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ABSTRACT

Some viral and cellular messages use an alternative
mechanism to initiate protein synthesis that involves
internal recruitment of the ribosome to an internal
ribosome entry site (IRES). The Dicistroviridae inter-
genic regions (IGR) have been studied as model
IRESs to understand the mechanism of IRES-
mediated translation. In this study, the in vivo
activity of IGR IRESs were compared. Our analysis
demonstrates that Class I and II IGR IRESs have
comparable translation efficiency in yeast and that
Class II is significantly more active in mammalian
cells. Furthermore, while Class II IGR IRES activity
was enhanced in yeast grown at a higher tempera-
ture, temperature did not affect IGR IRES activity in
mammalian cells. This suggests that Class II IRESs
may not function optimally with yeast ribosomes.
Examination of chimeric IGR IRESs, established that
the IRES strength and temperature sensitivity are
mediated by the ribosome binding domain. In
addition, the sequence of the first translated codon
is also an important determinant of IRES activity.
Our findings provide us with a comprehensive over-
view of IGR IRES activities and allow us to begin to
understand the differences between Classes I and II
IGR IRESs.

INTRODUCTION

The vast majority of protein translation initiation in eu-
karyotes occurs by a cap-dependent mechanism, in which
the 40S ribosomal subunit recognizes the m7G cap struc-
ture at the 50-end of the mRNA then scans through the
50-untranslated region (50-UTR) until it reaches the start
codon. This process requires over 12 eukaryotic initiation
factors. During cell stress, e.g. viral infection, global
cap-dependent translation is shutdown and translation
can occur by a cap-independent mechanism (1). The
50-UTR of some transcripts contain IRESs, which are

highly structured RNA elements that mediate ribosome
binding internally to the mRNA, thus bypassing the
need for a 50-cap and reducing the dependency on some
or all of the canonical initiation factors. Despite extensive
research since the discovery of IRESs over 20 years ago
(2,3), the specific mechanism of IRES-mediated initiation
remains largely unknown.

Dicistroviridae are a newly described virus family
composed of at least 15 RNA viruses that infect inverte-
brates (Table 1) (4). The genomes of these viruses are
characterized by two non-overlapping open reading
frames (ORFs, Figure 1A). Translation initiation of the
non-structural genes encoded by ORF1 is mediated by a
50-IRES element similar to the picornaviral-like IRES
family (5–8), while structural genes encoded by ORF2
are under the translational control of an IGR IRES.
The IGR IRES is capable of binding directly to the 40S
ribosomal subunit and recruiting the 60S subunit to
generate an 80S complex in the absence of initiation
factors, making it the most streamlined form of transla-
tion initiation known (9–11).

Structural studies on IGR IRESs have aided our under-
standing of how these IRESs recruit the ribosome. The
complete crystal structure of the unbound IGR IRES
was derived from the ribosome binding domain of the
Plautia stali intestine virus (PSIV) IGR IRES and the
pseudoknot 1 (PKI) domain of the cricket paralysis
virus (CrPV) IGR IRES (12,13). In accordance with
previous predictions based on structural probing analysis
of multiple IGR IRESs (14–17), the crystal structures
verified the presence of three pseudoknots that are neces-
sary for proper folding of the IRES (Figure 1B and C)
(14,15). To determine where the IGR IRES interacts with
the ribosome, high-resolution cryo-EM reconstructions
were determined for the CrPV IGR IRES bound to the
80S ribosome (18,19). These studies demonstrated that the
IGR IRES occupies the intersubunit space and interacts
primarily with the E-site of the ribosome. Biochemical
and structural studies suggest that PKI mimics a
tRNA:mRNA interaction in the P-site to set the correct
reading frame (13,20). IGR IRESs also contain two stem
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Figure 1. The two classes of IGR IRESs are structurally distinct. (A) Schematic representation of the CrPV genome drawn to scale. (B and C)
Diagram of the secondary structure of the Class I IGR IRES from CrPV (B) and Class II IGR IRES from KBV (C) based on secondary structure
predictions (22). Conserved bases are in uppercase. The dotted box indicates the location of the cc-gg mutation. The triplet bases positioned in the
P- and A-sites of the ribosome are indicated as well as the amino acids encoded by the first two codons of ORF2. The ribosome binding domain and
the PKI domain are indicated. SL=stem loop.

Table 1. Dicistroviridae family

Virus Abbreviation Accession No. Host IGR–IRESa References

Cripavirus Class I

Aphid lethal paralysis virus ALPV AF536531 Aphid 6648–6822 (49)
Black queen cell virus BQCV AF183905 Honeybee 5626–5836 (50)
Cricket paralysis virusb CrPV AF218039 Cricket 6025–6216 (5)
Drosophila C virus DCV AF014388 Fruit fly 6079–6266 (51)
Himetobi P virusb HiPV AB017037 Planthopper 6296–6472 (52)
Homalodisca coagulata virus-1b HoCV-1 NC008029 Glass-winged

sharpshooter
5808–5987 (30)

Plautia stali intestine virusb PSIV AB006531 Brown-winged
green bug

6007–6192 (53)

Pteromalus puparum small
RNA-containing virusc

PpSRV EU680971.1 Wasp Unknown (54)

Rhopalosiphum padi virus RhPV AF022937 Aphid 6577–7019 (55)
Triatoma virus TrV AF178440 Kissing bug 5937–6111 (56)

