7)

Lin, Y. S. 2008 Using a strategy based on the concept of con-
vergent evolution to identify residues substitutions
responsible for thermal adaptation. Proteins 73, 53—62.
(d0i:10.1002/prot.22049)

Longrich, N. 2006 Structure and function of hindlimb
feathers in Archaeopteryx hithographica. Paleobiology 32,
417-431. (doi:10.1666/04014.1)

Macklem, P. 2008 Emergent phenomena and the secrets of
life. ¥ Appl. Physiol. 104, 1844-1846. (doi:10.1152/
japplphysiol.00942.2007)

Makovicky, P. J., Apesteguia, S. & Agnolin, P. 2005 The ear-
liest dromaeosaurid theropod from South America.
Nature 437, 1007—1011. (doi:10.1038/nature03996)

Manning, G., Young, S. L., Miller, W. D. & Zhai, F. 2008
The protist, Monosiga brevicollis, has a tyrosine kinase sig-
naling network more elaborate and diverse than found in
any known metazoan. Proc. Natl Acad. Sci. USA 105,
9674-9679. (doi:10.1073/pnas.0801314105)

Marin, B., Nowack, E. C. M. & Melkonian, M. 2005 A plas-
tid in the making: evidence for a secondary primary
endosymbiosis. Prorist 156, 425-432. (doi:10.1016/
j.protis.2005.09.001)

Matsuoka, K., Cho, H.-J. & Jacobson, D. M. 2000
Observations of the feeding behavior and growth rates
of the heterotrophic dinoflagellate Polykrikos kofoidii
(Polykrikaceae, Dinophyceae). Phycologia 39, 82—86.

Melchor, R. N., Valais, S. & de Genise, J. F. 2002 Bird-like
fossil foot-prints from the Late Triassic. Narure 417,
936-938. (doi:10.1038/nature00818)

Midgley, M. 1985 Evolution as a religion: strange hopes and
stranger fears. London, UK: Methuen.

Mineta, K., Nakazawa, M., Cebria, F., Ikeo, K., Agata, K. &
Gojobori, T. 2003 Origin and evolutionary process of the
CNS elucidated by comparative genomics analysis of pla-
narian ESTs. Proc. Natl Acad. Sci. USA 100, 7666-7671.
(doi:10.1073/pnas.1332513100)

Molnar, R. E. 2008 Book review [of Life’s Solution]. . Vert.
Paleontol. 28, 586-587. (doi:10.1671/0272-
4634(2008)28[586:L.SIHIA]2.0.CO;2)

Money, N. P, Davis, C. M. & Ravishankar, J. P. 2004 Bio-
mechanical evidence for convergent evolution of the
invasive growth process among fungi and oomycete
water molds. Fungal Gen. Biol. 41, 872—-876. (doi:10.
1016/j.fgb.2004.06.001)

Mongodin, E. F. et al. 2005 The genome of Salinibacter
ruber: convergence and gene exchange among hyperhalo-
philic bacteria and archaea. Proc. Natl Acad. Sci. USA
102, 18 147-18 152. (d0i:10.1073/pnas.0509073102)

Nesbitt, S. 2007 The anatomy of Effigia okeeffeae
(Archosauria, Suchia), theropod-like convergence, and
the distribution of related taxa. Bull. Am. Mus. Nat.
Hist. 302, 1-84. (doi:10.1206/0003-0090(2007)302[1:
TAOEOA]2.0.CO;2)

Nesbitt, S. J. & Norell, M. A. 2006 Extreme convergence in
the body plans of an early suchian (Archosauria) and
ornithomimid dinosaurs (Theropoda). Proc. R. Soc. B
273, 1045-1048. (doi:10.1098/rspb.2005.3426)

Palmer, J. D. 2003 The symbiotic birth and spread of
plastids: How many times and whodunit? ¥ Phycol. 39,
4-11. (doi:10.1046/j.1529-8817.2003.02185.x)

Parker, W. G., Irmis, R. B., Nesbitt, S. J., Martz, J. W. &
Browne, L. S. 2005 The Late Triassic pseudosuchian
Revueltosaurus callenderi and its implications for the diver-
sity of early ornithischian dinosaurs. Proc. R. Soc. B 272,
963-969. (doi:10.1098/rspb.2004.3047)

Paul, S., Bag, S. K., Das, S., Harvill, E. T. & Dutta, C. 2008
Molecular signature of hypersaline adaptation: insights


http://dx.doi.org/doi:10.1016/S0006-291X(02)02607-4
http://dx.doi.org/doi:10.1016/S0006-291X(02)02607-4
http://dx.doi.org/doi:10.1016/j.lfs.2007.01.059
http://dx.doi.org/doi:10.1016/j.lfs.2007.01.059
http://dx.doi.org/doi:10.1016/j.semcdb.2006.04.012
http://dx.doi.org/doi:10.1016/j.semcdb.2006.04.012
http://dx.doi.org/doi:10.1016/j.jsb.2003.10.022
http://dx.doi.org/doi:10.1126/science.1113397
http://dx.doi.org/doi:10.1126/science.1113397
http://dx.doi.org/doi:10.1038/nature06617
http://dx.doi.org/doi:10.1038/nature06617
http://dx.doi.org/doi:10.1091/mbc.E07-03-0193
http://dx.doi.org/doi:10.1091/mbc.E07-03-0193
http://dx.doi.org/doi:10.1093/molbev/msn151
http://dx.doi.org/doi:10.1074/jbc.M313100200
http://dx.doi.org/doi:10.1098/rspb.2008.0521
http://dx.doi.org/doi:10.1098/rspb.2008.0521
http://dx.doi.org/doi:10.1134/S0013873806100046
http://dx.doi.org/doi:10.1016/j.tplants.2007.03.011
http://dx.doi.org/doi:10.1016/j.tplants.2007.03.011
http://dx.doi.org/doi:10.1111/j.1550-7408.2008.00308.x
http://dx.doi.org/doi:10.1159/000076784
http://dx.doi.org/doi:10.1645/GE-3585.1
http://dx.doi.org/doi:10.1007/s00114-007-0310-7
http://dx.doi.org/doi:10.1002/prot.22049
http://dx.doi.org/doi:10.1666/04014.1
http://dx.doi.org/doi:10.1152/japplphysiol.00942.2007
http://dx.doi.org/doi:10.1152/japplphysiol.00942.2007
http://dx.doi.org/doi:10.1038/nature03996
http://dx.doi.org/doi:10.1073/pnas.0801314105
http://dx.doi.org/doi:10.1016/j.protis.2005.09.001
http://dx.doi.org/doi:10.1016/j.protis.2005.09.001
http://dx.doi.org/doi:10.1038/nature00818
http://dx.doi.org/doi:10.1073/pnas.1332513100
http://dx.doi.org/doi:10.1671/0272-4634(2008)28[586:LSIHIA]2.0.CO;2
http://dx.doi.org/doi:10.1671/0272-4634(2008)28[586:LSIHIA]2.0.CO;2
http://dx.doi.org/doi:10.1016/j.fgb.2004.06.001
http://dx.doi.org/doi:10.1016/j.fgb.2004.06.001
http://dx.doi.org/doi:10.1073/pnas.0509073102
http://dx.doi.org/doi:10.1206/0003-0090(2007)302[1:TAOEOA]2.0.CO;2
http://dx.doi.org/doi:10.1206/0003-0090(2007)302[1:TAOEOA]2.0.CO;2
http://dx.doi.org/doi:10.1098/rspb.2005.3426
http://dx.doi.org/doi:10.1046/j.1529-8817.2003.02185.x
http://dx.doi.org/doi:10.1098/rspb.2004.3047

144 S. Conway Morris

Review. Evolution is predictable

from genome and proteome composition of halophilic
prokaryotes. Genome Biol. 9, R70. (doi:10.1186/
gb-2008-9-4-r70)

Pereyra, P. M. & Roots, B. I. 1988 Isolation and initial charac-
terization of muyelin-like membrane fractions from the
nerve cord of earthworms (Lumbricus terrestris L). Neuro-
chem. Res. 13, 893-901. (doi:10.1007/BF00970759)

Pogliano, J. 2008 The bacterial cytoskeleton. Curr. Opin. Cell
Biol. 20, 19-27. (d0i:10.1016/j.ceb.2007.12.006)

Polen, T., Schluesener, D., Poetsch, A., Bott, M. &
Wendisch, V. F. 2007 Characterization of citrate utiliz-
ation in Corynebacterium glutamicum by transcriptome
and proteome analysis. FEMS Microbiol. Lett. 273,
109-119. (doi:10.1111/.1574-6968.2007.00793.x)

Pos, K. M., Dimroth, P. & Bott, M. 1998 The Escherichia coli
citrate carrier CitT: a member of a novel eubacterial
transporter family related to the 2-oxoglutarate/malate
translocator from spinach chloroplast. ¥ Bacteriol. 180,
4160-4165.