Aparavirus Class II

Acute bee paralysis virusb ABPV JF299264 Honeybee 6326–6538 This study
Israeli acute paralysis virusb IAPV NC009025 Honeybee 6399–6617d (24)
Kashmir bee virusb KBV JF299265 Honeybee 6411–6629 This study
Solenopsis invicta virus-1b SINV-1 AY634314 Red imported fire ant 4219–4422d (57)
Taura syndrome virusb TSV AF277675 Shrimp 6741–6952d (58)

aNumbering corresponds to genomic position based on the reference sequence of the full-length genome.
bDenotes viruses used in this study.
cAssignment of PpSRV is based on phylogenetic analysis and secondary structure predictions (data not shown) (54).
dIn-frame AUG in IRES.
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loops, SL2.1 and SL2.3, which recruit the 40S ribosome
(12) and a bulge region that is important for 80S complex
formation (16,21) (Figure 1B and C).
Though IGR IRESs are predicted to share a highly con-

served secondary structure (22), they are divided into two
classes according to differences in two key structures, PKI
and the bulge (Figure 1B and C). Class II IGR IRESs
have an extra stem loop in the PKI domain (SL3) that
may be essential for IRES activity (17,21,23).
Additionally, the sequence of the bulge is conserved within
each IGR IRES class and the bulge is larger in Class II.
Mutations to the bulge region or swapping a Class I bulge
region into a Class II IGR IRES background, or vice
versa, reduced IRES-mediated initiation, suggesting that
the sequence and/or size of the bulge is critical for IRES
activity (16,21,24).
The ability of IGR IRESs to initiate translation has

been extensively investigated, though most studies have
focused on either the CrPV or PSIV IRESs. Additional
IGR IRESs were examined either in isolation or in a
limited comparative study (24,25). The majority of
Dicistroviridae intergenic regions (IGRs) have not been
evaluated functionally, and are proposed IRESs only
based on bioinformatic analysis or structural probing
(17,22). To verify that they are functional in vivo, we per-
formed a broad comparative analysis of the IGR IRESs
from 9 of the 15 known Dicistroviridae.
We found that all of the IGR IRESs tested were func-

tional in yeast and mammalian cells. Notably, we observed
that Class II IGR IRESs displayed high activity in vivo, in
contrast to the previous assumption that they are less
active than Class I (24). We recently determined that the
CrPV IGR IRES activity was dependent on the ribosomal
protein S25 (Rps25p). Here, we demonstrate that both
Classes I and II IGR IRESs require RPS25. The vast ma-
jority of IGR IRESs initiate with an alanine in the A-site
of the ribosome, here we show that other codons in this
position result in lower IGR IRES activity demonstrating
that the first translated codon also influences IRES
activity. The Class II, but not Class I, IRESs have
enhanced activity at elevated temperatures in yeast.
Chimeric IRESs that contain the ribosome binding domain
of a Class II IRES and the PKI domain of a Class I IRES
retain this temperature sensitivity. Taken together, these
results demonstrate that theDicistroviridae family contains
functional IGR IRESs and that differences in IRES
activity between the two classes of IGR IRESs can be attri-
buted to differences within the ribosome binding domain.

MATERIALS AND METHODS

Yeast strains and general culture techniques

Standard methods were used to grow and transform yeast
(26). The Saccharomyces cerevisiae strains used in this
study were: wild-type (BY4741: MATa his3D1 leu2D0
met15D0 ura3D0) from the Saccharomyces deletion
project (27) and rps25aDbD (SRT221: MATa his3D1
leu2D0 lys2D0 ura3D0 rps25a ::KanMX rps25b
::KanMX) (28).

Cell culture techniques

HeLa cells (Ambion) were maintained at 37�C, 5% CO2 in
DMEM (high-glucose Dulbecco’s modified Eagle’s
medium) supplemented with 10% (v/v) fetal bovine
serum, 2mM L-glutamine, and 0.1mg/ml penicillin/
streptomycin.

RNA isolation from bees

Honeybees from three different sites around Birmingham,
Alabama, USA were collected and immediately frozen and
stored at �80�C until use. RNA extraction was performed
by homogenizing the bees in 1ml of TRIzol (Invitrogen)
per 100mg tissue and incubating for 5min at room tem-
perature following the manufacturer’s protocol for RNA
extraction from tissue (Invitrogen). To generate cDNAs,
the RNA was reverse transcribed using Oligo (dT)20
primers (Invitrogen) and the M-MLV reverse transcript-
ase (Promega) according to the manufacturer’s instruc-
tions. The IAPV and ABPV IGR IRESs were amplified
from the cDNA using specific primers sets (see
Supplementary Table S1 for all primer information), P5
and P6, respectively. The primers were flanked with the
XhoI and SacII restriction sites to facilitate cloning into
the dual luciferase reporter plasmid (see following
section). Amplification of the KBV IGR IRES required
a two stage nested PCR using primer sets P8 followed by
P7. A minimum of five isolates were analyzed by DNA
sequencing (Heflin Genomics Core Facility, UAB).