Prechtl, J., Kneip, C., Lockhart, P., Wenderoth, K. & Maier,
G. 2004 Intracellular spheroid bodies of Rhopalodia gibba
have nitrogen fixing apparatus of cyanobacterial origin.
Mol. Biol. Evol. 21, 1477-1481. (doi:10.1093/molbev/
msh086)

Puigbo, P., Pasamontes, A. & Garcia-Vallve, S. 2008 Gaining
and losing the thermophilic adaptation in prokaryotes.
Trends Genet. 24, 10—14. (doi:10.1016/j.tig.2007.10.005)

Rachel, R., Wyschkony, I., Riehl, S. & Huber, H. 2002 The
ultrastructure of Ignicoccus: evidence for a novel outer
membrane and for intracellular vesicle budding in an
archeon. Archaea 1, 9—18. (doi:10.1155/2002/307480)

Richards, T. A. & Cavalier-Smith, T. 2005 Myosin domain
evolution and the primary divergence of eukaryotes.
Nature 436, 1113—-1118. (doi:10.1038/nature03949)

Richards, T. A., Dacks, J. B., Jenkinson, J. M., Thornton,
C. R. & Talbot, N. J. 2006 Evolution of filamentous
plant pathogens: gene exchange across eukaryotic king-
doms. Curr. Biol. 16, 1857—1864. (doi:10.1016/j.cub.
2006.07.052)

Richards, G. S., Simionato, E., Perron, M., Adamska, M.,
Vervoort, M. & Degnan, B. M. 2008 Sponge genes pro-
vide new insight into the evolutionary origin of the
neurogenic circuit. Curr. Biol. 18, 1156—-1161. (doi:10.
1016/j.cub.2008.06.074)

Rodriguez-Ezpeleta, N. & Philippe, H. 2006 Plastid origin:
replaying the tape. Curr. Biol. 16, R53—-R56. (doi:10.
1016/j.cub.2006.01.006)

Rueckert, S. & Leander, B. S. 2008 Morphology and mol-
ecular phylogeny of Haplozoon praxillellae n. sp.
(Dinoflagellata): a novel intestinal parasite of the malda-
nid polychaete Praxillella pacifica Berkeley. Eur. ¥.
Protistol. 44, 299-307. (doi:10.1016/j.ejop.2008.04.004)

Ruiz-Trillo, I., Roger, A. J., Burger, G., Gray, M. W. & Lang,
B. F. 2008 A phylogenomic investigation into the origin of
Metazoa. Mol. Biol. Evol. 25, 664—672. (doi:10.1093/
molbev/msn006)

Sagane, Y., Nakagawa, T., Yamamoto, K., Michikawa, S.,
Oguri, S. & Momonoki, Y. S. 2005 Molecular character-
ization of maize acetylcholinesterase. A novel enzyme
family in the plant kingdom. Plant Physiol. 138,
1359-1371. (d0i:10.1104/pp.105.062927)

Sakarya, O., Armstrong, K. A., Adamska, M., Adamski, M.,
Wang, I.-F., Tidor, B., Degnan, B. M., Oakley, T. H. &
Kosik, K. S. 2007 A post-synaptic scaffold at the origin
of the animal kingdom. PLoS Omne 2, e¢506. (doi:10.
1371/journal.pone.0000506)

Sanderfoot, A. 2007 Increases in the number of SNARE
genes parallels the rise of multicellularity among
the green plants. Plant Physiol. 144, 6—17. (doi:10.1104/
pp.106.092973)

Phil. Trans. R. Soc. B (2010)

Sasatsu, M., Misra, T. K., Chu, L., Laddaga, R. & Silver, S.
1985 Cloning and DNA sequence of a plasmid-
determined citrate utilization system in Escherichia coli.
F Bacteriol. 164, 983—-993.

Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T.,
Vosshall, L. B. & Touhara, K. 2008 Insect olfactory
receptors are heteromeric ligand-gated ion channels.
Nature 452, 1002—-1007. (do0i:10.1038/nature06850)

Schrodinger, E. 1948 What is life?: the physical aspect of the
living cell. Cambridge, UK: Cambridge University Press.