Plasmid manipulations

A high copy dual luciferase reporter, pSRT338, was con-
structed by cloning the BamHI-SalI fragment from
pDualLuc (9) into the BamHI-SalI sites of the pSal6
backbone (29). A SacII restriction site was engineered
between the IGR IRES and the firefly luciferase gene by
site-directed mutagenesis using the primer set P1 as desc-
ribed previously (9) to facilitate cloning of other IGR
IRES sequences. The following IGR IRES sequences were
generously provided to us: HoCV-1 from Wayne Hunter
(30), PSIV (31) and HiPV (unpublished) from Nobuhiko
Nakashima, and IAPV and TSV from Eric Jan (24). Viral
sequences from bees collected in the Birmingham,
Alabama region (a generous gift from Butch Otwell)
were used to obtain the IGR IRESs of KBV and ABPV
(GenBank accession numbers JF299265 and JF299264).
Long oligo PCR was used to create the SINV-1 and
chimeric dicistronic luciferase constructs essentially as
described (32). Briefly, long oligonucleotides were designed
using the assembly PCR oligomaker. A PCR reaction was
used to assemble the long oligomers of DNA [one cycle at
94�C for 4min, then 8 cycles of (94�C for 60 s, 54�C for
2min, 72�C for 3min) followed by a final single cycle at
72�C for 5min]. A 2 ml aliquot of this reaction was added
to the second stage PCR reaction containing 20-mer
flanking primers with XhoI and SacII sites on their termini
to facilitate cloning into pSRT338 [that was denatured for
94�C for 5min, then 24 cycles of (94�C for 30 s, 54�C for
2min, 72�C for 90 s), followed by a final extension cycle at
72�C 5min]. The CrPV-KBV chimeric IRES is a fusion of
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the CrPV ribosome binding domain (6027–6171 nt)
and KBV PKI domain (6560–6645 nt). The KBV-CrPV
chimera consists of KBV RNA binding domain
(6408–6559 nt) and CrPV PKI (6172–6232 nt).

Each IGR IRES was amplified with sequence specific
primers flanked with XhoI and SacII restriction sites and
inserted into the p2.1 TOPO vector (Invitrogen). The
XhoI to SacII fragment from the TOPO plasmid was
cloned into the XhoI and SacII sites of pSRT338, thus
replacing the CrPV IGR IRES with another IGR IRES.
Then, the SacII restriction site between the IRES and the
firefly luciferase gene was removed by site directed muta-
genesis (primer sets P11–P19) because the restriction site
decreased the luciferase signal. All clones were confirmed
by DNA sequencing using a firefly luciferase antisense
primer (P24).

The mammalian expression vector was described previ-
ously for the CrPV IGR IRES (28). For the other IGR
IRESs, the NheI-BglII fragment of the yeast dual luci-
ferase reporter plasmids, containing the Renilla luciferase,
IGR IRES and firefly luciferase was inserted into the
NheI-BamHI sites of the mammalian expression vector
p�EMCV_BamHI (pSRT222).

Site-directed mutagenesis was carried out for the PKI
mutational analysis (primer sets P25–P46) and to create
the IAPVggc, IAPVgcu, KBVggc and IAPV6486aa IRES con-
structs (primer sets P20–P23).

DNA transfection

DNA transfections were performed using Lipofectamine
2000 (Invitrogen) according to the manufacturer’s protocol
with slight adjustments. Briefly, 5� 104 HeLa cells were
plated in antibiotic free DMEM one day prior to trans-
fection in a 24-well plate to achieve 80–90% confluency on
the day of transfection. Complexes were formed in Opti-
MEM (Gibco) with 1 ml of Lipofectamine 2000 and 0.4mg
of plasmid DNA. Complexes were incubated with the cells
for 4–6 h at 37�C, then the media was replaced and the
cells were incubated at the indicated temperature for 24 h.

Luciferase assays

Luciferase assays from yeast were performed as described
previously (9,28). Briefly, yeast strains were transformed
with the indicated dual luciferase reporter plasmid and
grown in selective SD media at 30�C until mid-log phase
(0.5–0.65 OD600). One OD600 unit of cells was pelleted and
lysed with 100ml of 1� passive lysis buffer (PLB;
Promega). Luminescence was measured for 2 ml of the
lysate using the Dual Luciferase assay kit (Promega)
following the manufacturer’s protocol using a FB12
Luminometer (Berthold). Each assay was performed in
triplicate from independent cultures. IRES activity is pre-
sented as a ratio of firefly/Renilla normalized to the
wild-type strain or to an IGR IRES (set to 100%) as
indicated.

For examination of IRES activity at different incuba-
tion temperatures, yeast were transferred from an
overnight culture grown at 30�C to a new culture and
grown at the indicated temperatures 25, 30 or 37�C for
�16 h until they reached mid-exponential growth stage

(0.5–0.65 OD600) and then luciferase activity was
measured as described above.
Luciferase assays from HeLa cell transfections were

conducted 24 h post-transfection. Cells from a 24-well
plate were washed with phosphate buffered saline
(137mM NaCl, 2.7mM KCl, 10mM sodium phosphate
dibasic, 2mM potassium phosphate, pH 7.4) and lysed
with 100 ml of 1� PLB for 15min at room temperature.
Lysates were cleared by centrifugation at 16 200g for
2min. Luminescence was measured for 4 ml of cleared
lysate.

RESULTS

The Dicistroviridae family is divided into two clades, the
Cripaviruses and Aparaviruses, which correlate with
Classes I or II IGR IRESs respectively. Phylogenetic
analyses based on the whole genome or the IGR predict
the same phylogenetic relationships between the viruses
(4,33). In contrast to the majority of the IGR IRES nu-
cleotides, the sequence identity of the single stranded
regions in the bulge, SL2.1, and SL2.3 is highly conserved.
We chose to study members with sequence variations in
these highly conserved regions, since they are likely to
affect IRES activity. Additionally, since little is known
about the activity of the Class II IGR IRESs, every
member of the Class II IGR IRES was included. In
total, this study examines 9 of the 15 IGR IRESs (See
‘b’ in Table 1).

The Classes I and II IRESs are functional in yeast

To examine IGR IRES activity in vivo, each IRES was
cloned into a dual luciferase reporter and assayed for
IRES activity in yeast (Figure 2A). The IRES activity
was quantified as a function of firefly luciferase expression
normalized to cap-dependent translation of Renilla
luciferase and was expressed as a percentage of CrPV
IGR IRES activity (Figure 2B, raw luciferase values
Figure 2C). The Class I Himetobi P virus (HiPV),
Homalodisca coagulata virus-1 (HoCV-1) and PSIV
IGR IRESs demonstrated higher IRES activity than the
CrPV IGR IRES (Figure 2B, gray bars).
The Class II Taura syndrome virus (TSV) IGR IRES

had approximately half the activity of the CrPV IGR
IRES and the IAPV IGR IRES had �20% of CrPV
IGR IRES activity (Figure 2B, black bars). However, all
other Class II IGR IRESs tested, specifically, the acute bee
paralysis virus (ABPV), Kashmir bee virus (KBV) and
Solenopsis invicta virus-1 (SINV-1), were more active than
the CrPV IGR IRES and demonstrated a similar level of
activity to the other Class I IGR IRESs (Figure 2B, black
bars). This contradicts previous assumptions based only
on the activity of TSV and IAPV, that Class I IRESs are
inherently more active than Class II (24,34).

Integrity of PKI is necessary for IGR IRES activity

If a cryptic promoter element is present in the IRES or
Renilla luciferase gene, this can produce a monocistronic
firefly luciferase message that will register as a false positive
for IRES activity. Therefore, it was important to verify for
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each IGR IRES construct that the firefly luciferase expres-
sion was derived only from a functional IRES. A 2-nt
mutation (CC to gg) that disrupts PKI in the CrPV IGR
IRES (cc-gg, dashed box in Figure 1B), results in a
complete loss in IRES activity, and demonstrates that
the firefly luciferase activity is solely dependent upon an
active IGR IRES for translation (Figure 2B) (9,20,35). A
similar PKI mutational analysis was performed on each
IGR IRES (schematic for the mutations is presented in the
inset of Figure 2D) and the activity of the mutant IRESs
were assayed in yeast. The activity in the PKI mutations
for TSV ranged from 14 to 29% and for IAPV ranged
from 40 to 53% suggesting that cryptic promoter or
splicing activity is responsible for about one third to one
half of the reporter activity, respectively. For all of the
other IGR IRESs tested, disruption of PKI resulted in a
loss of firefly activity (ranging from 1 to 6%) indicating
that the firefly luciferase activity is dependent upon a func-
tional IGR IRES (Figure 2D, white and black bars).
Additionally, when the compensatory mutations were

made to restore base pairing in PKI, a partial to complete
rescue of IRES activity was observed (Figure 2D, light
gray bars). Incomplete restoration is consistent with
previous analysis of the CrPV IGR IRES and suggests
that although formation of the PKI structure is sufficient
to partially restore IRES activity, the specific sequences in
PKI are necessary for full IRES activity (20).

Class I and II IGR IRES activity is dependent on Rps25

We have shown previously that Rps25p is required for
CrPV IGR IRES-mediated but not cap-dependent trans-
lation (28). In order to determine if other IGR IRES
members shared this requirement, IRES activity was mea-
sured in the yeast strain containing genomic deletions of
RPS25 (rps25aDbD). Consistent with the CrPV IGR
IRES, all of the IGR IRESs required Rps25p for effi-
cient translation initiation, with the exception of IAPV
(Figure 3A). The high activity in the rps25aDbD deletion
yeast for IAPV is consistent with the PKI disruption
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studies that suggest that the reporter activity is not solely
due to IRES-mediated translation.

Since IGR IRESs do not initiate at the canonical AUG
start codon, the start codon of the firefly reporter used in
these studies was deleted (Figure 2A, see �ATG) thereby
eliminating background firefly activity if monocistronic
cap-dependent firefly transcripts are generated. These
transcripts must initiate at downstream AUGs in the
firefly coding region and would not generate an active
firefly luciferase since the N-terminal region is required

for firefly luciferase activity (9,36). In fact, a northern
blot for firefly luciferase demonstrates that smaller firefly
luciferase transcripts are produced in addition the
full-length dicistronic transcript for the CrPV, IAPV and
TSV reporters; however cryptic activity was only detect-
able for IAPV and TSV (Supplementary Figure S1). This
may be because TSV and IAPV have in-frame start
codons within their IGR IRESs, which could allow for
translation of a full-length firefly luciferase protein from
a cap-dependent monocistronic message. Since we have
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Figure 3. Both Classes I and II IGR IRESs are dependent on RPS25 in yeast. (A) IRES activity was assayed in the wild-type (gray bars) and
rps25aDbD (white bars) yeast strains and reported as a percentage of IRES activity in the isogenic wild-type strain. (B and C) Diagrams of PKI from
TSV and IAPV. The mutations are color coded as follows, black=AUG to uga; white=CA to uc; gray=AUG to uga and CA to uc. (D and E)
Rps25p dependent activity is driven by PKI structure, not by in-frame AUG. Analysis of the PKI mutants of TSV and IAPV in the wild-type (gray
bars) and rps25aDbD yeast (white bars) strains recorded as a percentage of the IRES activity of the wild-type IRES. The color of the axis titles
correspond to the sequences of the same color in (B and C). Error bars shown are SE for n=3.
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shown previously that cap-dependent translation is un-
affected by deletion of RPS25 (28), these results suggest
that cap-dependent translation initiation at the start
codon within the TSV or IAPV IGR IRES is responsible
for their elevated firefly luciferase activity in the
rps25aDbD yeast strain (Figures 2D and 3A).
To determine if this upstream start codon is responsible