Senter, P. 2007 A new look at the phylogeny of Coeluro-
sauria (Dinosauria: Theropoda). ¥ Syst. Palaeontol. 5,
429-463. (doi:10.1017/S1477201907002143)

Shinagawa, M., Makino, S., Hirato, T., Ishiguro, N. & Sato,
G. 1982 Comparison of DNA sequences required for the
function of citrate utilization among different citrate util-
ization plasmids. . Bacteriol. 151, 1046—1050.

Steenkamp, E. T., Wright, J. & Baldauf, S. L. 2006 The pro-
tistan origins of animals and fungi. Mol. Biol. Evol. 23,
93-106. (doi:10.1093/molbev/msj011)

Stiller, J. W. 2003 Weighing the evidence for a single origin of
plastids. ¥ Phycol. 39, 1283—1285. (d0i:10.1111/j.0022-
3646.2003.03-084.x)

Stiller, J. W., Reel, C. D. & Johnson, J. C. 2003 A single
origin of plastids revisited: convergent evolution in orga-
nellar genome content. ¥ Phycol. 39, 95-105. (doi:10.
1046/j.1529-8817.2003.02070.x)

Suhre, K. 2005 Gene and genome duplication in Acantha-
moeba polyphaga mimivirus. § Virol. 79, 14095-14101.
(doi:10.1128/JV1.79.22.14095-14101.2005)

Takai, K. et al. 2008 Cell proliferation at 122°C and isotopi-
cally heavy CH,; production by a hyperthermophilic
methanogen under high-pressure cultivation. Proc. Nail
Acad. Sci. USA 105, 10949-10954. (doi:10.1073/pnas.
0712334105)

Tanaka, S., Kerfeld, C. A., Sawaya, M. R., Cai, F,
Heinhorst, S., Cannon, G. C. & Yeates, T. O. 2008
Atomic-level models of the bacterial carboxysome shell.
Science 319, 1083-1086.

Thomas, N. A., Bardy, S. L. & Jarrell, K. F. 2001 The
archaeal flagellum: a different kind of prokaryotic motility
structure. FEMS Microbiol. Rev. 25, 147-174. (doi:10.
1111/j.1574-6976.2001.tb00575.x)

Thompson, R. E. & Langford, G. M. 2002 Myosin super-
family evolutionary history. Anar. Rec. 268, 276—2809.
(doi:10.1002/ar.10160)

Tosca, N. J., Knoll, A. H. & McLennan, S. M. 2008 Water
activity and the challenge for life on early Mars. Science
320, 1204—-1207. (doi:10.1126/science.1155432)

Trachtenberg, S., Galkin, V. E. & Egelman, E. H. 2005
Redefining the structure of the Halobacterium salinarum
flagellar filament wusing the iterative helical real
space reconstruction method: insights into polymorph-
ism. ¥ Mol Biol. 346, 665-676. (do0i:10.1016/j.jmb.
2004.12.010)

Travisano, M., Mongold, J. A., Bennett, A. F. & Lenski,
R. E. 1995 Experimental tests of the roles of adaptation,
chance, and history of evolution. Science 267, 87-90.
(d0i:10.1126/science.7809610)

Treisman, J., Harris, E., Wilson, D. & Desplan, C. 1992
The homeodomain: a new face for the helix-turn-helix?
BioEssays 14, 145-150. (d0i:10.1002/bies.950140302)

Tsai, Y., Sawaya, M. R., Cannon, G. C., Cai, F., Williams,
E. B., Heinhorst, S., Kerfeld, C. A. & Yeates, T. O.
2007 Structural analysis of CsoS1A and the protein
shell of the Halothiobacillus neapolitanus carboxysome.
PLoS Biol. 5, e144. (doi:10.1371/journal.pbio.0050144)