for the residual activity in the rps25aDbD deletion yeast,
IRESs with the start codon mutated were analyzed
(Figure 3B–E). The two TSV reporters that retain the up-
stream AUG, wild-type TSV and TSVuc, had over 40%
residual firefly luciferase activity (Figure 3D). However,
mutants without the upstream start codon, TSVuga and
TSVuga/uc, have only background levels (<19% IRES
activity, 860 RLUs) of firefly luciferase activity
(Figure 3D, compare TSVuga/uc in wild-type and
rps25DaDb strains). These results suggest that the removal
of in-frame AUGs within the IGR IRES abolishes all
firefly reporter activity that is not IRES-dependent.
Similarly, when PKI was disrupted in the IAPV IGR
IRES high levels of firefly activity are observed consistent
with the level of activity of the wild-type IRES in the
rps25DaDb strain. This is suggestive of cryptic promoter
activity. Indeed, mutation of an upstream inframe start
codon significantly reduced firefly luciferase activity.
Similar to the TSV mutations, when the AUG mutations
are present in IAPV in combination with compensatory
mutations that restore the PKI basepairing (IAPVuga/uc)
IRES activity is restored and it is RPS25-dependent
(Figure 3E) like the other IGR IRESs. Taken, together
these results suggest that there is cryptic activity
originating from an in-frame start codon, and that the
TSV and IAPV IRESs are still active after removal of
this codon, along with appropriate compensatory muta-
tions to maintain PKI basepair interactions.

Class II IGR IRESs are more active in HeLa cells

To determine if the IGR IRES activities observed in yeast
are conserved in mammalian cells, the IGR IRESs were
cloned into a mammalian dual luciferase reporter with a
CMV promoter (Figure 2A) and the IRES activities were
measured following transient transfection into HeLa cells.
Among the Class I IGR IRESs, HoCV-1 was 170% as
active as the CrPV IGR IRES, while HiPV and PSIV
both exhibited <50% of CrPV activity (Figure 4A, gray
bars). In contrast, all of the Class II IGR IRESs were
highly active in HeLa cells ranging from 270 to 3500%
of the CrPV IGR IRES activity (Figure 4A, black bars).
The most striking change in activity was for IAPV, which
is the least active in yeast (Figure 2B), but the most active
in HeLa cells (Figure 4A).
Since the IAPV IGR IRES reporter exhibited a high

level of cryptic activity in yeast (Figures 2D and 3E), the
contribution of cryptic activity for the IAPV IGR IRES
reporter was examined in HeLa cells by measuring the
activity of �AUG and compensatory PKI mutations
(Figure 4B). The IAPVuga mutant (black boxed nucleo-
tides, Figure 4B) replaced the start codon with a stop
codon and disrupted PKI. It has 8% activity in HeLa
cells (black bar, Figure 4C), which is comparable to the

9% background level seen with the CrPVcc-gg mutant. The
IAPV mutants with a disrupted PKI and an intact AUG,
IAPVcc-gg and IAPVuc, had significant background
activity, likely due to the in-frame AUG (Figure 4B and
C, medium gray and white bars).

In order to determine if the IAPV IGR IRES can
mediate PKI-dependent translation in HeLa cells
without the in-frame start codon, a compensatory
mutant that restores base-pairing in PKI was tested.
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Figure 4. The Class II IGR IRESs are more active in HeLa cells.
(A) IRES activities in HeLa cells are shown for Class I (gray) and
Class II (black) IGR IRESs. IGR IRES activity was normalized to
cap-dependent translation and presented as a percentage of the CrPV
IGR IRES activity. Error bars are SE for n=5. (B) A diagram of the
IAPV PKI mutations tested. The shading on the diagram indicates the
four mutants and corresponds to the bar graph in (C): gray=cc-gg,
black=AUG to uga, white=CA to uc, and light gray=AUG to uga
and CA to uc. (C) The IAPV IGR IRES is still highly active in HeLa
cells after removing the in-frame AUG. IRES activity was normalized
to cap-dependent translation and presented as a percentage of wild-type
activity for each IRES. The dotted line on the bar graph indicates the
background level of firefly luciferase activity (1300 RLUs) determined
by the CrPV cc-gg IGR IRES mutant. Under each construct, plus and
minus signs specify whether the PKI is intact and whether there is an
in-frame start codon (AUG). Error bars shown are SE for n=3.
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The IAPVuga/uc compensatory mutant has 64% of firefly
luciferase activity compared to the wild-type IAPV IRES
(Figure 4C, light gray bar). This activity is due to the res-
toration of the PKI structure and constitutes true IRES
activity since the IRES lacks the in-frame start codon.
Taken together, these results demonstrate that the IAPV
IGR IRES is highly active in mammalian cells.

IGR IRES activity is dependent on the first codon of
ORF2

In the Dicistroviridae family, the bee viruses IAPV, KBV
and ABPV have the most similar IGR IRES sequences;
therefore, it was surprising that IAPV was the least active
IGR IRES in yeast while ABPV and KBV exhibited
high activity (Figure 2B). A closer examination of the se-
quences from these three IGR IRESs revealed two regions
that may factor into the reduced activity of the IAPV IGR
IRES in yeast: the first translated codon in the A-site
of the ribosome and the PKIII sequence (Figure 5A,
Supplementary Figure S2A). Since small changes in or
adjacent to the IRES can lead to large effects on activity,
we examined the collection of IAPV sequences in the
NCBI database to find candidate IRESs that may exhibit
more activity than the reference sequence. As of January
2011, NCBI had 166 entries for IAPV, 66 of which con-
tained the IGR IRES sequence. Of the 66 IRES sequences,
exactly half were the same as the reference sequence,
which suggests that this sequence is replication competent
in bees. The other 33 ranged from one to 19 deviations
from the reference sequence. Thirty percent of these diver-
gent IGR IRESs (10/33) encoded GGU (glycine) instead
of GGC (glycine) as the first codon of ORF2. There were
no other deviations within the first five codons of ORF2 or
in the region surrounding PKIII in the database.