Turner, A. H., Makovicky, P. J. & Norell, M. A. 2007
Feather quill knobs in the dinosaur Velociraptor. Science
317, 1721. (doi:10.1126/science.1145076)


http://dx.doi.org/doi:10.1186/gb-2008-9-4-r70
http://dx.doi.org/doi:10.1186/gb-2008-9-4-r70
http://dx.doi.org/doi:10.1007/BF00970759
http://dx.doi.org/doi:10.1016/j.ceb.2007.12.006
http://dx.doi.org/doi:10.1111/j.1574-6968.2007.00793.x
http://dx.doi.org/doi:10.1093/molbev/msh086
http://dx.doi.org/doi:10.1093/molbev/msh086
http://dx.doi.org/doi:10.1016/j.tig.2007.10.005
http://dx.doi.org/doi:10.1155/2002/307480
http://dx.doi.org/doi:10.1038/nature03949
http://dx.doi.org/doi:10.1016/j.cub.2006.07.052
http://dx.doi.org/doi:10.1016/j.cub.2006.07.052
http://dx.doi.org/doi:10.1016/j.cub.2008.06.074
http://dx.doi.org/doi:10.1016/j.cub.2008.06.074
http://dx.doi.org/doi:10.1016/j.cub.2006.01.006
http://dx.doi.org/doi:10.1016/j.cub.2006.01.006
http://dx.doi.org/doi:10.1016/j.ejop.2008.04.004
http://dx.doi.org/doi:10.1093/molbev/msn006
http://dx.doi.org/doi:10.1093/molbev/msn006
http://dx.doi.org/doi:10.1104/pp.105.062927
http://dx.doi.org/doi:10.1371/journal.pone.0000506
http://dx.doi.org/doi:10.1371/journal.pone.0000506
http://dx.doi.org/doi:10.1104/pp.106.092973
http://dx.doi.org/doi:10.1104/pp.106.092973
http://dx.doi.org/doi:10.1038/nature06850
http://dx.doi.org/doi:10.1017/S1477201907002143
http://dx.doi.org/doi:10.1093/molbev/msj011
http://dx.doi.org/doi:10.1111/j.0022-3646.2003.03-084.x
http://dx.doi.org/doi:10.1111/j.0022-3646.2003.03-084.x
http://dx.doi.org/doi:10.1046/j.1529-8817.2003.02070.x
http://dx.doi.org/doi:10.1046/j.1529-8817.2003.02070.x
http://dx.doi.org/doi:10.1128/JVI.79.22.14095-14101.2005
http://dx.doi.org/doi:10.1073/pnas.0712334105
http://dx.doi.org/doi:10.1073/pnas.0712334105
http://dx.doi.org/doi:10.1111/j.1574-6976.2001.tb00575.x
http://dx.doi.org/doi:10.1111/j.1574-6976.2001.tb00575.x
http://dx.doi.org/doi:10.1002/ar.10160
http://dx.doi.org/doi:10.1126/science.1155432
http://dx.doi.org/doi:10.1016/j.jmb.2004.12.010
http://dx.doi.org/doi:10.1016/j.jmb.2004.12.010
http://dx.doi.org/doi:10.1126/science.7809610
http://dx.doi.org/doi:10.1002/bies.950140302
http://dx.doi.org/doi:10.1371/journal.pbio.0050144
http://dx.doi.org/doi:10.1126/science.1145076

Review. Evolution is predictable

S. Conway Morris 145

Webster, J. & Weber, R. 2007 Introduction to fungi.
Cambridge, UK: Cambridge University Press.

Wessler, 1., Kilbinger, H., Bittinger, F. & Kirkpatrick, C. J.
2001 The biological role of non-neuronal acetylcholine
in plants and animals. fpn ¥ Pharmacol. 85, 2-10.
(doi:10.1254/5jp.85.2)

Westfall, J. A., Bradbury, P. C. & Townsend, J. W. 1983
Ultrastructure of the dinoflagellate Polykrikos. 1.
Development of the nematocyst-taeniocyst complex and
morphology of the site for extrusion. J Cell Sci. 63,
245-261.

Wicher, D., Schifer, R., Bauernfeind, R., Stensmyr, M. C.,
Heller, R., Heinemann, S.-H. & Hansson, B. S. 2008
Drosophila odorant receptors are both ligand-gated and
cyclic-nucleotide-activated cation channels. Nature 452,
1007-1011. (doi:10.1038/nature06861)

Xu, X. & Zhang, C. 2005 A new maniraptorian dinosaur
from China with long feathers on the metatarsus.
Naturwissenschaften 92, 173—-177. (doi:10.1007/s00114-
004-0604-y)

Xu, X., Zhou, Z.-H., Wang, X.-L., Kuang, X.-W., Zhang,
F-C. & Du, K. 2003 Four-winged dinosaurs from
China. Narure 421, 335-340. (doi:10.1038/nature01342)