Previous reports have shown that the sequence encoding
the first 5 amino acids can enhance IGR IRES-mediated
translation (37,38). If the IAPV GGC codon is negatively
affecting firefly luciferase production, it could do so by
directly decreasing IGR IRES activity, or indirectly, by
reducing the translation efficiency due to codon bias.
This was a particular concern because codon usage of
GGC in yeast is only 9.8/1000 making it a rare codon
[Figure 5A, codon usage database (39)]. GGU is a
preferred codon in yeast for glycine (Figure 5A) likely
due to an increased number of hydrogen bonds formed
during the codon:anticodon interaction (40). To address
this, the naturally occurring GGU sequence, present in 10
out of 66 IAPV isolates, was assayed for translation
activity in yeast. IAPVggu only slightly increased activity
in wild-type yeast, but a concomitant increase was also
seen in the rps25aDbD strain indicating that this increase
in activity is not IRES-dependent (Figure 5B). This
finding suggests that codon usage bias is not the reason
for low IAPV IGR IRES activity in yeast, because simply
changing the rare GGC codon to the common GGU did
not increase IRES activity. Consistent with this the GGC
and GCU codons are used in a similar frequency in bees
(39) thereby providing no selective advantage for one
codon over the other.

Twelve of the 15 known IGR IRESs encode alanine as
the first amino acid of ORF2, nine of which use a GCU
triplet. The preference for GCU suggests it may be import-
ant for efficient IGR IRES activity; thus, the first codon
after the IAPV IGR IRES was mutated to GCU to create
IAPVgcu. The activity of this mutant in yeast was
increased 10-fold over wild-type IAPV IGR IRES
activity (Figure 5B). When IAPVgcu activity is measured
in the rps25aDbD yeast a dramatic reduction in firefly
luciferase activity is observed suggesting that the activity
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Figure 5. The sequence of the first codon of ORF2 is important for
IGR IRES activity. (A) Secondary structure of the IAPV IGR IRES
based on the predicted structure (22). The first codon of ORF2 that is
positioned in the A-site of the ribosome is indicated by a gray box. A
table with the coding frequencies of glycine and alanine codons in yeast
and humans is shown (39). (B) Mutant IAPV IGR IRESs with various
A-site codons were assayed for activity in wild-type (gray) and
rps25aDbD (white) yeast strains and normalized to the CrPV IGR
IRES activity. (C) IRES activity of mutant IRESs in HeLa cells
normalized to the KBV IGR IRES activity. Error bars shown are SE
for n=3.
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was IRES-mediated (Figure 5B, see white bars). Since
changing the GGC to a GCU codon dramatically
increased IRES-mediated translation there is now an ob-
servable and significant difference in IRES activity in the
wild-type yeast relative to the rps25DaDb yeast strain.
These data suggest that the IAPV IGR IRES functions
better with a GCU codon as the first translated codon
and may explain the apparent bias towards GCU as the
first ORF2 codon in Dicistroviridae.
The effect of switching the first codon to GCU was

tested in HeLa cells to determine whether it would influ-
ence IAPV IGR IRES activity in cells that already display
high IRES activity. The IAPVgcu IGR IRES has �2.5-fold
enhanced activity in HeLa cells (Figure 5C). GGC and
GCU have comparable coding frequency in humans
(Figure 5A), which suggests that the enhanced IRES
activity mediated by GCU is not simply due to differential
codon:anticodon interactions, but rather a direct influence
on the activity of the IGR IRES. To further examine the
importance of the sequence of the first codon of ORF2,
the reverse mutational strategy was used to test if the re-
placement of the first codon with GGC would decrease the
activity of an IRES that naturally contains GCU. KBVggc

exhibited a 3-fold decrease in IRES activity compared to
the wild-type (Figure 5C), which is similar to the fold
change in IRES activity between the IAPVGGC and
IAPVgcu IGR IRESs in HeLa cells.
An alternative explanation for differences in IAPV and

KBV activities could be due to structural differences,
which potentially extend PKIII and reduce the base-
pairing in SL2.3 in the IAPV IGR IRES (Supplementary
Figure S2A and Supplementary Data). However, muta-
tions predicted to prevent extension of PKIII had no
effect on IAPV IGR IRES activity (Supplementary
Figure S2B). Taken together, these results suggest that
the IGR IRESs function better with a GCU (alanine)
codon in the A-site.

Class II IGR IRES activity is dependent on temperature

Since the IGR IRESs exhibited different IRES activities in
yeast and human cells, this suggests that either the ribo-
somes differ in some significant manner or that the tem-
perature that the cells are grown affects the IRES activity.
Temperature changes are known to influence RNA
folding and ribosome conformation (41), therefore the
IGR IRES activity was examined in yeast grown at 25,
30 or 37�C. The Class I IGR IRESs activities do not cor-
relate with changes in temperature (Figure 6A). In
contrast, there is a 3-fold increase in activity for all of
the Class II IGR IRESs at 37�C and the IAPVgcu IGR
IRES mutant is eight times more active (Figure 6A). The
increase in activity is not due to a change in global protein
synthesis at higher temperatures because cap-dependent
translation, as measured by Renilla luciferase values,
remained constant for all of the reporters at each tempera-
ture (Supplementary Figure S3). Additionally, the increase
in firefly luciferase activity is dependent on the presence of
an active IRES upstream of the firefly luciferase gene.
When the inactive IRES, IAPVcc-gg, reporter was assayed
there was no change in the firefly luciferase values across

the temperature gradient (Figure 6A). Interestingly, in
HeLa cells there was no correlation between IGR IRES
activity and temperature at 25, 30, 37 or 42�C (data
not shown). Suggesting that in the context of the HeLa
ribosomes, the IGR IRES functions efficiently.