Xu, X., Zhou, Z.-H., Wang, X.-L., Kuang, X.-W., Zhang,
F.-C. & Du, K. 2005 Could ‘four winged’ dinosaurs fly?
Reply to K. Padian and K. P. Dial. Nawure 438, E4.
(doi:10.1038/nature04354 (2005))

Yeates, T. O., Tsai, Y., Tanaka, S., Sawaya, M. R. & Kerfeld,
C. A. 2007 Self-assembly in the carboxysome: a viral

Phil. Trans. R. Soc. B (2010)

capsid-like protein shell in bacterial cells. Biochem. Soc.
Trans. 35, 508—511. (do0i:10.1042/BST0350508)

Yukubi, N. & Leander, B. S. 2008 Ultrastructure and mol-
ecular phylogeny of Stephanopogon minuta: an enigmatic
microeukaryote from marine interstitial environments.
Eur. . Proustol. 44, 241-253. (d0i:10.1016/j.ejop.2007.
12.001)

Yutin, N., Makarova, K. S., Mekhedov, S. L., Wolf, Y. I. &
Koonin, E. V. 2008 The deep archaeal roots of eukar-
yotes. Mol. Biol. Evol. 25, 1619-1630. (doi:10.1093/
molbev/msn108)

Zhang, F.-C. & Zhou, H. 2004 Palaeontology: leg feathers in
an Early Cretaceous bird. Nazure 431, 925. (doi:10.1038/
431925a)

Zhang, F.-C., Zhou, Z.-H. & Dyke, G. 2006 Feathers and
‘feather-like’ integumentary structures in Liaoning birds
and dinosaurs. Geol. . 41, 395-404. (d0i:10.1002/gj.1057)

Zhang, F.-C., Zhou, Z.-H., Xu, X., Wang, X.-L. & Sullivan,
C. 2008 A bizarre Jurassic maniraptoran from China with
elongate ribbon-like features. Narure 455, 1105-1108.
(d0i:10.1038/nature07447)

Zhou, H. 2004 The origin and early evolution of birds: dis-
coveries, disputes, and perspectives from fossil evidence.
Naturwissenschaften 91, 455—471. (doi:10.1007/s00114-
004-0570-4)

Zhou, Z.-H., Clarke, ]J. & Zhang, C. 2008 Insight into diver-
sity, body size and morphological evolution from the
largest Early Cretaceous enantiornithine bird. ¥ Anat.
212, 565-577. (doi:10.1111/.1469-7580.2008.00880.x)


http://dx.doi.org/doi:10.1254/jjp.85.2
http://dx.doi.org/doi:10.1038/nature06861
http://dx.doi.org/doi:10.1007/s00114-004-0604-y
http://dx.doi.org/doi:10.1007/s00114-004-0604-y
http://dx.doi.org/doi:10.1038/nature01342
http://dx.doi.org/doi:10.1038/nature04354 (2005)
http://dx.doi.org/doi:10.1042/BST0350508
http://dx.doi.org/doi:10.1016/j.ejop.2007.12.001
http://dx.doi.org/doi:10.1016/j.ejop.2007.12.001
http://dx.doi.org/doi:10.1093/molbev/msn108
http://dx.doi.org/doi:10.1093/molbev/msn108
http://dx.doi.org/doi:10.1038/431925a
http://dx.doi.org/doi:10.1038/431925a
http://dx.doi.org/doi:10.1002/gj.1057
http://dx.doi.org/doi:10.1038/nature07447
http://dx.doi.org/doi:10.1007/s00114-004-0570-4
http://dx.doi.org/doi:10.1007/s00114-004-0570-4
http://dx.doi.org/doi:10.1111/j.1469-7580.2008.00880.x

	Evolution: like any other science it is predictable
	Introduction
	Are the key steps in evolution fortuitous?
	Frogs and theropods
	Carboxysomes and viruses
	Bacteria: re-running the tape

	Key steps
	Endosymbiosis and endocytosis
	Protistans
	The roads to multicellularity
	Homeotic convergences
	An inevitable nervous system

	Conclusion
	My thanks to the Royal Society for the invitation to write this review, and to Vivien Brown for exemplary manuscript preparation. Critical remarks by Chris Howe, Ken McNamara and Nick Strausfeld are also greatly appreciated, and I apologize that the lack of space prohibited the proper analysis of many invaluable points. Cambridge Earth Sciences Publication ESC.1182.
	References