IGR IRES activity is determined by the ribosome binding
domain

Chimeric IGR IRESs were engineered to examine if the
ribosome binding domain or the PKI domain has a more
dominant role in determining IRES activity. The CrPV-
KBV chimera is a fusion of the Class I ribosome binding
domain from the CrPV IGR IRES to the Class II PKI
domain from KBV. The KBV-CrPV chimera has the
ribosome binding domain of KBV and PKI domain of
CrPV. Each chimeric IRES is functional in yeast at 30�C
(Figure 6B, white bars). The CrPV-KBV chimera had less
activity than CrPV, while the KBV-CrPV chimera demon-
strated intermediate activity between the CrPV and KBV.
Consistent with previous findings, the ribosome binding
domain plays the major role in determining the IGR
IRES activity (21).

To determine which domain mediates temperature sen-
sitivity, the activity of each chimeric IRES was tested in
yeast at 25 and 37�C (Figure 6B). The CrPV-KBV chimera
was unaffected by the temperature changes similar to the
Class I IGR IRESs, while the KBV-CrPV chimeric IGR
IRES activity increased 2.6-fold at 37�C similar to KBV.
Taken, together these findings suggest that the tempera-
ture dependence of the IGR IRES in yeast resides in the
ribosome binding domain.

DISCUSSION

Our data demonstrate that the Dicistroviridae IGR IRESs
are active in both yeast and mammalian cells.
Furthermore, the Class II IGR IRESs are as active, or
more active, than the Class I. This contradicts the previous
generalization based on studies of the IAPV and TSV IGR
IRESs in vitro (21,24,34), which turn out to be atypical
Class II IGR IRESs. Mutational analysis demonstrated
that IGR IRES activity was influenced by the sequence
of the first codon of ORF2 and may explain why the ma-
jority of IGR IRESs encode GCU (alanine) as the first
translated codon. The Class II ribosome binding domain
mediated enhanced IGR IRES activity in yeast grown at a
higher temperature, however, temperature did not affect
IGR IRES activity in mammalian cells. This suggests that
Class II IRESs may not function optimally with yeast
ribosomes and require a higher temperature to perform
optimally.

The Dicistroviridae IGR IRESs are functional in vivo

In this study we used two mechanisms, disruption of PKI
(Figure 2D) and deletion of RPS25 (Figure 3) to demon-
strate that the HiPV, HoCV-1, ABPV, KBV and SINV-1
IGR IRESs have IRES activity. Loss of RPS25 or disrup-
tion of PKI results in a reduction in reporter expression to
background levels (<2000 RLUs), demonstrating that all
of the IGR IRESs are functional. Our analysis of PKI
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mutants, IRES activity in the rps25DaDb deletion strain,
mutation of upstream in frame AUGs with and without
compensatory mutations and the northern analysis of tran-
scripts generated from the dicistronic reporter in vivo are
all consistent with the non-specific firefly luciferase activity
observed for TSV and IAPV being due to translation of
firefly luciferase from a monocistronic message using a
cap-dependent mechanism. However, the IAPV and TSV
IGRs were still shown to have functional IRESs, because
they retain a high level of activity dependent on both an
intact PKI domain and RPS25 when the start codons are
mutated to stop codons (Figures 3D and E and 4C).
Therefore, all 9 of the assayed IGR IRES, including
IAPV and TSV, are functional in yeast and mammalian
cells.

The role of the first codon of ORF2 in IGR IRES-
mediated translation

Previous studies have shown that the first 6–11 nucleotides
of the Dicistroviridae ORF2 enhance IGR IRES-mediated
translation and that the single-stranded nature of the
sequence following PKI functions as a barrier to allow
the IGR IRES to fold properly (37,38). However our

data takes this one step further, showing that IRES
activity is affected by the specific sequence of the first
codon that is translated in the A-site of the ribosome.
The IAPV IGR IRES demonstrated a dramatic 10-fold
increase in expression in yeast when the first codon was
mutated from a GGC (glycine) to a GCU (alanine). The
possibility that this difference in activity was due to codon
bias was ruled out because exchanging the rare glycine
codon, GGC, to the more abundant GGU glycine
codon did not enhance IAPV IGR IRES activity since
the marginal increase in expression of the reporter was
not RPS25 dependent. Consistent with this finding, it
has been shown that introduction of rare codons into
the firefly luciferase protein in yeast even at the
N-terminus, does not have a large effect on overall activity
(42). Furthermore, GGU (glycine) and GCU (alanine)
have very similar codon usage in yeast, but only IAPVgcu

exhibits a dramatic increase in RPS25 dependent activity,
demonstrating that the IAPV IGR IRES functions better
with a GCU (alanine) codon in the A-site (Figure 5B).
In HeLa cells, the GGC glycine codon and the GCU

alanine codon have similar codon usage but GCU in-
creases IGR IRES activity. The reciprocal two-nucleotide
change from GCU to GGC in the KBV IGR IRES
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Figure 6. The ribosome binding domain imparts temperature sensitivity onto the Class II IGR IRESs in yeast. (A) Luciferase activity was measured
for each of the IGR IRES reporters in yeast grown at 25, 30 and 37�C. The IRES activity was normalized to cap-dependent translation and shown as
a percentage of the IGR IRES activity at 30�C for individual IRESs. Error bars represent SE for n=3. (B) IRES activity of chimeric IGR IRESs
was measured and normalized to cap-dependent translation and the activity was compared to the CrPV IGR IRES at 30�C. A diagram of the IRESs
is shown below the graph. Domains in gray correspond to CrPV sequences, domains in black are from KBV. The fold enhancement of IRES activity
between 30 and 37�C is indicated for the KBV and KBV-CrPV IGR IRESs. Error bars represent SE for n=3.
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decreased IRES activity to �30% of the wild-type level.
Taken together these results demonstrate that IGR IRESs
functions better with a GCU (alanine) codon as the first
translated codon. However, it cannot be ruled out that the
presence of an alanine tRNA in the A-site is responsible
for the enhancement. Nonetheless, the majority of IGR
IRESs are enriched for a GCU (alanine) codon as the
first codon of ORF2 perhaps as a way to maximize ex-
pression of the viral structural proteins.

Differences between the Classes I and II IGR IRESs

In general, the Classes I and II IGR IRESs exhibit similar
activity in yeast (Figure 2B). However, in mammalian
cells, Class II are significantly more active (Figure 4A).
This finding contradicts the previous assumption that
the Class II IGR IRESs were less active than Class I
based on accurate, though limited, studies on the atypical
TSV and IAPV IGR IRESs (21,24,34) and underscores
the importance of testing multiple IGR IRESs from
each class in order to establish trends. Carter et al. (25)
has performed a similar analysis of various IGR IRESs in
insect and mammalian cells. However, they did not ob-
serve significant differences between Classes I and II IGR
IRES activities. One explanation for this discrepancy could
be that the large differences in activities that we observe
are observable due to the fact that we have reduced the
background expression (no IRES activity) to two orders
of magnitude below the CrPV IGR IRES activity. Thus,
allowing for a more sensitive measurement of differences
in IRES activities.
The Class II IGR IRESs function more robustly at

higher temperatures in yeast, which suggested that the
temperature the cells are grown at could explain
the enhanced activity observed in HeLa cells. However,
the Class II IGR IRES activity did not correlate with tem-
perature in mammalian cells (data not shown).
Alternatively, the Class II IGR IRESs may function
better with mammalian ribosomes and the temperature
dependence in yeast may reflect differences in the IRES,
or yeast ribosome, which can be overcome at higher tem-
peratures where the ribosome has been shown to be more
flexible (41).
The chimeric IGR IRES data demonstrated that the

ribosome binding domain of the IGR IRES is the primary
functional distinction that is responsible for the differ-
ences in IRES activity between the two classes. As SL2.1
and SL2.3 are absolutely conserved between KBV and
CrPV, the most likely region responsible for differences
in activity is the bulge region because it is the major
class-specific difference in the ribosome binding domain.
The bulge is larger in the Class II IGR IRESs (11 bases in
the bottom loop and 7 in the top) compared to the Class I
IGR IRESs (7 bases in the bottom loop and 5 in the top)
(see Figure 1B and C). In addition, the bulge region is
composed of different bases, which are conserved within,
but not between, the two classes.
In order for a virus to be successful it must be able to

replicate at the temperature of the insect host. Therefore,
it is interesting to note that the majority of Class II IRESs
are found in viruses that infect social insects (see Table 1)

which live in hives maintained at high temperatures,
between 32–36�C (43). The environment of the hive may
have added a selective pressure to the virus to replicate at
higher temperatures. In contrast, the majority of Class I
IGR IRESs are found in viruses that infect non-social
insects, which would maintain the temperature of their
environment and consequently, they would have no select-
ive pressure for viral replication at higher temperatures.

Revisiting the role of SL3

SL3 represents a striking structural difference between
Classes I and II IGR IRESs, however little is known
about how it contributes to differences in IGR IRES
activity. It was proposed that SL3 is required for activity
because mutations or deletions of SL3 led to a reduction
in IRES activity (17,23,24). Efforts to establish the im-
portance of SL3 are complicated by the fact that muta-
tions may disrupt the global folding of PKI (14,15,20).
The study of chimeric IGR IRESs has brought new
insight into the role of SL3 in the Class II IGR IRESs.
The TSV-CrPV chimeras (21), and the KBV-CrPV
chimeras (Figure 6B), demonstrate that SL3 is not essen-
tial for IRES activity because when a Class I PKI is fused
to the ribosome binding domain of a Class II IRES, it is
active, thus demonstrating that the Class II ribosome
binding domain does not require a PKI domain with
SL3 in order to function. However, chimeric IRESs
appear to be less fit than the wild-type IRESs i.e. KBV
is more active than the KBV-CrPV chimera, suggesting
that the two domains have functional interactions.

Ribosome recruitment by IGR IRESs

The current model for ribosome recruitment by IGR
IRESs suggests that SL2.1 and SL2.3 are responsible for
binding the 40S ribosome (15,18,44). Recent crystal struc-
tures and cryo-EM reconstructions of the eukaryotic
ribosome have modeled Rps25p in the E-site of the
ribosome in the region where the CrPV IGR IRES binds
(45–47). This agrees with biochemical data that demon-
strates that the PSIV IGR IRES cross-links to Rps25p
(44). Our previous findings demonstrated that ribosomes
lacking Rps25p were unable to bind to the CrPV IGR
IRES, suggesting this is an essential interaction for ribo-
some binding (28). In chemical protection assays, both
SL2.1 and 2.3 are protected after the addition of free
Rps25p (48). Based on these data it appears that stem
loops SL2.1 and/or SL2.3 interact with Rps25p (28).
This model is further supported by the findings that
Rps25p is required for both Classes I and II IGR IRESs
(Figure 3A) because SL2.1 and SL2.3 are conserved
between the two IGR IRES classes. While ribosome re-
cruitment and Rps25p are essential for IRES activity,
ribosome recruitment may not be the defining difference
between Classes I and II IGR IRESs. Rather, differences
in IGR IRES activity between the Classes I and II IRESs
may be explained by a downstream step in initiation such
as 80S complex formation (16,24) or pseudotranslocation
(the movement of the ribosome by one codon in the
absence of GTP hydrolysis following tRNA delivery to
the A-site) (20).
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